Modal test and finite element updating of sprayer boom truss.
Finite element analysis
Modal experiment
Model updating
Spray boom
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
01 Oct 2024
01 Oct 2024
Historique:
received:
02
04
2024
accepted:
19
09
2024
medline:
2
10
2024
pubmed:
2
10
2024
entrez:
1
10
2024
Statut:
epublish
Résumé
In addressing the finite element model and actual structural error of the sprayer boom truss, this study aims to achieve high-precision dynamic characteristics, enhance simulation credibility, make informed optimization decisions, and reduce testing costs. The research investigates the dynamic behavior of the sprayer boom truss through modal experiments and finite element simulations. Initially, modal parameters of the sprayer boom are obtained through experimental testing, validating their reasonableness and reliability. Subsequently, Ansys Workbench18.0 simulation software was employed to analyze the finite element model of the sprayer boom, revealing a maximum relative error of 11.93% compared to experimental results. To improve accuracy, a kriging-based response surface model was constructed, and multi-objective parameter adjustments using the MOGA algorithm reduce the maximum relative error to 4.6%. Sensitivity analysis further refines the model by optimizing target parameters, resulting in a maximum relative error of 4.96%. These findings demonstrate the effective enhancement of the corrected finite element model's precision, with the response surface method outperforming sensitivity analysis the maximum relative error between the updated finite element model and experimental results was within the engineering allowable range, confirming the effectiveness of the updated model.
Identifiants
pubmed: 39354090
doi: 10.1038/s41598-024-73640-0
pii: 10.1038/s41598-024-73640-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
22860Subventions
Organisme : National Key Research and Development Program of China
ID : 2022YFD2300903-2
Organisme : National Industry System of Corn Technology
ID : CARS-02
Informations de copyright
© 2024. The Author(s).
Références
Li, J., Shi, Y., Lan, Y. & Guo, S. Vertical distribution and vortex structure of rotor wind field under the influence of rice canopy. Comput. Electron. Agric.159, 140–146. https://doi.org/10.1016/j.compag.2019.02.027 (2019).
doi: 10.1016/j.compag.2019.02.027
Xu, D. et al. Effects of spray parameters on pesticide utilization efficiency and droplet deposition distribution in paddy field of self-propelled boom sprayer. Chin. J. Pestic. Sci.22, 324–332 (2020).
Ramon, H. & De Baerdemaeker, J. Spray boom motions and spray distribution: Part 1, derivation of a mathematical relation. J. Agric. Eng. Res.66, 23–29. https://doi.org/10.1006/jaer.1996.0114 (1997).
doi: 10.1006/jaer.1996.0114
Ramon, H., Missotten, B. & De Baerdemaeker, J. Spray boom motions and spray distribution: Part 2, experimental validation of the mathematical relation and simulation results. J. Agric. Eng. Res.66, 31–39. https://doi.org/10.1006/jaer.1996.0115 (1997).
doi: 10.1006/jaer.1996.0115
Lee, J. Free vibration analysis of joined conical-cylindrical shells by matched Fourier-Chebyshev collocation method. J. Mech. Sci. Technol.32, 4601–4612. https://doi.org/10.1007/s12206-018-0907-0 (2018).
doi: 10.1007/s12206-018-0907-0
Zhang, H., Li, D. & Li, H. Recent progress on finite element model updating: From linearity to nonlinearity. Adv. Mech.49, 542–575. https://doi.org/10.6052/1000-0992-18-004 (2019).
doi: 10.6052/1000-0992-18-004
Shi, J., Wu, Q., Guo, W., Yang, X. & Huang, Y. Application of modal effective mass for finite element model construction. J. Syst. Simul.25, 995–998. https://doi.org/10.16182/j.cnki.joss.2013.05.036 (2013).
doi: 10.16182/j.cnki.joss.2013.05.036
Liu, G. et al. A finite element model updating method based on improved MCMC method. Eng. Mech.33, 138–145. https://doi.org/10.6052/j.issn.1000-4750.2014.10.0887 (2016).
doi: 10.6052/j.issn.1000-4750.2014.10.0887
Mottershead, J. E. & Friswell, M. I. Model updating in structural dynamics: A survey. J. Sound Vib.167, 347–375. https://doi.org/10.1006/jsvi.1993.1340 (1993).
doi: 10.1006/jsvi.1993.1340
Baklanov, V. S. Low-frequency vibroisolation mounting of power plants for new-generation airplanes with engines of extra-high bypass ratio. J. Sound Vib.308, 709–720. https://doi.org/10.1016/j.jsv.2007.04.042 (2009).
doi: 10.1016/j.jsv.2007.04.042
Xu, X. et al. Full flexible model updating of single-strip pantograph based on modal test. Chin. J. Theor. Appl. Mech.55, 1–8. https://doi.org/10.6052/0459-1879-23-063 (2023).
doi: 10.6052/0459-1879-23-063
He, H., Cao, X., Xu, H. & Hou, S. Modal test and model modification of spiral bevel gears. J. Aerosp. Power38, 1–9. https://doi.org/10.13224/j.cnki.jasp.20220978 (2023).
doi: 10.13224/j.cnki.jasp.20220978
Liu, G., Chen, Q., Lei, Z. & Xiong, J. Finite element model updating method based on improved firefly algorithm. Eng. Mech.39, 1–9. https://doi.org/10.6052/j.issn.1000-4750.2021.04.0271 (2022).
doi: 10.6052/j.issn.1000-4750.2021.04.0271
Li, J. & Xu, F. Finite element model updating based on kriging model and MOGA algorithm. Adv. Aeronaut. Sci. Eng.14, 68–75. https://doi.org/10.16615/j.cnki.1674-8190.2023.04.07 (2023).
doi: 10.16615/j.cnki.1674-8190.2023.04.07
Zhang, X., Peng, Z. & Zhang, Y. Stochastic finite element model updating based on kriging model and improved MCMC algorithm. Chin. J. Comput. Mech.38, 712–721. https://doi.org/10.7511/jslx20201019001 (2021).
doi: 10.7511/jslx20201019001
Su, Z., Han, D. & Cui, Z. Helicopter rotor blade model updating method based on sensitivity analysis. J. Aerosp. Power38, 1–8. https://doi.org/10.13224/j.cnki.jasp.20220869 (2023).
doi: 10.13224/j.cnki.jasp.20220869
Liu, L., Li, F., Song, Y., Liu, C. & Wu, P. Finite element model updating of bogie frame based on sensitivity analysis. J. Vib. Shock42, 181–186. https://doi.org/10.3465/j.cnki.jvs.2023.03.021 (2023).
doi: 10.3465/j.cnki.jvs.2023.03.021
Zhang, Q., Zhu, Y., Zhao, Y. & Yang,. Finite element model updating method of diesel engine airframe based on sensitivity analysis. Ship Eng.44, 87–91. https://doi.org/10.13788/j.cnki.cbgc.2022.12.14 (2022).
doi: 10.13788/j.cnki.cbgc.2022.12.14
Mottershead, J. E., Link, M. & Friswell, M. I. The sensitivity method in finite element model updating: A tutorial. Mech. Syst. Signal Process.25, 2275–2296. https://doi.org/10.1016/j.ymssp.2010.10.012 (2011).
doi: 10.1016/j.ymssp.2010.10.012
Culla, A., D’Ambrogio, W., & Fregolent, A. Getting a symmetric residue matrix from the poly-reference least square complex frequency domain technique. In Proceedings of the Proceedings of ISMA 2755-2764 (2012).
Li, D. & Lu, Q. Experimental Modal Analysis and Its Applications (Science Press, 2001).
Weng, S. & Zhu, H. Damage identification of civil structures based on finite element model updating. Eng. Mech.38, 1–16. https://doi.org/10.6052/j.issn.1000-4750.2020.06.ST02 (2021).
doi: 10.6052/j.issn.1000-4750.2020.06.ST02
Stein, M. L. Interpolation of Spatial Data: Some Theory for Kriging (Springer, 2012).
Murata, T., & Ishibuchi, H. MOGA: Multi-objective genetic algorithms. In Proceedings of the IEEE International Conference on Evolutionary Computation vol 1, 289–294 ((1995)). https://doi.org/10.1109/ICEC.1995.489161
Wissler, C. The Spearman correlation formula. Science22, 309–311. https://doi.org/10.1126/science.22.558.30 (1905).
doi: 10.1126/science.22.558.30
pubmed: 17836577