Integrated processes for olive mill wastewater treatment and its revalorization for microalgae culture.
Chlorella sp.
Adsorption
Biomass
Coagulation-flocculation
Mixotrophy
OMWWs
Journal
International microbiology : the official journal of the Spanish Society for Microbiology
ISSN: 1618-1905
Titre abrégé: Int Microbiol
Pays: Switzerland
ID NLM: 9816585
Informations de publication
Date de publication:
02 Oct 2024
02 Oct 2024
Historique:
received:
16
07
2024
accepted:
18
09
2024
revised:
09
09
2024
medline:
3
10
2024
pubmed:
3
10
2024
entrez:
2
10
2024
Statut:
aheadofprint
Résumé
The olive oil industry generates 30 million cubic meters of olive mill wastewaters (OMWWs) annually. OMWWs are a major environmental concern in the Mediterranean region due to their high organic matter content, suspended solids, unpleasant odor, and dark color. The application of primary treatments such as coagulation-flocculation, adsorption, and hybrid systems combining coagulation-flocculation with adsorption has enabled to remove part of the organic matter, color, turbidity, and growth-inhibiting compounds from OMWWs. Among these methods, the hybrid system combining activated carbon and chitosan has proven to be the best removal efficiency. Subsequently, secondary treatment involving the cultivation of Chlorella sp. on OMWWs pretreated with chitosan achieved the highest maximal specific growth rate (0.513 ± 0.022 day⁻
Identifiants
pubmed: 39358585
doi: 10.1007/s10123-024-00600-z
pii: 10.1007/s10123-024-00600-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Campus France
ID : 46201NH
Organisme : Campus France
ID : 46201NH
Organisme : Campus France
ID : 46201NH
Organisme : Campus France
ID : 46201NH
Organisme : Campus France
ID : 46201NH
Organisme : Campus France
ID : 46201NH
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Abou-Shanab RAI, Ji MK, Kim HC, Paeng KJ, Jeon BH (2013) Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. J Environ Manag 115:257–264. https://doi.org/10.1016/j.jenvman.2012.11.022
doi: 10.1016/j.jenvman.2012.11.022
Abreu AP, Fernandes B, Vicente AA, Teixeira J, Dragone G (2012) Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour Technol 118:61–66. https://doi.org/10.1016/j.biortech.2012.05.055
doi: 10.1016/j.biortech.2012.05.055
pubmed: 22705507
Abu-Dalo MA, Al-Rawashdeh NAF, Almurabi M, Abdelnabi J, Al Bawab A (2023) Phenolic compounds removal from olive mill wastewater using the composite of activated carbon and copper-based metal-organic framework. Materials 16:1159. https://doi.org/10.3390/ma16031159
doi: 10.3390/ma16031159
pubmed: 36770169
pmcid: 9920182
Acero JL, Javier Benitez F, Real FJ, Teva F (2012) Coupling of adsorption, coagulation, and ultrafiltration processes for the removal of emerging contaminants in a secondary effluent. Chem Eng J 210:1–8. https://doi.org/10.1016/j.cej.2012.08.043
doi: 10.1016/j.cej.2012.08.043
Achak M, Mandi L, Ouazzani N (2009) Removal of organic pollutants and nutrients from olive mill wastewater by a sand filter. J Environ Manage 90:2771–2779. https://doi.org/10.1016/j.jenvman.2009.03.012
doi: 10.1016/j.jenvman.2009.03.012
pubmed: 19406561
Adhoum N, Monser L (2004) Decolourization and removal of phenolic compounds from olive mill wastewater by electrocoagulation. Chem Eng Process 43:1281–1287. https://doi.org/10.1016/j.cep.2003.12.001
doi: 10.1016/j.cep.2003.12.001
Ali SS, El-Sheekh M, Manni A, Ruiz HA, Elsamahy T, Sun J, Schagerl M (2022) Microalgae-mediated wastewater treatment for biofuels production: a comprehensive review. Microb Res 265:127187. https://doi.org/10.1016/j.micres.2022.127187
doi: 10.1016/j.micres.2022.127187
Allen MM (1968) Simple conditions for growth of unicellular blue-green algae on plates (1, 2). J Phycol 4:1–4. https://doi.org/10.1111/j.1529-8817.1968.tb04667.x
doi: 10.1111/j.1529-8817.1968.tb04667.x
pubmed: 27067764
Amaral Filho J, Azevedo A, Etchepare R, Rubio J (2016) Removal of sulfate ions by dissolved air flotation (DAF) following precipitation and flocculation. Int J Miner Process 149:1–8. https://doi.org/10.1016/j.minpro.2016.01.012
doi: 10.1016/j.minpro.2016.01.012
Anyaoha KE, Krujatz F, Hodgkinson I, Maletz R, Dornack C (2024) Microalgae contribution in enhancing the circular economy drive of biochemical conversion systems – a review. Carbohydr Resour Convers 7:100203. https://doi.org/10.1016/j.crcon.2023.10.003
doi: 10.1016/j.crcon.2023.10.003
Ardila-Leal LD, Hernández-Rojas V, Céspedes-Bernal DN, Mateus-Maldonado JF, Rivera-Hoyos CM, Pedroza-Camacho LD, Poutou-Piñales RA, Pedroza-Rodríguez AM, Pérez-Florez A, Quevedo-Hidalgo BE (2020) Tertiary treatment (Chlorella sp.) of a mixed effluent from two secondary treatments (immobilized recombinant P. pastori and rPOXA 1B concentrate) of coloured laboratory wastewater (CLWW). 3 Biotech 10:233. https://doi.org/10.1007/s13205-020-02232-2
doi: 10.1007/s13205-020-02232-2
pubmed: 32399383
pmcid: 7200962
Arora N, Philippidis GP (2021) Insights into the physiology of Chlorella vulgaris cultivated in sweet sorghum bagasse hydrolysate for sustainable algal biomass and lipid production. Sci Rep 11:6779. https://doi.org/10.1038/s41598-021-86372-2
doi: 10.1038/s41598-021-86372-2
pubmed: 33762646
pmcid: 7991646
Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70. https://doi.org/10.1016/j.ecoleng.2006.04.003
doi: 10.1016/j.ecoleng.2006.04.003
Baldiris-Navarro I, Sanchez-Aponte J, Gonzalez-Delgado A, Jimenez AR, Acevedo-Morantes M (2018) Removal and biodegradation of phenol by the freshwater microalgae Chlorella vulgaris. Contemp Eng Sci 11:1961–1970. https://doi.org/10.12988/ces.2018.84201
doi: 10.12988/ces.2018.84201
Barkallah M, Ben Slima A, Fendri I, Pichon C, Abdelkafi S, Baril P (2020) Protective role of Spirulina platensis against bifenthrin-induced reprotoxicity in adult male mice by reversing expression of altered histological, biochemical, and molecular markers including microRNAs. Biomolecules 10(5):7539. https://doi.org/10.3390/biom10050753
doi: 10.3390/biom10050753
Bawab AA, Ghannam N, Abu-Mallouh S, Bozeya A, Abu-Zurayk RA, Al-Ajlouni YA, Alshawawreh F, Odeh F, Abu-Dalo MA (2018) Olive mill wastewater treatment in Jordan: a review. IOP Conf Ser: Mater Sci Eng 305:012002. https://doi.org/10.1088/1757-899X/305/1/012002
doi: 10.1088/1757-899X/305/1/012002
Bernardo EC, Egashira R, Kawasaki J (1997) Decolorization of molasses’ wastewater using activated carbon prepared from cane bagasse. Carbon 35:1217–1221. https://doi.org/10.1016/S0008-6223(97)00105-X
doi: 10.1016/S0008-6223(97)00105-X
Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099
doi: 10.1139/o59-099
pubmed: 13671378
Bolto B, Gregory J (2007) Organic polyelectrolytes in water treatment. Water Res 41:2301–2324. https://doi.org/10.1016/j.watres.2007.03.012
doi: 10.1016/j.watres.2007.03.012
pubmed: 17462699
Box JD (1983) Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Water Res 17:511–525. https://doi.org/10.1016/0043-1354(83)90111-2
doi: 10.1016/0043-1354(83)90111-2
Chan WY, Oakeshott JG, Buerger P, Edwards OR, van Oppen MJH (2021) Adaptive responses of free-living and symbiotic microalgae to simulated future ocean conditions. Glob Chang Biol 27:1737–1754. https://doi.org/10.1111/gcb.15546
doi: 10.1111/gcb.15546
pubmed: 33547698
Choi HI, Hwang SW, Patel AK, Sim SJ (2021) Microalgal biorefinery: a sustainable technology toward circular bioeconomy and microalgal biomass valorization. Biom Biof Biochem. Elsevier, pp 323–350. https://doi.org/10.1016/B978-0-12-821878-5.00023-4
doi: 10.1016/B978-0-12-821878-5.00023-4
Clesceri LS, Eaton AD, Greenberg AE, Franson MAH (1996) Standard methods for the examination of water and wastewater: 19th edition supplement, 19th edn. Amer Public Health Assoc (APHA), Washington, DC
Cohen Z, Vonshak A, Richmond A (1987) The effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum. In: Stumpf PK, Mudd JB, Nes WD (eds) The metab, struct, and func of plant lip. Springer New York, Boston. MA, pp 641–6434
doi: 10.1007/978-1-4684-5263-1_113
Derbel H, Elleuch J, Tounsi L, Nicolo MS, Rizzo MG, Michaud P, Fendri I, Abdelkafi S (2022) Improvement of biomass and phycoerythrin production by a strain of Rhodomonas sp. isolated from the Tunisian coast of Sidi Mansour. Biomolecules 12(7):885. https://doi.org/10.3390/biom12070885
doi: 10.3390/biom12070885
pubmed: 35883441
pmcid: 9312907
Derbel H, Elleuch J, Mahfoudh W, Michaud P, Fendri I, Abdelkafi S (2023) In vitro antioxidant and anti-inflammatory activities of bioactive proteins and peptides from Rhodomonas sp. Appl Sci 13(5):3202. https://doi.org/10.3390/app13053202
doi: 10.3390/app13053202
Djeziri S, Taleb Z, Djellouli M, Taleb S (2023) Physicochemical and microbiological characterisation of olive oil mill wastewater (OMW) from the region of Sidi Bel Abbes (Western Algeria). Moroc J Chem 11:11–520. https://doi.org/10.48317/IMIST.PRSM/morjchem-v11i2.31935
doi: 10.48317/IMIST.PRSM/morjchem-v11i2.31935
Drira M, Elleuch J, Ben Hlima H, Hentati F, Gardarin C, Rihouey C, Le Cerf D, Michaud P, Abdelkafi S, Fendri I (2021) Optimization of exopolysaccharides production by Porphyridium sordidum and their potential to induce defense responses in Arabidopsis thaliana against Fusarium oxysporum. Biomolecules 11(2):282. https://doi.org/10.3390/biom11020282
doi: 10.3390/biom11020282
pubmed: 33672873
pmcid: 7918794
Ekka B, Mieriņa I, Juhna T, Kokina K, Turks M (2022) Synergistic effect of activated charcoal and chitosan on treatment of dairy wastewaters. Mater Today Commun 31:103477. https://doi.org/10.1016/j.mtcomm.2022.103477
doi: 10.1016/j.mtcomm.2022.103477
El Yamani M, Sakar EH, Boussakouran A, Ghabbour N, Rharrabti Y (2020) Physicochemical and microbiological characterization of olive mill wastewater (OMW) from different regions of northern Morocco. Environ Technol 41:3081–3093. https://doi.org/10.1080/09593330.2019.1597926
doi: 10.1080/09593330.2019.1597926
pubmed: 30896341
Elhamji S, Haydari I, Sbihi K, Aziz K, Elleuch J, Kurniawan TA, Chen Z, Yap P-S, Aziz F (2023) Uncovering applicability of Navicula permitis algae in removing phenolic compounds: a promising solution for olive mill wastewater treatment. J Water Process Eng 56:104313. https://doi.org/10.1016/j.jwpe.2023.104313
doi: 10.1016/j.jwpe.2023.104313
Elleuch J, Hmani R, Drira M, Michaud P, Fendri I, Abdelkafi S (2021a) Potential of three local marine microalgae from Tunisian coasts for cadmium, lead and chromium removals. Sci Total Environ 799:149464. https://doi.org/10.1016/j.scitotenv.2021.149464
doi: 10.1016/j.scitotenv.2021.149464
pubmed: 34388883
Elleuch J, Hadj Kacem F, Ben Amor F, Hadrich B, Michaud P, Fendri I, Abdelkafi S (2021b) Extracellular neutral protease from Arthrospira platensis: production, optimization, and partial characterization. Int J Biol Macromol 167:1491–1498. https://doi.org/10.1016/j.ijbiomac.2020.11.102
doi: 10.1016/j.ijbiomac.2020.11.102
pubmed: 33202265
Elleuch J, Thabet J, Ghribi I, Jabeur H, Hernandez LE, Fendri I, Abdelkafi S (2024a) Responses of Dunaliella sp. AL-1 to chromium and copper: biochemical and physiological studies. Chemosphere. https://doi.org/10.1016/j.chemosphere.2024.143133
doi: 10.1016/j.chemosphere.2024.143133
pubmed: 39168386
Elleuch J, Drira M, Ghribi I, Hadjkacem F, Pierre G, Khemakhem H, Abdelkafi S (2024b) Lead removal from aqueous solutions by extracellular polymeric substances produced by the marine diatom Navicula salinicola. Environ Technol. https://doi.org/10.1080/09593330.2024.2338456
doi: 10.1080/09593330.2024.2338456
pubmed: 38619982
Enaime G, Baçaoui A, Yaacoubi A, Wichern M, Lübken M (2019) Olive mill wastewater pretreatment by combination of filtration on olive stone filters and coagulation-flocculation. Environ Technol 40:2135–2146. https://doi.org/10.1080/09593330.2018.1439106
doi: 10.1080/09593330.2018.1439106
pubmed: 29421956
Esteves BM, Morales-Torres S, Maldonado-Hódar FJ, Madeira LM (2020) Fitting biochars and activated carbons from residues of the olive oil industry as supports of Fe-catalysts for the heterogeneous Fenton-like treatment of simulated olive mill wastewater. Nanomaterials 10:876. https://doi.org/10.3390/nano10050876
doi: 10.3390/nano10050876
pubmed: 32370056
pmcid: 7279504
Fal S, Smouni A, Arroussi HE (2023) Integrated microalgae-based biorefinery for wastewater treatment, industrial CO
doi: 10.1016/j.envadv.2023.100365
Galiatsatou P, Metaxas M, Arapoglou D, Kasselouri-Rigopoulou V (2002) Treatment of olive mill wastewater with activated carbons from agricultural by-products. Waste Manag 22:803–812. https://doi.org/10.1016/S0956-053X(02)00055-7
doi: 10.1016/S0956-053X(02)00055-7
pubmed: 12365783
Gao C, Zhai Y, Ding Y, Wu Q (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. App Ener 87:756–761. https://doi.org/10.1016/j.apenergy.2009.09.006
doi: 10.1016/j.apenergy.2009.09.006
García J, Green F, Lundquist T, Mujeriego R, Hernández Mariné M, Oswald WJ (2006) Long term diurnal variations in contaminant removal in high rate ponds treating urban wastewater. Bioresour Technol 97:1709–1715. https://doi.org/10.1016/j.biortech.2005.07.019
doi: 10.1016/j.biortech.2005.07.019
pubmed: 16226887
Hachicha R, Elleuch F, Ben Hlima H, Dubessay P, de Baynast H, Delattre C, Pierre G, Hachicha R, Abdelkafi S, Michaud P, Fendri I (2022) Biomolecules from microalgae and cyanobacteria: applications and market survey. Appl Sci 12(4):1924. https://doi.org/10.3390/app12041924
Hachicha R, Elleuch F, Ben-Hlima H, Dubessay P, De Baynast H, Delattre C, Pierre G, Hachicha R, Abdelkafi S, Fendri I, Michaud P (2023) Nonconventional treatments of agro-industrial wastes and wastewaters by heterotrophic/mixotrophic cultivations of microalgae and Cyanobacteria. Microalgae-based biofuels and bioproducts: from feedstock cultivation to end-use applications. Elsevier, pp 239–260. https://doi.org/10.1016/B978-0-323-91869-5.00002-8
doi: 10.1016/B978-0-323-91869-5.00002-8
Hachicha R, Dammak M, Hachicha R, Dubessay P, Abdelkafi S, Michaud P, Fendri I (2024) Combined biological treatments of olive mill wastewater using fungi and microalgae. Euro-Mediterr J Environ Integr 9(1):49–62. https://doi.org/10.1007/s41207-023-00451-6
Hamdi M, Ellouz R (1993) Treatment of detoxified olive mill wastewaters by anaerobic filter and aerobic fluidized bed processes. Environ Technol 14:183–188. https://doi.org/10.1080/09593339309385278
doi: 10.1080/09593339309385278
Hodaifa G, Martínez ME, Sánchez S (2009) Daily doses of light in relation to the growth of Scenedesmus obliquus in diluted three-phase olive mill wastewater. J Chem Techno & Biotech 84:1550–1558. https://doi.org/10.1002/jctb.2219
doi: 10.1002/jctb.2219
Hodaifa G, Martínez ME, Órpez R, Sánchez S (2012) Inhibitory effects of industrial olive-oil mill wastewater on biomass production of Scenedesmus obliquus. Ecolo Eng 42:30–34. https://doi.org/10.1016/j.ecoleng.2012.01.020
doi: 10.1016/j.ecoleng.2012.01.020
Hodaifa G, Sánchez S, Martínez ME, Órpez R (2013) Biomass production of Scenedesmus obliquus from mixtures of urban and olive-oil mill wastewaters used as culture medium. App Energ 104:345–352. https://doi.org/10.1016/j.apenergy.2012.11.005
doi: 10.1016/j.apenergy.2012.11.005
Ji MK, Kabra AN, Salama ES, Roh HS, Kim JR, Lee DS, Jeon BH (2014) Effect of mine wastewater on nutrient removal and lipid production by a green microalga Micratinium reisseri from concentrated municipal wastewater. Bioresour Technol 157:84–90. https://doi.org/10.1016/j.biortech.2014.01.087
doi: 10.1016/j.biortech.2014.01.087
pubmed: 24534788
Jung C, Phal N, Oh J, Chu KH, Jang M, Yoon Y (2015) Removal of humic and tannic acids by adsorption–coagulation combined systems with activated biochar. J Hazard Mater 300:808–814. https://doi.org/10.1016/j.jhazmat.2015.08.025
doi: 10.1016/j.jhazmat.2015.08.025
pubmed: 26340547
Kestioğlu K, Yonar T, Azbar N (2005) Feasibility of physico-chemical treatment and advanced oxidation processes (AOPs) as a means of pretreatment of olive mill effluent (OME). Process Biochem 40:2409–2416. https://doi.org/10.1016/j.procbio.2004.09.015
doi: 10.1016/j.procbio.2004.09.015
Kim IK, Yeum JH (2010) Color removal from dyeing effluent using activated carbons produced from various indigenous biomass. Text Color Finish 22:94–100. https://doi.org/10.5764/TCF.2010.22.2.094
doi: 10.5764/TCF.2010.22.2.094
Koul B, Sharma K, Shah MP (2022) Phycoremediation: a sustainable alternative in wastewater treatment (WWT) regime. Environ Technol Innov 25:102040. https://doi.org/10.1016/j.eti.2021.102040
doi: 10.1016/j.eti.2021.102040
Lalucat J, Imperial J, Parés R (1984) Utilization of light for the assimilation of organic matter in Chlorella sp. VJ79. Biotechnol Bioeng 26:677–681. https://doi.org/10.1002/bit.260260707
doi: 10.1002/bit.260260707
pubmed: 18553430
León-Vaz A, León R, Díaz-Santos E, Vigara J, Raposo S (2019) Using agro-industrial wastes for mixotrophic growth and lipids production by the green microalga Chlorella sorokiniana. New Biotechnol 51:31–38. https://doi.org/10.1016/j.nbt.2019.02.001
doi: 10.1016/j.nbt.2019.02.001
Lindner AV, Pleissner D (2022) Removal of phenolic compounds from olive mill wastewater by microalgae grown under dark and light conditions. Waste Biomass Valor 13:525–534. https://doi.org/10.1007/s12649-021-01536-5
doi: 10.1007/s12649-021-01536-5
Luo L, He H, Yang C, Wen S, Zeng G, Wu M, Zhou Z, Lou W (2016) Nutrient removal and lipid production by Coelastrella sp. in anaerobically and aerobically treated swine wastewater. Bioresour Technol 216:135–141. https://doi.org/10.1016/j.biortech.2016.05.059
doi: 10.1016/j.biortech.2016.05.059
pubmed: 27236400
Malvis A, Hodaifa G, Halioui M, Seyedsalehi M, Sánchez S (2019) Integrated process for olive oil mill wastewater treatment and its revalorization through the generation of high added value algal biomass. Water Res 151:332–342. https://doi.org/10.1016/j.watres.2018.12.026
doi: 10.1016/j.watres.2018.12.026
pubmed: 30616045
Meyssami B, Kasaeian AB (2005) Use of coagulants in treatment of olive oil wastewater model solutions by induced air flotation. Bioresour Technol 96:303–307. https://doi.org/10.1016/j.biortech.2004.04.014
doi: 10.1016/j.biortech.2004.04.014
pubmed: 15474930
Mitra D, van Leeuwen J, (Hans), Lamsal B (2012) Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Res 1:40–48. https://doi.org/10.1016/j.algal.2012.03.002
doi: 10.1016/j.algal.2012.03.002
Montero E, Olguín EJ, De Philippis R, Reverchon F (2018) Mixotrophic cultivation of Chlorococcum sp. under non-controlled conditions using a digestate from pig manure within a biorefinery. J Appl Phycol 30:2847–2857. https://doi.org/10.1007/s10811-018-1467-5
doi: 10.1007/s10811-018-1467-5
Odjadjare EC, Mutanda T, Olaniran AO (2017) Potential biotechnological application of microalgae: a critical review. Crit Rev Biotechnol 37:37–52. https://doi.org/10.3109/07388551.2015.1108956
doi: 10.3109/07388551.2015.1108956
pubmed: 26594785
Pego JV, Kortstee AJ, Huijser C, Smeekens SC (2000) Photosynthesis, sugars and the regulation of gene expression. J Exp Bot 51:407–416. https://doi.org/10.1093/jexbot/51.suppl_1.407
doi: 10.1093/jexbot/51.suppl_1.407
pubmed: 10938849
Pelendridou K, Michailides M, Zagklis D, Tekerlekopoulou A, Paraskeva C, Vayenas D (2014) Treatment of olive mill wastewater using a coagulation–flocculation process either as a single step or as post-treatment after aerobic biological treatment. J Chem Technol Biotechnol 89(12). https://doi.org/10.1002/jctb.4269
Piasecka A, Krzemińska I, Tys J (2017) Enrichment of Parachlorella kessleri biomass with bioproducts: oil and protein by utilization of beet molasses. J Appl Phycol 29:1735–1743. https://doi.org/10.1007/s10811-017-1081-y
doi: 10.1007/s10811-017-1081-y
pubmed: 28775655
pmcid: 5514195
Pinotti A, Bevilacqua A, Zaritzky N (1997) Optimization of the flocculation stage in a model system of a food emulsion waste using chitosan as polyelectrolyte. J Food Eng 32:69–81. https://doi.org/10.1016/S0260-8774(97)00003-4
doi: 10.1016/S0260-8774(97)00003-4
Pinotti A, Zaritzky N (2001) Effect of aluminum sulfate and cationic polyelectrolytes on the destabilization of emulsified wastes. Waste Manag 21:535–542. https://doi.org/10.1016/s0956-053x(00)00110-0
doi: 10.1016/s0956-053x(00)00110-0
pubmed: 11478620
Pinto G, Pollio A, Previtera L, Temussi F (2002) Biodegradation of phenols by microalgae. Biotechnol Lett 24:2047–2051. https://doi.org/10.1023/A:1021367304315
doi: 10.1023/A:1021367304315
Radziff SBM, Ahmad SA, Shaharuddin NA, Merican F, Kok YY, Zulkharnain A, Gomez-Fuentes C, Wong CY (2021) Potential application of algae in biodegradation of phenol: a review and bibliometric study. Plants 10:2677. https://doi.org/10.3390/plants10122677
doi: 10.3390/plants10122677
pubmed: 34961148
pmcid: 8709323
Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy, Special Issue of Energy from Algae: Current Status and Future Trends 88:3411–3424. https://doi.org/10.1016/j.apenergy.2010.11.025
doi: 10.1016/j.apenergy.2010.11.025
Rizzo L, Lofrano G, Grassi M, Belgiorno V (2008) Pre-treatment of olive mill wastewater by chitosan coagulation and advanced oxidation processes. Sep Purif Technol 63:648–653. https://doi.org/10.1016/j.seppur.2008.07.003
doi: 10.1016/j.seppur.2008.07.003
Rizzo L, Lofrano G, Belgiorno V (2010) Olive mill and winery wastewaters pre-treatment by coagulation with chitosan. Separation Sci Technol 45(16):2447–2452. https://doi.org/10.1080/01496395.2010.487845
doi: 10.1080/01496395.2010.487845
Rytwo G, Lavi R, Rytwo Y, Monchase H, Dultz S, König TN (2013) Clarification of olive mill and winery wastewater by means of clay–polymer nanocomposites. Sci Total Environ 442:134–142. https://doi.org/10.1016/j.scitotenv.2012.10.031
doi: 10.1016/j.scitotenv.2012.10.031
pubmed: 23178773
Sánchez S, Martínez ME, Espejo MT, Pacheco R, Espinola F, Hodaifa G (2001) Mixotrophic culture of Chlorella pyrenoidosa with olive-mill wastewater as the nutrient medium. J Appl Phycol 13:443–449. https://doi.org/10.1023/A:1011929723586
doi: 10.1023/A:1011929723586
Sangeetha SP, Bhowmick S, Md NK, Akash M (2021) Decolorization of textile wastewater with activated carbon made of coconut shell. J Phys Conf Ser 2040:012055. https://doi.org/10.1088/1742-6596/2040/1/012055
doi: 10.1088/1742-6596/2040/1/012055
Sayadi S, Ellouz R (1995) Roles of lignin peroxidase and manganese peroxidase from Phanerochaete chrysosporium in the decolorization of olive mill wastewaters. Appl Environ Microbiol 61:1098–1103
doi: 10.1128/aem.61.3.1098-1103.1995
pubmed: 16534959
pmcid: 1388391
Sherwood J (2020) The significance of biomass in a circular economy. Bioresour Technol 300:122755. https://doi.org/10.1016/j.biortech.2020.122755
doi: 10.1016/j.biortech.2020.122755
pubmed: 31956060
Sinclair HM (1990) Essential fatty acids–an historical perspective. Biochem Soc Trans 18:756–761. https://doi.org/10.1042/bst0180756
doi: 10.1042/bst0180756
pubmed: 2083669
Suganya T, Varman M, Masjuki HH, Renganathan S (2016) Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sustain Energy Rev 55:909–941. https://doi.org/10.1016/j.rser.2015.11.026
doi: 10.1016/j.rser.2015.11.026
Ubando AT, Ng EAS, Chen WH, Culaba AB, Kwon EE (2022) Life cycle assessment of microalgal biorefinery: a state-of-the-art review. Bioresour Technol 360:127615. https://doi.org/10.1016/j.biortech.2022.127615
doi: 10.1016/j.biortech.2022.127615
pubmed: 35840032
Vuppala S, Bavasso I, Stoller M, Di Palma L, Vilardi G (2019) Olive mill wastewater integrated purification through pre-treatments using coagulants and biological methods: experimental, modelling and scale-up. J Clean Prod 236:117622. https://doi.org/10.1016/j.jclepro.2019.117622
doi: 10.1016/j.jclepro.2019.117622
Wang H, Xiong H, Hui Z, Zeng X (2012) Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Bioresour Technol 104:215–220. https://doi.org/10.1016/j.biortech.2011.11.020
doi: 10.1016/j.biortech.2011.11.020
pubmed: 22130084
Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500. https://doi.org/10.1016/j.biortech.2010.02.016
doi: 10.1016/j.biortech.2010.02.016
pubmed: 20202827
Zaier H, Walid C, Rajhi H, Bouzidi D, Roussos S, Rhouma A (2017) Physico-chemical and microbiological characterization of olive mill wastewater (OMW) of different regions of Tunisia (North, Sahel, South). J Microbiol 48:2888–2897
Zhang C, Wang X, Ma Z, Luan Z, Wang Y, Wang Z, Wang L (2019) Removal of phenolic substances from wastewater by algae A review. Environ Chem Lett. https://doi.org/10.1007/s10311-019-00953-24
doi: 10.1007/s10311-019-00953-24