Calciprotein particles induce arterial stiffening ex vivo and impair vascular cell function.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
02 Oct 2024
Historique:
received: 06 05 2024
accepted: 13 09 2024
medline: 3 10 2024
pubmed: 3 10 2024
entrez: 2 10 2024
Statut: epublish

Résumé

Calciprotein particles (CPPs) are an endogenous buffering system, clearing excessive amounts of Ca

Identifiants

pubmed: 39358413
doi: 10.1038/s42003-024-06895-y
pii: 10.1038/s42003-024-06895-y
doi:

Substances chimiques

Glycosaminoglycans 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1241

Subventions

Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : No858070

Informations de copyright

© 2024. The Author(s).

Références

Peacock, M. Calcium metabolism in health and disease. Clin. J. Am. Soc. Nephrol. 5, S23–S30 (2010).
pubmed: 20089499 doi: 10.2215/CJN.05910809
Peacock, M. Phosphate Metabolism in Health and Disease. Calcif. Tissue Int. 108, 3–15 (2021).
pubmed: 32266417 doi: 10.1007/s00223-020-00686-3
Renkema, K. Y., Alexander, R. T., Bindels, R. J. & Hoenderop, J. G. Calcium and phosphate homeostasis: concerted interplay of new regulators. Ann. Med. 40, 82–91 (2008).
pubmed: 18293139 doi: 10.1080/07853890701689645
Smith, E. R., Hewitson, T. D. & Jahnen-Dechent, W. Calciprotein particles: mineral behaving badly? Curr. Opin. Nephrol. Hypertens. 29, 378–386 (2020).
pubmed: 32404635 doi: 10.1097/MNH.0000000000000609
Jahnen-Dechent, W. & Smith, E. R. Nature’s remedy to phosphate woes: calciprotein particles regulate systemic mineral metabolism. Kidney Int. 97, 648–651 (2020).
pubmed: 32200857 doi: 10.1016/j.kint.2019.12.018
Babler, A. et al. Microvasculopathy and soft tissue calcification in mice are governed by fetuin-A, magnesium and pyrophosphate. PLoS One 15, e0228938 (2020).
pubmed: 32074140 pmcid: 7029863 doi: 10.1371/journal.pone.0228938
Luo, G. et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386, 78–81 (1997).
pubmed: 9052783 doi: 10.1038/386078a0
Speer, M. Y. et al. Inactivation of the osteopontin gene enhances vascular calcification of matrix Gla protein-deficient mice: evidence for osteopontin as an inducible inhibitor of vascular calcification in vivo. J. Exp. Med. 196, 1047–1055 (2002).
pubmed: 12391016 pmcid: 2194039 doi: 10.1084/jem.20020911
Smith, E. R. et al. Serum fetuin-A concentration and fetuin-A-containing calciprotein particles in patients with chronic inflammatory disease and renal failure. Nephrology 18, 215–221 (2013).
pubmed: 23231493 doi: 10.1111/nep.12021
Smith, E. R. et al. Phosphorylated fetuin-A-containing calciprotein particles are associated with aortic stiffness and a procalcific milieu in patients with pre-dialysis CKD. Nephrol. Dial. Transpl. 27, 1957–1966 (2012).
doi: 10.1093/ndt/gfr609
Nakazato, J. et al. Association of calciprotein particles measured by a new method with coronary artery plaque in patients with coronary artery disease: A cross-sectional study. J. Cardiol. 74, 428–435 (2019).
pubmed: 31101573 doi: 10.1016/j.jjcc.2019.04.008
Chen, W. et al. Patients with advanced chronic kidney disease and vascular calcification have a large hydrodynamic radius of secondary calciprotein particles. Nephrol. Dial. Transpl. 34, 992–1000 (2019).
doi: 10.1093/ndt/gfy117
Jäger, E. et al. Calcium-sensing receptor-mediated NLRP3 inflammasome response to calciprotein particles drives inflammation in rheumatoid arthritis. Nat. Commun. 11, 4243 (2020).
pubmed: 32843625 pmcid: 7447633 doi: 10.1038/s41467-020-17749-6
Dahle, D. O. et al. Serum Calcification Propensity Is a Strong and Independent Determinant of Cardiac and All-Cause Mortality in Kidney Transplant Recipients. Am. J. Transpl. 16, 204–212 (2016).
doi: 10.1111/ajt.13443
Kunishige, R. et al. Calciprotein particle-induced cytotoxicity via lysosomal dysfunction and altered cholesterol distribution in renal epithelial HK-2 cells. Sci. Rep. 10, 20125 (2020).
pubmed: 33208865 pmcid: 7676272 doi: 10.1038/s41598-020-77308-3
Anzai, F. et al. Calciprotein Particles Induce IL-1β/α-Mediated Inflammation through NLRP3 Inflammasome-Dependent and -Independent Mechanisms. Immunohorizons 5, 602–614 (2021).
pubmed: 34326201 doi: 10.4049/immunohorizons.2100066
Shishkova, D. et al. Calciprotein Particles Cause Physiologically Significant Pro-Inflammatory Response in Endothelial Cells and Systemic Circulation. Int. J. Mol. Sci. 23, 14941 (2022).
Shishkova, D. K. et al. Calciprotein Particles Link Disturbed Mineral Homeostasis with Cardiovascular Disease by Causing Endothelial Dysfunction and Vascular Inflammation. Int J. Mol. Sci. 22, 12458 (2021).
pubmed: 34830334 pmcid: 8626027 doi: 10.3390/ijms222212458
Aghagolzadeh, P. et al. Calcification of vascular smooth muscle cells is induced by secondary calciprotein particles and enhanced by tumor necrosis factor-α. Atherosclerosis 251, 404–414 (2016).
pubmed: 27289275 doi: 10.1016/j.atherosclerosis.2016.05.044
Van den Bergh, G., Opdebeeck, B., D’Haese, P. C. & Verhulst, A. The Vicious Cycle of Arterial Stiffness and Arterial Media Calcification. Trends Mol. Med. 25, 1133–1146 (2019).
pubmed: 31522956 doi: 10.1016/j.molmed.2019.08.006
Chen, Y., Zhao, X. & Wu, H. Arterial Stiffness: A Focus on Vascular Calcification and Its Link to Bone Mineralization. Arterioscler Thromb. Vasc. Biol. 40, 1078–1093 (2020).
pubmed: 32237904 pmcid: 7199843 doi: 10.1161/ATVBAHA.120.313131
Chen, W. et al. Associations of Serum Calciprotein Particle Size and Transformation Time With Arterial Calcification, Arterial Stiffness, and Mortality in Incident Hemodialysis Patients. Am. J. Kidney Dis. 77, 346–354 (2021).
pubmed: 32800846 doi: 10.1053/j.ajkd.2020.05.031
Ghadie, N. M., St-Pierre, J. P. & Labrosse, M. R. The Contribution of Glycosaminoglycans/Proteoglycans to Aortic Mechanics in Health and Disease: A Critical Review. IEEE Trans. Biomed. Eng. 68, 3491–3500 (2021).
pubmed: 33872141 doi: 10.1109/TBME.2021.3074053
Muyor, K. et al. Vascular calcification in different arterial beds in ex vivo ring culture and in vivo rat model. Sci. Rep. 12, 11861 (2022).
pubmed: 35831341 pmcid: 9279329 doi: 10.1038/s41598-022-15739-w
Ameer, O. Z., Salman, I. M., Avolio, A. P., Phillips, J. K. & Butlin, M. Opposing changes in thoracic and abdominal aortic biomechanical properties in rodent models of vascular calcification and hypertension. Am. J. Physiol. Heart Circ. Physiol. 307, H143–H151 (2014).
pubmed: 24838503 doi: 10.1152/ajpheart.00139.2014
Sørensen, I. M. H. et al. Regional distribution and severity of arterial calcification in patients with chronic kidney disease stages 1-5: a cross-sectional study of the Copenhagen chronic kidney disease cohort. BMC Nephrol. 21, 534 (2020).
pubmed: 33297991 pmcid: 7726904 doi: 10.1186/s12882-020-02192-y
Jadidi, M. et al. Calcification prevalence in different vascular zones and its association with demographics, risk factors, and morphometry. Am. J. Physiol. Heart Circ. Physiol. 320, H2313–h23 (2021).
pubmed: 33961507 pmcid: 8289361 doi: 10.1152/ajpheart.00040.2021
Concannon, J. et al. Quantification of the regional bioarchitecture in the human aorta. J. Anat. 236, 142–155 (2020).
pubmed: 31512228 doi: 10.1111/joa.13076
Suslov, A. V., et al. Molecular Pathogenesis and the Possible Role of Mitochondrial Heteroplasmy in Thoracic Aortic Aneurysm. Life. 11, 14941 (2021).
Neutel, C. H. G., Wesley, C. D., De Meyer, G. R. Y., Martinet, W. & Guns, P.-J. The effect of cyclic stretch on aortic viscoelasticity and the putative role of smooth muscle focal adhesion. Front. Physiol. 14, 1218924 (2023).
pubmed: 37637147 pmcid: 10450742 doi: 10.3389/fphys.2023.1218924
Villa-Bellosta, R. & O’Neill, W. C. Pyrophosphate deficiency in vascular calcification. Kidney Int. 93, 1293–1297 (2018).
pubmed: 29580636 doi: 10.1016/j.kint.2017.11.035
Trenti, C. et al. Wall shear stress and relative residence time as potential risk factors for abdominal aortic aneurysms in males: a 4D flow cardiovascular magnetic resonance case–control study. J. Cardiovasc. Magn. Reson. 24, 18 (2022).
pubmed: 35303893 pmcid: 8932193 doi: 10.1186/s12968-022-00848-2
Pedersen, E. M. et al. Distribution of early atherosclerotic lesions in the human abdominal aorta correlates with wall shear stresses measured in vivo. Eur. J. Vasc. Endovasc. Surg. 18, 328–333 (1999).
pubmed: 10550268 doi: 10.1053/ejvs.1999.0913
Katoh, K. Effects of Mechanical Stress on Endothelial Cells In Situ and In Vitro. Int. J. Mol. Sci. 24, 16518 (2023).
Zhou, G., Zhu, Y., Yin, Y., Su, M. & Li, M. Association of wall shear stress with intracranial aneurysm rupture: systematic review and meta-analysis. Sci. Rep. 7, 5331 (2017).
pubmed: 28706287 pmcid: 5509692 doi: 10.1038/s41598-017-05886-w
Kutikhin, A. G. et al. Calciprotein Particles: Balancing Mineral Homeostasis and Vascular Pathology. Arterioscler Thromb. Vasc. Biol. 41, 1607–1624 (2021).
pubmed: 33691479 pmcid: 8057528 doi: 10.1161/ATVBAHA.120.315697
Leloup, A. J. A. et al. Vascular smooth muscle cell contraction and relaxation in the isolated aorta: a critical regulator of large artery compliance. Physiol. Rep. 7, e13934 (2019).
pubmed: 30810292 pmcid: 6391714 doi: 10.14814/phy2.13934
Neutel, C. H. G. et al. High Pulsatile Load Decreases Arterial Stiffness: An ex vivo Study. Front. Physiol. 12, 741346 (2021).
pubmed: 34744784 pmcid: 8569808 doi: 10.3389/fphys.2021.741346
Kochová, P. et al. The contribution of vascular smooth muscle, elastin and collagen on the passive mechanics of porcine carotid arteries. Physiol. Meas. 33, 1335–1351 (2012).
pubmed: 22813960 doi: 10.1088/0967-3334/33/8/1335
Van den Bergh, G. et al. Endothelial dysfunction aggravates arterial media calcification in warfarin administered rats. FASEB J. 36, e22315 (2022).
pubmed: 35429059
Shi, J., Yang, Y., Cheng, A., Xu, G. & He, F. Metabolism of vascular smooth muscle cells in vascular diseases. Am. J. Physiol. Heart Circ. Physiol. 319, H613–h31 (2020).
pubmed: 32762559 doi: 10.1152/ajpheart.00220.2020
Rensen, S. S., Doevendans, P. A. & van Eys, G. J. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth. Heart J. 15, 100–108 (2007).
pubmed: 17612668 pmcid: 1847757 doi: 10.1007/BF03085963
Ewence, A. E. et al. Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque destabilization. Circ. Res. 103, e28–e34 (2008).
pubmed: 18669918 doi: 10.1161/CIRCRESAHA.108.181305
Feenstra, L. et al. Calciprotein Particles Induce Endothelial Dysfunction by Impairing Endothelial Nitric Oxide Metabolism. Arterioscler. Thromb. Vasc. Biol. 43, 443–455 (2023).
pubmed: 36727521 pmcid: 9944758 doi: 10.1161/ATVBAHA.122.318420
Neutel, C. H. G., Hendrickx, J. O., Martinet, W., De Meyer, G. R. Y. & Guns, P. J. The Protective Effects of the Autophagic and Lysosomal Machinery in Vascular and Valvular Calcification: A Systematic Review. Int. J. Mol. Sci. 21, 8933 (2020).
pubmed: 33255685 pmcid: 7728070 doi: 10.3390/ijms21238933
Pewowaruk, R. J., Hein, A. J., Carlsson, C. M., Korcarz, C. E. & Gepner, A. D. Effects of nitroglycerin-induced vasodilation on elastic and muscular artery stiffness in older Veterans. Hypertens. Res. 45, 1997–2007 (2022).
pubmed: 35840750 pmcid: 10896453 doi: 10.1038/s41440-022-00981-6
Ter Braake, A. D. et al. Calciprotein particle inhibition explains magnesium-mediated protection against vascular calcification. Nephrol. Dial. Transpl. 35, 765–773 (2020).
doi: 10.1093/ndt/gfz190
Zeper, L. W. et al. Calciprotein Particle Synthesis Strategy Determines In Vitro Calcification Potential. Calcif. Tissue Int. 112, 103–117 (2023).
pubmed: 36326853 doi: 10.1007/s00223-022-01036-1
Humphrey, J. D. Possible mechanical roles of glycosaminoglycans in thoracic aortic dissection and associations with dysregulated transforming growth factor-β. J. Vasc. Res. 50, 1–10 (2013).
pubmed: 23018968 doi: 10.1159/000342436
Chai, S. et al. Overexpression of Hyaluronan in the Tunica Media Promotes the Development of Atherosclerosis. Circ. Res. 96, 583–591 (2005).
pubmed: 15705963 doi: 10.1161/01.RES.0000158963.37132.8b
Ahmadzadeh, H., Rausch, M. K. & Humphrey, J. D. Particle-based computational modelling of arterial disease. J. R. Soc. Interface 15, 20180616 (2018).
pubmed: 30958237 pmcid: 6303797 doi: 10.1098/rsif.2018.0616
Purnomo, E. et al. Glycosaminoglycan overproduction in the aorta increases aortic calcification in murine chronic kidney disease. J. Am. Heart Assoc. 2, e000405 (2013).
pubmed: 23985378 pmcid: 3835254 doi: 10.1161/JAHA.113.000405
Bramsen, J. A. et al. Glycosaminoglycans affect endothelial to mesenchymal transformation, proliferation, and calcification in a 3D model of aortic valve disease. Front. Cardiovasc. Med. 9, 975732 (2022).
pubmed: 36247482 pmcid: 9558823 doi: 10.3389/fcvm.2022.975732
Liu, R. M. & Gaston Pravia, K. A. Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radic. Biol. Med. 48, 1–15 (2010).
pubmed: 19800967 doi: 10.1016/j.freeradbiomed.2009.09.026
D’Angelo, M. & Greene, R. M. Transforming growth factor-beta modulation of glycosaminoglycan production by mesenchymal cells of the developing murine secondary palate. Dev. Biol. 145, 374–378 (1991).
pubmed: 2040379 doi: 10.1016/0012-1606(91)90136-Q
Mitchell, G. F. et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation 121, 505–511 (2010).
pubmed: 20083680 pmcid: 2836717 doi: 10.1161/CIRCULATIONAHA.109.886655
Demer, L. L. & Tintut, Y. Vascular Calcification. Circulation 117, 2938–2948 (2008).
pubmed: 18519861 pmcid: 4431628 doi: 10.1161/CIRCULATIONAHA.107.743161
Tiong, M. K. et al. Effect of nutritional calcium and phosphate loading on calciprotein particle kinetics in adults with normal and impaired kidney function. Sci. Rep. 12, 7358 (2022).
pubmed: 35513558 pmcid: 9072391 doi: 10.1038/s41598-022-11065-3
Thiem, U. et al. Effect of the phosphate binder sucroferric oxyhydroxide in dialysis patients on endogenous calciprotein particles, inflammation, and vascular cells. Nephrol. Dial. Transpl. 38, 1282–1296 (2023).
doi: 10.1093/ndt/gfac271
Pasch, A. Novel assessments of systemic calcification propensity. Curr. Opin. Nephrol. Hypertens. 25, 278–284 (2016).
pubmed: 27228365 doi: 10.1097/MNH.0000000000000237
Smith, E. R. et al. A novel fluorescent probe-based flow cytometric assay for mineral-containing nanoparticles in serum. Sci. Rep. 7, 5686 (2017).
pubmed: 28720774 pmcid: 5515983 doi: 10.1038/s41598-017-05474-y
Köppert, S. et al. Cellular Clearance and Biological Activity of Calciprotein Particles Depend on Their Maturation State and Crystallinity. Front. Immunol. 9, 1991 (2018).
pubmed: 30233585 pmcid: 6131296 doi: 10.3389/fimmu.2018.01991
Woodward, H. J., Zhu, D., Hadoke, P. W. F. & MacRae, V. E. Regulatory Role of Sex Hormones in Cardiovascular Calcification. Int. J. Mol. Sci. 22, 4620 (2021).
pubmed: 33924852 pmcid: 8125640 doi: 10.3390/ijms22094620
Eelderink, C. et al. Serum Calcification Propensity and the Risk of Cardiovascular and All-Cause Mortality in the General Population. Arteriosclerosis Thrombosis Vasc. Biol. 40, 1942–1951 (2020).
doi: 10.1161/ATVBAHA.120.314187
Van den Bergh, G. et al. Endothelial Contribution to Warfarin-Induced Arterial Media Calcification in Mice. Int J. Mol. Sci. 22, 11615 (2021).
pubmed: 34769044 pmcid: 8583869 doi: 10.3390/ijms222111615
Leloup, A. J. et al. A novel set-up for the ex vivo analysis of mechanical properties of mouse aortic segments stretched at physiological pressure and frequency. J. Physiol. 594, 6105–6115 (2016).
pubmed: 27256450 pmcid: 5088227 doi: 10.1113/JP272623
Bia, D. et al. Regional Differences in Viscosity, Elasticity and Wall Buffering Function in Systemic Arteries: Pulse Wave Analysis of the Arterial Pressure-Diameter Relationship. Rev. Española de. Cardiol.ía 58, 167–174 (2005).
doi: 10.1157/13071891
van Loo, C., Giudici, A. & Spronck, B. Potential adverse effects of vasodilatory antihypertensive medication on vascular stiffness in elderly individuals. Hypertens. Res. 45, 2024–2027 (2022).
pubmed: 36114275 doi: 10.1038/s41440-022-01012-0
Pincha, N., Saha, D., Bhatt, T., Zirmire, R. K. & Jamora, C. Activation of Fibroblast Contractility via Cell-Cell Interactions and Soluble Signals. Bio Protoc. 8, e3021 (2018).
pubmed: 34395809 pmcid: 8328620 doi: 10.21769/BioProtoc.3021

Auteurs

Cédric H G Neutel (CHG)

Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium. cedric.neutel@uantwerpen.be.

Callan D Wesley (CD)

Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.

Cindy van Loo (C)

Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.

Céline Civati (C)

Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.

Freke Mertens (F)

Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.

Michelle Zurek (M)

Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.

Anja Verhulst (A)

Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.

Isabel Pintelon (I)

Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
µNEURO Research Excellence Consortium On Multimodal Neuromics, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.

Winnok H De Vos (WH)

Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
µNEURO Research Excellence Consortium On Multimodal Neuromics, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.

Bart Spronck (B)

Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.

Lynn Roth (L)

Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.

Guido R Y De Meyer (GRY)

Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.

Wim Martinet (W)

Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.

Pieter-Jan Guns (PJ)

Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH