Common measures of vaccination intention generate substantially different estimates that can reduce predictive validity.
Humans
Male
Vaccination
/ statistics & numerical data
Female
Intention
Adult
COVID-19 Vaccines
/ administration & dosage
COVID-19
/ prevention & control
Middle Aged
Influenza Vaccines
/ administration & dosage
Surveys and Questionnaires
SARS-CoV-2
/ immunology
Young Adult
Aged
Adolescent
Influenza, Human
/ prevention & control
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
01 Oct 2024
01 Oct 2024
Historique:
received:
10
07
2023
accepted:
31
07
2024
medline:
2
10
2024
pubmed:
2
10
2024
entrez:
1
10
2024
Statut:
epublish
Résumé
Surveys often estimate vaccination intentions using dichotomous ("Yes"/"No") or trichotomous ("Yes," "Unsure," "No") response options presented in different orders. Do survey results depend on these variations? This controlled experiment randomized participants to dichotomous or trichotomous measures of vaccine intentions (with "Yes" and "No" options presented in different orders). Intentions were measured separately for COVID-19, its booster, and influenza vaccines. Among a sample of U.S. adults (N = 4,764), estimates of vaccine intention varied as much as 37.5 ± 17.4 percentage points as a function of the dichotomous or trichotomous response set. Among participants who had not received the COVID-19 vaccine, the "Unsure" option was more likely to reduce the share of "No" (versus "Yes") responses, whereas among participants who had received the COVID-19 vaccine, the "Unsure" option was more likely to reduce the share of "Yes" (versus "No") responses. The "Unsure" category may increase doubt and decrease reliance on past vaccination behavior when forming intentions. The order of "Yes" and "No" responses had no significant effect. Future research is needed to further evaluate why the effects of including the "Unsure" option vary in direction and magnitude.
Identifiants
pubmed: 39353989
doi: 10.1038/s41598-024-69129-5
pii: 10.1038/s41598-024-69129-5
doi:
Substances chimiques
COVID-19 Vaccines
0
Influenza Vaccines
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
22843Informations de copyright
© 2024. The Author(s).
Références
MacDonald, N. E., SAGE Working Group on Vaccine Hesitancy. Vaccine hesitancy: Definition, scope and determinants. Vaccine 33, 4161–4164 (2015).
doi: 10.1016/j.vaccine.2015.04.036
pubmed: 25896383
Akbar, R. World Health Organization. Ten threats to global health in 2019. https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019 (2019).
Sheeran, P. Intention—Behavior relations: A conceptual and empirical review. Eur. Rev. Soc. Psychol. 12(1), 1–36 (2002).
doi: 10.1080/14792772143000003
daCosta, D. M. & Chapman, G. B. Moderators of the intention-behavior relationship in influenza vaccinations: Intention stability and unforeseen barriers. Psychol. Health 20(6), 761774 (2005).
Fishman, J., Mandell, D. S., Salmon, M. K. & Candon, M. Large and small financial incentives may motivate COVID-19 vaccination: A randomized, controlled survey experiment. PLoS ONE 18(3), e0282518 (2023).
doi: 10.1371/journal.pone.0282518
pubmed: 36930588
pmcid: 10022800
Fishman, J., Salmon, M., Scheitrum, K., Schaefer, A. & Robertson, C. Comparative effectiveness of mandates and financial policies targeting COVID-19 vaccine hesitancy: A randomized, controlled survey experiment. Vaccine 40(51), 7451–7459 (2022).
doi: 10.1016/j.vaccine.2022.05.073
pubmed: 35914961
pmcid: 9148933
Fishman, J., Lushin, V. & Mandell, D. S. Predicting implementation: comparing validated measures of intention and assessing the role of motivation when designing behavioral interventions. Implement. Sci. Commun. 1, 81 (2020).
doi: 10.1186/s43058-020-00050-4
pubmed: 33005900
pmcid: 7523324
Pol Campos-Mercade, P. et al. Monetary incentives increase COVID-19 vaccinations. Science 374, 879–882 (2021).
doi: 10.1126/science.abm0475
pubmed: 34618594
pmcid: 10765478
Callaghan, T. et al. Correlates and disparities of intention to vaccinate against COVID-19. Soc. Sci. Med. 272, 113638 (2021).
doi: 10.1016/j.socscimed.2020.113638
pubmed: 33414032
pmcid: 7834845
Ung, C. O. L. et al. Investigating the intention to receive the COVID-19 vaccination in Macao: Implications for vaccination strategies. BMC Infect. Dis. 22, 218 (2022).
doi: 10.1186/s12879-022-07191-y
pubmed: 35246072
pmcid: 8894128
Latkin, C. A., Dayton, L., Yi, G., Colon, B. & Kong, X. Mask usage, social distancing, racial, and gender correlates of COVID-19 vaccine intentions among adults in the US. PLoS ONE 16(2), e0246970 (2021).
doi: 10.1371/journal.pone.0246970
pubmed: 33592035
pmcid: 7886161
Saris, W. & Gallhofer, I. Design, Evaluation, and Analysis of Questionnaires for Survey Research (Wiley, 2014).
doi: 10.1002/9781118634646
Peterson, R. A. Constructing Effective Questionnaires. Vol. 1 (Sage publications Thousand Oaks, 2000).
doi: 10.4135/9781483349022
DeCastellarnau, A. A classification of response scale characteristics that affect data quality: A literature review. Qual. Quant. 52(4), 1523–1559 (2018).
doi: 10.1007/s11135-017-0533-4
pubmed: 29937582
Andrews, F. Construct validity and error components of survey measures: A structural modelling approach. Public Opin. Q. 48, 409–442 (1984).
doi: 10.1086/268840
Saris, W. E. & Revilla, M. Correction for measurement errors in survey research: Necessary and possible. Soc. Indic. Res. 127, 1005–1020 (2016).
doi: 10.1007/s11205-015-1002-x
Albarracín, D. & Wyer, R. S. Jr. The cognitive impact of past behavior: Influences on beliefs, attitudes, and future behavioral decisions. J. Personal. Soc. Psychol. 79(1), 5–22 (2000).
doi: 10.1037/0022-3514.79.1.5
Miller, J. M. & Jon, A. K. The impact of candidate name order on election outcomes. Public Opin. Q. 291–330 (1998).
van Erkel, P. F. & Thijssen, P. The first one wins: Distilling the primacy effect. Electoral Stud. 44, 245–254 (2016).
doi: 10.1016/j.electstud.2016.09.002
Israel, G. D. & Taylor, C. L. Can response order bias evaluations?. Eval. Program Plan. 13(4), 365–371 (1990).
doi: 10.1016/0149-7189(90)90021-N
Taylor, S. et al. A proactive approach for managing COVID-19: The importance of understanding the motivational roots of vaccination hesitancy for SARS-CoV2. Front. Psychol. https://doi.org/10.3389/fpsyg.2020.575950 (2020).
doi: 10.3389/fpsyg.2020.575950
pubmed: 33192883
pmcid: 7604422
Iyer, G., Nandur, V. & Soberman, D. Vaccine hesitancy and monetary incentives. Humanit. Soc. Sci. Commun. 9, 81 (2022).
doi: 10.1057/s41599-022-01074-y
Krosnick, J. & Presser, S. Question and Questionnaire Design. Handbook of Survey Research. (2010).
Krosnick, J. et al. The impact of “no opinion” response options on data quality: Non-attitude reduction or an invitation to satisfice?. Public Opin. Q. 66(3), 371–403 (2002).
doi: 10.1086/341394
Gordon, R. A. Social desirability bias: A demonstration and technique for its reduction. Teach. Psychol. 14, 40–42 (1987).
doi: 10.1207/s15328023top1401_11
Paulhus, D. L. Two-component models of socially desirable responding. J. Personal. Soc. Psychol. 46, 598–609 (1984).
doi: 10.1037/0022-3514.46.3.598
Malhotra, N. Completion time and response order effects in web surveys. Public Opin. Q. 72(5), 914–934 (2008).
doi: 10.1093/poq/nfn050
Greszki, R. et al. Exploring the effects of removing ‘too fast’ responses and respondents from web surveys. Public Opin. Q. 79(2), 471–503 (2015).
doi: 10.1093/poq/nfu058