Renal nerves in physiology, pathophysiology and interoception.


Journal

Nature reviews. Nephrology
ISSN: 1759-507X
Titre abrégé: Nat Rev Nephrol
Pays: England
ID NLM: 101500081

Informations de publication

Date de publication:
03 Oct 2024
Historique:
accepted: 27 08 2024
medline: 4 10 2024
pubmed: 4 10 2024
entrez: 3 10 2024
Statut: aheadofprint

Résumé

Sympathetic efferent renal nerves have key roles in the regulation of kidney function and blood pressure. Increased renal sympathetic nerve activity is thought to contribute to hypertension by promoting renal sodium retention, renin release and renal vasoconstriction. This hypothesis led to the development of catheter-based renal denervation (RDN) for the treatment of hypertension. Two RDN devices that ablate both efferent and afferent renal nerves received FDA approval for this indication in 2023. However, in animal models, selective ablation of afferent renal nerves resulted in comparable anti-hypertensive effects to ablation of efferent and afferent renal nerves and was associated with a reduction in sympathetic nerve activity. Selective afferent RDN also improved kidney function in a chronic kidney disease model. Notably, the beneficial effects of RDN extend beyond hypertension and chronic kidney disease to other clinical conditions that are associated with elevated sympathetic nerve activity, including heart failure and arrhythmia. These findings suggest that the kidney is an interoceptive organ, as increased renal sensory nerve activity modulates sympathetic activity to other organs. Future studies are needed to translate this knowledge into novel therapies for the treatment of hypertension and other cardiorenal diseases.

Identifiants

pubmed: 39363020
doi: 10.1038/s41581-024-00893-3
pii: 10.1038/s41581-024-00893-3
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. Springer Nature Limited.

Références

Osborn, J. W. & Foss, J. D. Renal nerves and long-term control of arterial pressure. Compr. Physiol. 7, 263–320 (2017).
pubmed: 28333375 doi: 10.1002/cphy.c150047
Osborn, J. W., Tyshynsky, R. & Vulchanova, L. Function of renal nerves in kidney physiology and pathophysiology. Annu. Rev. Physiol. 83, 429–450 (2021).
pubmed: 33566672 doi: 10.1146/annurev-physiol-031620-091656
Johns, E. J., Kopp, U. C. & DiBona, G. F. Neural control of renal function. Compr. Physiol. 1, 731–767 (2011).
pubmed: 23737201 doi: 10.1002/cphy.c100043
Foss, J. D., Wainford, R. D., Engeland, W. C., Fink, G. D. & Osborn, J. W. A novel method of selective ablation of afferent renal nerves by periaxonal application of capsaicin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R112–R122 (2015).
pubmed: 25411365 doi: 10.1152/ajpregu.00427.2014
Ong, J. et al. Renal sensory nerves increase sympathetic nerve activity and blood pressure in 2-kidney 1-clip hypertensive mice. J. Neurophysiol. 122, 358–367 (2019).
pubmed: 31091159 pmcid: 6689772 doi: 10.1152/jn.00173.2019
Zheng, H., Katsurada, K., Liu, X., Knuepfer, M. M. & Patel, K. P. Specific afferent renal denervation prevents reduction in neuronal nitric oxide synthase within the paraventricular nucleus in rats with chronic heart failure. Hypertension 72, 667–675 (2018).
pubmed: 30012866 doi: 10.1161/HYPERTENSIONAHA.118.11071
Frame, A. A., Carmichael, C. Y., Kuwabara, J. T., Cunningham, J. T. & Wainford, R. D. Role of the afferent renal nerves in sodium homeostasis and blood pressure regulation in rats. Exp. Physiol. 104, 1306–1323 (2019).
pubmed: 31074108 doi: 10.1113/EP087700
Schlaich, M. P. et al. Renal denervation as a therapeutic approach for hypertension: novel implications for an old concept. Hypertension 54, 1195–1201 (2009).
pubmed: 19822798 doi: 10.1161/HYPERTENSIONAHA.109.138610
Rey-Garcia, J. & Townsend, R. R. Renal denervation: a review. Am. J. Kidney Dis. 80, 527–535 (2022).
pubmed: 35598810 doi: 10.1053/j.ajkd.2022.03.015
Mountfort, K. et al. Catheter-based renal sympathetic denervation — long-term Symplicity™ renal denervation clinical evidence, new data and future perspectives. Interv. Cardiol. 8, 118–123 (2013).
pubmed: 29588763 pmcid: 5808595 doi: 10.15420/icr.2013.8.2.118
Kandzari, D. E. et al. The SPYRAL HTN Global Clinical Trial Program: rationale and design for studies of renal denervation in the absence (SPYRAL HTN OFF-MED) and presence (SPYRAL HTN ON-MED) of antihypertensive medications. Am. Heart J. 171, 82–91 (2016).
pubmed: 26699604 doi: 10.1016/j.ahj.2015.08.021
Azizi, M. et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet 391, 2335–2345 (2018).
pubmed: 29803590 doi: 10.1016/S0140-6736(18)31082-1
FDA. Premarket Approval (PMA) Symplicity Spyral® Renal Denervation System. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P220026 (2023).
FDA. Premarket Approval (PMA) Paradise® Ultrasound Renal Denervation System. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P220023 (2023).
Mancia, G. et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension: endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J. Hypertension 41, 1874–2071 (2023).
doi: 10.1097/HJH.0000000000003480
Barbato, E. et al. Renal denervation in the management of hypertension in adults. A clinical consensus statement of the ESC Council on Hypertension and the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur. Heart J. 44, 1313–1330 (2023).
pubmed: 36790101 doi: 10.1093/eurheartj/ehad054
Barbato, E. et al. Renal denervation in the management of hypertension in adults. A clinical consensus statement of the ESC Council on Hypertension and the European Association of Percutaneous Cardiovascular Interventions (EAPCI). EuroIntervention 18, 1227–1243 (2023).
pubmed: 36789560 pmcid: 10020821
Schlaich, M. P., Sobotka, P. A., Krum, H., Lambert, E. & Esler, M. D. Renal sympathetic-nerve ablation for uncontrolled hypertension. N. Engl. J. Med. 361, 932–934 (2009).
pubmed: 19710497 doi: 10.1056/NEJMc0904179
Kassab, K., Soni, R., Kassier, A. & Fischell, T. A. The potential role of renal denervation in the management of heart failure. J. Clin. Med. 11, 4147 (2022).
pubmed: 35887912 pmcid: 9324976 doi: 10.3390/jcm11144147
Lauar, M. R. et al. Renal and hypothalamic inflammation in renovascular hypertension: role of afferent renal nerves. Am. J. Physiol. Regul. Integr. Comp. Physiol. 325, R411–R422 (2023).
pubmed: 37519252 pmcid: 10639016 doi: 10.1152/ajpregu.00072.2023
Veiga, A. C. et al. Selective afferent renal denervation mitigates renal and splanchnic sympathetic nerve overactivity and renal function in chronic kidney disease-induced hypertension. J. Hypertens. 38, 765–773 (2020).
pubmed: 31764582 doi: 10.1097/HJH.0000000000002304
Banek, C. T. et al. Resting afferent renal nerve discharge and renal inflammation: elucidating the role of afferent and efferent renal nerves in deoxycorticosterone acetate salt hypertension. Hypertension 68, 1415–1423 (2016).
pubmed: 27698066 doi: 10.1161/HYPERTENSIONAHA.116.07850
Nishi, E. E., Bergamaschi, C. T. & Campos, R. R. The crosstalk between the kidney and the central nervous system: the role of renal nerves in blood pressure regulation. Exp. Physiol. 100, 479–484 (2015).
pubmed: 25599970 doi: 10.1113/expphysiol.2014.079889
Diaz-Morales, N., Baranda-Alonso, E. M., Martinez-Salgado, C. & Lopez-Hernandez, F. J. Renal sympathetic activity: a key modulator of pressure natriuresis in hypertension. Biochem. Pharmacol. 208, 115386 (2023).
pubmed: 36535529 doi: 10.1016/j.bcp.2022.115386
Kopp, U. C. Neural Control of Renal Function Integrated Systems Physiology: from Molecule to Function to Disease (Morgan & Claypool, 2011).
DiBona, G. F. & Kopp, U. C. Neural control of renal function. Physiol. Rev. 77, 75–197 (1997).
pubmed: 9016301 doi: 10.1152/physrev.1997.77.1.75
DiBona, G. F. & Sawin, L. L. Effect of renal nerve stimulation on NaCl and H2O transport in Henle’s loop of the rat. Am. J. Physiol. 243, F576–F580 (1982).
pubmed: 7149026
Frame, A. A. et al. Sympathetic regulation of NCC in norepinephrine-evoked salt-sensitive hypertension in Sprague-Dawley rats. Am. J. Physiol. Renal Physiol. 317, F1623–F1636 (2019).
pubmed: 31608673 pmcid: 6960786 doi: 10.1152/ajprenal.00264.2019
Pontes, R. B. et al. Renal nerve stimulation leads to the activation of the Na+/H+ exchanger isoform 3 via angiotensin II type I receptor. Am. J. Physiol. Renal Physiol. 308, F848–F856 (2015).
pubmed: 25656367 doi: 10.1152/ajprenal.00515.2014
Mansley, M. K., Neuhuber, W., Korbmacher, C. & Bertog, M. Norepinephrine stimulates the epithelial Na
pubmed: 25520009 doi: 10.1152/ajprenal.00548.2014
Ferguson, M. & Bell, C. Ultrastructural localization and characterization of sensory nerves in the rat kidney. J. Comp. Neurol. 274, 9–16 (1988).
pubmed: 2458398 doi: 10.1002/cne.902740103
Marfurt, C. F. & Echtenkamp, S. F. Sensory innervation of the rat kidney and ureter as revealed by the anterograde transport of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) from dorsal root ganglia. J. Comp. Neurol. 311, 389–404 (1991).
pubmed: 1720146 doi: 10.1002/cne.903110309
Ditting, T. et al. Do distinct populations of dorsal root ganglion neurons account for the sensory peptidergic innervation of the kidney? Am. J. Physiol. Renal Physiol. 297, F1427–F1434 (2009).
pubmed: 19692481 doi: 10.1152/ajprenal.90599.2008
Tyshynsky, R. et al. Periglomerular afferent innervation of the mouse renal cortex. Front. Neurosci. 17, 974197 (2023).
pubmed: 36777644 pmcid: 9909228 doi: 10.3389/fnins.2023.974197
Struthoff, H. et al. Histological examination of renal nerve distribution, density, and function in humans. EuroIntervention 19, 612–620 (2023).
pubmed: 37501502 pmcid: 10493771 doi: 10.4244/EIJ-D-23-00264
Garcia-Touchard, A., Maranillo, E., Mompeo, B. & Sanudo, J. R. Microdissection of the human renal nervous system: implications for performing renal denervation procedures. Hypertension 76, 1240–1246 (2020).
pubmed: 32829660 doi: 10.1161/HYPERTENSIONAHA.120.15106
Hackenthal, E., Paul, M., Ganten, D. & Taugner, R. Morphology, physiology, and molecular biology of renin secretion. Physiol. Rev. 70, 1067–1116 (1990).
pubmed: 2217555 doi: 10.1152/physrev.1990.70.4.1067
Johns, E. J. An investigation into the type of β-adrenoceptor mediating sympathetically activated renin release in the cat. Br. J. Pharmacol. 73, 749–754 (1981).
pubmed: 6113867 pmcid: 2071704 doi: 10.1111/j.1476-5381.1981.tb16811.x
Persson, P. B. Renin: origin, secretion and synthesis. J. Physiol. 552, 667–671 (2003).
pubmed: 12949225 pmcid: 2343457 doi: 10.1113/jphysiol.2003.049890
Mahfoud, F. et al. Changes in plasma renin activity after renal artery sympathetic denervation. J. Am. Coll. Cardiol. 77, 2909–2919 (2021).
pubmed: 33957242 doi: 10.1016/j.jacc.2021.04.044
Cheng, X. et al. Anatomical evidence for parasympathetic innervation of the renal vasculature and pelvis. J. Am. Soc. Nephrol. 33, 2194–2210 (2022).
pubmed: 36253054 pmcid: 9731635 doi: 10.1681/ASN.2021111518
Niijima, A. Observation on the localization of mechanoreceptors in the kidney and afferent nerve fibres in the renal nerves in the rabbit. J. Physiol. 245, 81–90 (1975).
pubmed: 1127615 pmcid: 1330846 doi: 10.1113/jphysiol.1975.sp010836
Knuepfer, M. M., Akeyson, E. W. & Schramm, L. P. Spinal projections of renal afferent nerves in the rat. Brain Res. 446, 17–25 (1988).
pubmed: 3370480 doi: 10.1016/0006-8993(88)91292-9
Knuepfer, M. M. & Schramm, L. P. The conduction velocities and spinal projections of single renal afferent fibers in the rat. Brain Res. 435, 167–173 (1987).
pubmed: 3427451 doi: 10.1016/0006-8993(87)91598-8
Ma, M. C., Huang, H. S., Wu, M. S., Chien, C. T. & Chen, C. F. Impaired renal sensory responses after renal ischemia in the rat. J. Am. Soc. Nephrol. 13, 1872–1883 (2002).
pubmed: 12089383 doi: 10.1097/01.ASN.0000022009.44473.56
Ammons, W. S. Spinoreticular cell responses to renal venous and ureteral occlusion. Am. J. Physiol. 254, R268–R276 (1988).
pubmed: 3344837
Genovesi, S. et al. Renal afferents signaling diuretic activity in the cat. Circ. Res. 73, 906–913 (1993).
pubmed: 8403260 doi: 10.1161/01.RES.73.5.906
Kopp, U. C., Smith, L. A. & Pence, A. L. Na
pubmed: 7943422
Moss, N. G. Electrophysiology of afferent renal nerves. Fed. Proc. 44, 2828–2833 (1985).
pubmed: 3899729
Katholi, R. E., Whitlow, P. L., Hageman, G. R. & Woods, W. T. Intrarenal adenosine produces hypertension by activating the sympathetic nervous system via the renal nerves in the dog. J. Hypertens. 2, 349–359 (1984).
pubmed: 6397533 doi: 10.1097/00004872-198402040-00005
Smits, J. F. & Brody, M. J. Activation of afferent renal nerves by intrarenal bradykinin in conscious rats. Am. J. Physiol. 247, R1003–R1008 (1984).
pubmed: 6150645
Kopp, U. C. et al. Activation of EP4 receptors contributes to prostaglandin E2-mediated stimulation of renal sensory nerves. Am. J. Physiol. Renal Physiol. 287, F1269–F1282 (2004).
pubmed: 15292051 doi: 10.1152/ajprenal.00230.2004
Zhu, Y., Xie, C. & Wang, D. H. TRPV1-mediated diuresis and natriuresis induced by hypertonic saline perfusion of the renal pelvis. Am. J. Nephrol. 27, 530–537 (2007).
pubmed: 17717412 doi: 10.1159/000107665
Goodwill, V. S., Terrill, C., Hopewood, I., Loewy, A. D. & Knuepfer, M. M. CNS sites activated by renal pelvic epithelial sodium channels (ENaCs) in response to hypertonic saline in awake rats. Auton. Neurosci. 204, 35–47 (2017).
pubmed: 27717709 doi: 10.1016/j.autneu.2016.09.015
Ma, G. & Ho, S. Y. [Observation on the afferent nerve activity induced by stimulation of renal receptors in the rabbits]. Sheng Li Xue Bao 42, 269–276 (1990).
pubmed: 2082472
Gabow, P. A. Autosomal dominant polycystic kidney disease–more than a renal disease. Am. J. Kidney Dis. 16, 403–413 (1990).
pubmed: 2239929 doi: 10.1016/S0272-6386(12)80051-5
Lugo-Gavidia, L. M. et al. Interventional approaches for loin pain hematuria syndrome and kidney-related pain syndromes. Curr. Hypertens. Rep. 22, 103 (2020).
pubmed: 33128173 doi: 10.1007/s11906-020-01110-9
Prasad, B., Giebel, S., Garcia, F., Goyal, K. & St Onge, J. R. Renal denervation in patients with loin pain hematuria syndrome. Am. J. Kidney Dis. 69, 156–159 (2017).
pubmed: 27528372 doi: 10.1053/j.ajkd.2016.06.016
de Jager, R. L. et al. Catheter-based renal denervation as therapy for chronic severe kidney-related pain. Nephrol. Dial. Transpl. 33, 614–619 (2018).
doi: 10.1093/ndt/gfx086
Casteleijn, N. F., de Jager, R. L., Neeleman, M. P., Blankestijn, P. J. & Gansevoort, R. T. Chronic kidney pain in autosomal dominant polycystic kidney disease: a case report of successful treatment by catheter-based renal denervation. Am. J. Kidney Dis. 63, 1019–1021 (2014).
pubmed: 24518126 doi: 10.1053/j.ajkd.2013.12.011
Reed, A., Cho, D., Gillcrist, N. & Allam, C. Laparoscopic renal denervation for chronic renal colic in a previous stone forming patient. Urol. Case Rep. 19, 13–15 (2018).
pubmed: 29888177 pmcid: 5991328 doi: 10.1016/j.eucr.2018.02.004
Rossi, N. F., Pajewski, R., Chen, H., Littrup, P. J. & Maliszewska-Scislo, M. Hemodynamic and neural responses to renal denervation of the nerve to the clipped kidney by cryoablation in two-kidney, one-clip hypertensive rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R197–R208 (2016).
pubmed: 26582638 doi: 10.1152/ajpregu.00331.2015
Biffi, A. et al. Effects of renal denervation on sympathetic nerve traffic and correlates in drug-resistant and uncontrolled hypertension: a systematic review and meta-analysis. Hypertension 80, 659–667 (2023).
pubmed: 36628971 doi: 10.1161/HYPERTENSIONAHA.122.20503
Scalise, F. et al. Renal denervation in patients with end-stage renal disease and resistant hypertension on long-term haemodialysis. J. Hypertens. 38, 936–942 (2020).
pubmed: 31990900 doi: 10.1097/HJH.0000000000002358
Kiuchi, M. G. et al. Sympathetic activation in hypertensive chronic kidney disease-a stimulus for cardiac arrhythmias and sudden cardiac death? Front. Physiol. 10, 1546 (2019).
pubmed: 32009970 doi: 10.3389/fphys.2019.01546
Yaxley, J. P. & Thambar, S. V. Resistant hypertension: an approach to management in primary care. J. Fam. Med. Prim. Care 4, 193–199 (2015).
doi: 10.4103/2249-4863.154630
Berra, E. et al. Evaluation of adherence should become an integral part of assessment of patients with apparently treatment-resistant hypertension. Hypertension 68, 297–306 (2016).
pubmed: 27296995 doi: 10.1161/HYPERTENSIONAHA.116.07464
Kottke, F. J., Kubicek, W. G. & Visscher, M. B. The production of arterial hypertension by chronic renal artery-nerve stimulation. Am. J. Physiol. 145, 38–47 (1945).
pubmed: 21006702 doi: 10.1152/ajplegacy.1945.145.1.38
Asirvatham-Jeyaraj, N. et al. Renal denervation and celiac ganglionectomy decrease mean arterial pressure similarly in genetically hypertensive schlager (BPH/2J) mice. Hypertension 77, 519–528 (2021).
pubmed: 33390041 doi: 10.1161/HYPERTENSIONAHA.119.14069
Jacob, F., Clark, L. A., Guzman, P. A. & Osborn, J. W. Role of renal nerves in development of hypertension in DOCA-salt model in rats: a telemetric approach. Am. J. Physiol. Heart Circ. Physiol. 289, H1519–H1529 (2005).
pubmed: 15937098 doi: 10.1152/ajpheart.00206.2005
Singh, R. R. et al. Sustained decrease in blood pressure and reduced anatomical and functional reinnervation of renal nerves in hypertensive sheep 30 months after catheter-based renal denervation. Hypertension 73, 718–727 (2019).
pubmed: 30661475 doi: 10.1161/HYPERTENSIONAHA.118.12250
Xiao, L. et al. Renal denervation prevents immune cell activation and renal inflammation in angiotensin II-induced hypertension. Circ. Res. 117, 547–557 (2015).
pubmed: 26156232 pmcid: 4629828 doi: 10.1161/CIRCRESAHA.115.306010
Banek, C. T., Gauthier, M. M., Van Helden, D. A., Fink, G. D. & Osborn, J. W. Renal inflammation in DOCA-salt hypertension. Hypertension 73, 1079–1086 (2019).
pubmed: 30879356 doi: 10.1161/HYPERTENSIONAHA.119.12762
Katsurada, K., Ogoyama, Y., Imai, Y., Patel, K. P. & Kario, K. Renal denervation based on experimental rationale. Hypertens. Res. 44, 1385–1394 (2021).
pubmed: 34518650 pmcid: 9577563 doi: 10.1038/s41440-021-00746-7
Calzavacca, P. et al. Effects of selective beta1-adrenoceptor blockade on cardiovascular and renal function and circulating cytokines in ovine hyperdynamic sepsis. Crit. Care 18, 610 (2014).
pubmed: 25413250 pmcid: 4262191 doi: 10.1186/s13054-014-0610-1
Banek, C. T. et al. Targeted afferent renal denervation reduces arterial pressure but not renal inflammation in established DOCA-salt hypertension in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314, R883–R891 (2018).
pubmed: 29513561 pmcid: 6032306 doi: 10.1152/ajpregu.00416.2017
Foss, J. D., Fink, G. D. & Osborn, J. W. Differential role of afferent and efferent renal nerves in the maintenance of early- and late-phase Dahl S hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R262–R267 (2016).
pubmed: 26661098 doi: 10.1152/ajpregu.00408.2015
Ikeda, S. et al. Contribution of afferent renal nerve signals to acute and chronic blood pressure regulation in stroke-prone spontaneously hypertensive rats. Hypertens. Res. 46, 268–279 (2023).
pubmed: 36369375 doi: 10.1038/s41440-022-01091-z
Saxena, M. et al. Predictors of blood pressure response to ultrasound renal denervation in the RADIANCE-HTN SOLO study. J. Hum. Hypertens. 36, 629–639 (2022).
pubmed: 34031548 doi: 10.1038/s41371-021-00547-y
Townsend, R. R. & Sobotka, P. A. Catheter-based renal denervation for hypertension. Curr. Hypertens. Rep. 20, 93 (2018).
pubmed: 30203149 doi: 10.1007/s11906-018-0896-5
Ukena, C., Cremers, B., Ewen, S., Bohm, M. & Mahfoud, F. Response and non-response to renal denervation: who is the ideal candidate? EuroIntervention 9, Suppl. R, R54–R57 (2013).
pubmed: 23732156 doi: 10.4244/EIJV9SRA10
Burlacu, A. et al. Predicting renal denervation response in resistant high blood pressure by arterial stiffness assessment: a systematic review. J. Clin. Med. 11, 4837 (2022).
pubmed: 36013092 pmcid: 9410368 doi: 10.3390/jcm11164837
Alsheikh, A. J. et al. CCL2 mediates early renal leukocyte infiltration during salt-sensitive hypertension. Am. J. Physiol. Renal Physiol. 318, F982–F993 (2020).
pubmed: 32150444 pmcid: 7191447 doi: 10.1152/ajprenal.00521.2019
Baumann, D., Van Helden, D., Evans, L. & Osborn, J. IL-1R mediated renal sensory nerve activity drives hypertension in the DOCA-Salt mouse. Physiology 38, 1811–1821 (2023).
doi: 10.1152/physiol.2023.38.S1.5734346
Drawz, P., Baumann, D. & Dayton, A. Renal denervation: recent developments in clinical and preclinical research. Curr. Opin. Nephrol. Hypertens. 32, 404–411 (2023).
pubmed: 37530084 doi: 10.1097/MNH.0000000000000908
Ahmad, Y., Francis, D. P., Bhatt, D. L. & Howard, J. P. Renal denervation for hypertension: a systematic review and meta-analysis of randomized, blinded, placebo-controlled trials. JACC Cardiovasc. Interv. 14, 2614–2624 (2021).
pubmed: 34743900 doi: 10.1016/j.jcin.2021.09.020
Azizi, M. et al. Ultrasound renal denervation for hypertension resistant to a triple medication pill (RADIANCE-HTN TRIO): a randomised, multicentre, single-blind, sham-controlled trial. Lancet 397, 2476–2486 (2021).
pubmed: 34010611 doi: 10.1016/S0140-6736(21)00788-1
Azizi, M. et al. Endovascular ultrasound renal denervation to treat hypertension: the radiance ii randomized clinical trial. JAMA 329, 651–661 (2023).
pubmed: 36853250 pmcid: 9975904 doi: 10.1001/jama.2023.0713
Bohm, M. et al. Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED Pivotal): a multicentre, randomised, sham-controlled trial. Lancet 395, 1444–1451 (2020).
pubmed: 32234534 doi: 10.1016/S0140-6736(20)30554-7
Kandzari, D. E. et al. Safety and efficacy of renal denervation in patients taking antihypertensive medications. J. Am. Coll. Cardiol. 82, 1809–1823 (2023).
pubmed: 37914510 doi: 10.1016/j.jacc.2023.08.045
Townsend, R. R. et al. Impact of antihypertensive medication changes after renal denervation among different patient groups: SPYRAL HTN-ON MED. Hypertension 81, 1095–1105 (2024).
pubmed: 38314554 doi: 10.1161/HYPERTENSIONAHA.123.22251
Ogoyama, Y. et al. Effects of renal denervation on blood pressures in patients with hypertension: a systematic review and meta-analysis of randomized sham-controlled trials. Hypertens. Res. 45, 210–220 (2022).
pubmed: 34657140 doi: 10.1038/s41440-021-00761-8
Bohm, M. et al. Ambulatory heart rate reduction after catheter-based renal denervation in hypertensive patients not receiving anti-hypertensive medications: data from SPYRAL HTN-OFF MED, a randomized, sham-controlled, proof-of-concept trial. Eur. Heart J. 40, 743–751 (2019).
pubmed: 30608521 doi: 10.1093/eurheartj/ehy871
Sata, Y. et al. Ambulatory arterial stiffness index as a predictor of blood pressure response to renal denervation. J. Hypertens. 36, 1414–1422 (2018).
pubmed: 29465712 doi: 10.1097/HJH.0000000000001682
Fengler, K. et al. Assessment of arterial stiffness to predict blood pressure response to renal sympathetic denervation. EuroIntervention 18, e686–e694 (2022).
pubmed: 35244604 pmcid: 10241279 doi: 10.4244/EIJ-D-21-01036
Protogerou, A., Blacher, J., Stergiou, G. S., Achimastos, A. & Safar, M. E. Blood pressure response under chronic antihypertensive drug therapy: the role of aortic stiffness in the REASON (Preterax in Regression of Arterial Stiffness in a Controlled Double-Blind) study. J. Am. Coll. Cardiol. 53, 445–451 (2009).
pubmed: 19179203 doi: 10.1016/j.jacc.2008.09.046
Rea, F., Morabito, G., Savare, L., Corrao, G. & Mancia, G. The impact of renal denervation procedure on use of antihypertensive drugs in the real-life setting. Blood Press. 31, 245–253 (2022).
pubmed: 36146925 doi: 10.1080/08037051.2022.2126345
Sesa-Ashton, G. et al. Catheter-based renal denervation: 9-year follow-up data on safety and blood pressure reduction in patients with resistant hypertension. Hypertension 80, 811–819 (2023).
pubmed: 36762561 doi: 10.1161/HYPERTENSIONAHA.122.20853
Warchol-Celinska, E. et al. Renal denervation in resistant hypertension and obstructive sleep apnea: randomized proof-of-concept phase II trial. Hypertension 72, 381–390 (2018).
pubmed: 29941516 doi: 10.1161/HYPERTENSIONAHA.118.11180
Witkowski, A. et al. Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension 58, 559–565 (2011).
pubmed: 21844482 doi: 10.1161/HYPERTENSIONAHA.111.173799
Zhao, M. M., Tan, X. X., Ding, N. & Zhang, X. L. [Comparison of efficacy between continuous positive airway pressure and renal artery sympathetic denervation by radiofrequency ablation in obstructive sleep apnea syndrome patients with hypertension]. Zhonghua Yi Xue Za Zhi 93, 1234–1237 (2013).
pubmed: 23902614
Venkataraman, S., Vungarala, S., Covassin, N. & Somers, V. K. Sleep apnea, hypertension and the sympathetic nervous system in the adult population. J. Clin. Med. 9, 591 (2020).
pubmed: 32098169 pmcid: 7073618 doi: 10.3390/jcm9020591
Thomas, G. et al. Prevalence and prognostic significance of apparent treatment resistant hypertension in chronic kidney disease: report from the chronic renal insufficiency cohort study. Hypertension 67, 387–396 (2016).
pubmed: 26711738 doi: 10.1161/HYPERTENSIONAHA.115.06487
Kaur, J., Young, B. E. & Fadel, P. J. Sympathetic overactivity in chronic kidney disease: consequences and mechanisms. Int. J. Mol. Sci. 18, 1682 (2017).
pubmed: 28767097 pmcid: 5578072 doi: 10.3390/ijms18081682
Grassi, G. et al. Early sympathetic activation in the initial clinical stages of chronic renal failure. Hypertension 57, 846–851 (2011).
pubmed: 21300663 doi: 10.1161/HYPERTENSIONAHA.110.164780
Converse, R. L. Jr et al. Sympathetic overactivity in patients with chronic renal failure. N. Engl. J. Med. 327, 1912–1918 (1992).
pubmed: 1454086 doi: 10.1056/NEJM199212313272704
Hausberg, M. et al. Sympathetic nerve activity in end-stage renal disease. Circulation 106, 1974–1979 (2002).
pubmed: 12370222 doi: 10.1161/01.CIR.0000034043.16664.96
Koomans, H. A., Geers, A. B., Boer, P. & Dorhout Mees, E. J. Plasma volumes, noradrenaline levels and renin activity during posture changes in end-stage renal failure. Clin. Physiol. 4, 103–115 (1984).
pubmed: 6373103 doi: 10.1111/j.1475-097X.1984.tb00226.x
Mauriello, A. et al. Increased sympathetic renal innervation in hemodialysis patients is the anatomical substrate of sympathetic hyperactivity in end-stage renal disease. J. Am. Heart Assoc. 4, e002426 (2015).
pubmed: 26611731 pmcid: 4845297 doi: 10.1161/JAHA.115.002426
Singh, R. R. et al. Increase in bioavailability of nitric oxide after renal denervation improves kidney function in sheep with hypertensive kidney disease. Hypertension 77, 1299–1310 (2021).
pubmed: 33641371 doi: 10.1161/HYPERTENSIONAHA.120.16718
Singh, R. R. et al. Catheter-based renal denervation exacerbates blood pressure fall during hemorrhage. J. Am. Coll. Cardiol. 69, 951–964 (2017).
pubmed: 28231948 doi: 10.1016/j.jacc.2016.12.014
Reddy, Y. S. et al. Nitric oxide status in patients with chronic kidney disease. Indian J. Nephrol. 25, 287–291 (2015).
pubmed: 26628794 pmcid: 4588324 doi: 10.4103/0971-4065.147376
Schmidt, R. J. et al. Indices of activity of the nitric oxide system in hemodialysis patients. Am. J. Kidney Dis. 34, 228–234 (1999).
pubmed: 10430967 pmcid: 2756794 doi: 10.1016/S0272-6386(99)70348-3
Ott, C. et al. Renal denervation in patients with versus without chronic kidney disease: results from the Global SYMPLICITY Registry with follow-up data of 3 years. Nephrol. Dial. Transpl. 37, 304–310 (2022).
doi: 10.1093/ndt/gfab154
Hering, D. et al. Effect of renal denervation on kidney function in patients with chronic kidney disease. Int. J. Cardiol. 232, 93–97 (2017).
pubmed: 28089459 doi: 10.1016/j.ijcard.2017.01.047
Heerspink, H. J., Kropelin, T. F., Hoekman, J. & de Zeeuw, D. Drug-induced reduction in albuminuria is associated with subsequent renoprotection: a meta-analysis. J. Am. Soc. Nephrol. 26, 2055–2064 (2015).
pubmed: 25421558 doi: 10.1681/ASN.2014070688
Ott, C. et al. Improvement of albuminuria after renal denervation. Int. J. Cardiol. 173, 311–315 (2014).
pubmed: 24681017 doi: 10.1016/j.ijcard.2014.03.017
Kiuchi, M. G. et al. Long-term effects of renal sympathetic denervation on hypertensive patients with mild to moderate chronic kidney disease. J. Clin. Hypertens. 18, 190–196 (2016).
doi: 10.1111/jch.12724
Schmieder, R. E. Renal denervation in patients with chronic kidney disease: current evidence and future perspectives. Nephrol. Dial. Transpl. 38, 1089–1096 (2023).
doi: 10.1093/ndt/gfac189
Di Daniele, N., De Francesco, M., Violo, L., Spinelli, A. & Simonetti, G. Renal sympathetic nerve ablation for the treatment of difficult-to-control or refractory hypertension in a haemodialysis patient. Nephrol. Dial. Transpl. 27, 1689–1690 (2012).
doi: 10.1093/ndt/gfs044
Hering, D. et al. Renal denervation in moderate to severe CKD. J. Am. Soc. Nephrol. 23, 1250–1257 (2012).
pubmed: 22595301 pmcid: 3380649 doi: 10.1681/ASN.2011111062
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04264403 (2023).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05198674 (2024).
Borovac, J. A., D’Amario, D., Bozic, J. & Glavas, D. Sympathetic nervous system activation and heart failure: current state of evidence and the pathophysiology in the light of novel biomarkers. World J. Cardiol. 12, 373–408 (2020).
pubmed: 32879702 pmcid: 7439452 doi: 10.4330/wjc.v12.i8.373
Sica, D. A. Sodium and water retention in heart failure and diuretic therapy: basic mechanisms. Cleve. Clin. J. Med. 73, S2–S7 (2006). discussion S30–S33.
pubmed: 16786906 doi: 10.3949/ccjm.73.Suppl_2.S2
Ghionzoli, N. et al. Current and emerging drug targets in heart failure treatment. Heart Fail. Rev. 27, 1119–1136 (2022).
pubmed: 34273070 doi: 10.1007/s10741-021-10137-2
Gronda, E. et al. Sympathetic activation in heart failure(). Eur. Heart J. Suppl. 24, E4–E11 (2022).
pubmed: 35991621 pmcid: 9385124 doi: 10.1093/eurheartjsupp/suac030
Farzam, K. & Jan, A. Beta blockers. StatPearls (2024).
Goyal, A., Cusick, A. S. & Thielemier, B. ACE inhhibitors. StatPearls (2024).
Zheng, H., Liu, X., Sharma, N. M. & Patel, K. P. Renal denervation improves cardiac function in rats with chronic heart failure: effects on expression of beta-adrenoceptors. Am. J. Physiol. Heart Circ. Physiol. 311, H337–H346 (2016).
pubmed: 27288440 pmcid: 5504438 doi: 10.1152/ajpheart.00999.2015
Polhemus, D. J. et al. Radiofrequency renal denervation protects the ischemic heart via inhibition of GRK2 and increased nitric oxide signaling. Circ. Res. 119, 470–480 (2016).
pubmed: 27296507 pmcid: 4959827 doi: 10.1161/CIRCRESAHA.115.308278
Sharp, T. E. 3rd et al. Renal denervation prevents heart failure progression via inhibition of the renin-angiotensin system. J. Am. Coll. Cardiol. 72, 2609–2621 (2018).
pubmed: 30466519 doi: 10.1016/j.jacc.2018.08.2186
Wang, L. et al. Renal denervation improves cardiac function by attenuating myocardiocyte apoptosis in dogs after myocardial infarction. BMC Cardiovasc. Disord. 18, 86 (2018).
pubmed: 29739333 pmcid: 5941584 doi: 10.1186/s12872-018-0828-y
Polhemus, D. J. et al. Renal sympathetic denervation protects the failing heart via inhibition of neprilysin activity in the kidney. J. Am. Coll. Cardiol. 70, 2139–2153 (2017).
pubmed: 29050562 doi: 10.1016/j.jacc.2017.08.056
DiBona, G. F., Herman, P. J. & Sawin, L. L. Neural control of renal function in edema-forming states. Am. J. Physiol. 254, R1017–R1024 (1988).
pubmed: 3381907
DiBona, G. F. & Sawin, L. L. Role of renal nerves in sodium retention of cirrhosis and congestive heart failure. Am. J. Physiol. 260, R298–R305 (1991).
pubmed: 1996717
Roh, J., Hill, J. A., Singh, A., Valero-Munoz, M. & Sam, F. Heart failure with preserved ejection fraction: heterogeneous syndrome, diverse preclinical models. Circ. Res. 130, 1906–1925 (2022).
pubmed: 35679364 pmcid: 10035274 doi: 10.1161/CIRCRESAHA.122.320257
Noll, N. A., Lal, H. & Merryman, W. D. Mouse models of heart failure with preserved or reduced ejection fraction. Am. J. Pathol. 190, 1596–1608 (2020).
pubmed: 32343958 pmcid: 7416075 doi: 10.1016/j.ajpath.2020.04.006
Valero-Munoz, M., Backman, W. & Sam, F. Murine models of heart failure with preserved ejection fraction: a “Fishing Expedition”. JACC Basic Transl. Sci. 2, 770–789 (2017).
pubmed: 29333506 pmcid: 5764178 doi: 10.1016/j.jacbts.2017.07.013
Weber, M. A. et al. Renal denervation for treating hypertension: current scientific and clinical evidence. JACC Cardiovasc. Interv. 12, 1095–1105 (2019).
pubmed: 31221299 doi: 10.1016/j.jcin.2019.02.050
Nawar, K., Mohammad, A., Johns, E. J. & Abdulla, M. H. Renal denervation for atrial fibrillation: a comprehensive updated systematic review and meta-analysis. J. Hum. Hypertens. 36, 887–897 (2022).
pubmed: 35094013 pmcid: 9553644 doi: 10.1038/s41371-022-00658-0
Henegar, J. R. et al. Catheter-based radiorefrequency renal denervation lowers blood pressure in obese hypertensive dogs. Am. J. Hypertens. 27, 1285–1292 (2014).
pubmed: 24709437 pmcid: 4184388 doi: 10.1093/ajh/hpu048
Pan, T., Guo, J. H. & Teng, G. J. Renal denervation: a potential novel treatment for type 2 diabetes mellitus. Medicine 94, e1932 (2015).
pubmed: 26554798 pmcid: 4915899 doi: 10.1097/MD.0000000000001932
Davies, J. E. et al. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-Pilot study. Int. J. Cardiol. 162, 189–192 (2013).
pubmed: 23031283 doi: 10.1016/j.ijcard.2012.09.019
Chen, W. et al. Preliminary effects of renal denervation with saline irrigated catheter on cardiac systolic function in patients with heart failure: a prospective, randomized, controlled, pilot study. Catheter Cardiovasc. Interv. 89, E153–E161 (2017).
pubmed: 27143319 doi: 10.1002/ccd.26475
Li, M. et al. Renal denervation in management of heart failure with reduced ejection fraction: a systematic review and meta-analysis. J. Cardiol. 81, 513–521 (2023).
pubmed: 36758670 doi: 10.1016/j.jjcc.2023.01.010
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04947670 (2022).
Brandt, M. C. et al. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J. Am. Coll. Cardiol. 59, 901–909 (2012).
pubmed: 22381425 doi: 10.1016/j.jacc.2011.11.034
Mahfoud, F. et al. Effect of renal denervation on left ventricular mass and function in patients with resistant hypertension: data from a multi-centre cardiovascular magnetic resonance imaging trial. Eur. Heart J. 35, 2224–2231b (2014).
pubmed: 24603307 doi: 10.1093/eurheartj/ehu093
Kresoja, K. P. et al. Renal sympathetic denervation in patients with heart failure with preserved ejection fraction. Circ. Heart Fail. 14, e007421 (2021).
pubmed: 33706547 doi: 10.1161/CIRCHEARTFAILURE.120.007421
Bazoukis, G. et al. Impact of renal sympathetic denervation on cardiac magnetic resonance-derived cardiac indices in hypertensive patients — a meta-analysis. J. Cardiol. 78, 314–321 (2021).
pubmed: 34088560 doi: 10.1016/j.jjcc.2021.05.002
Shiraki, T. et al. Cardiac sympathetic nerve activity trends after renal denervation in heart failure with preserved ejection fraction. ESC Heart Fail. 11, 2426–2431 (2024).
pubmed: 38659233 pmcid: 11287327 doi: 10.1002/ehf2.14770
Patel, H. C. et al. Renal denervation in heart failure with preserved ejection fraction (RDT-PEF): a randomized controlled trial. Eur. J. Heart Fail. 18, 703–712 (2016).
pubmed: 26990920 doi: 10.1002/ejhf.502
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05030987 (2024).
Khan, A. A., Lip, G. Y. H. & Shantsila, A. Heart rate variability in atrial fibrillation: the balance between sympathetic and parasympathetic nervous system. Eur. J. Clin. Invest. 49, e13174 (2019).
pubmed: 31560809 doi: 10.1111/eci.13174
Shen, M. J. & Zipes, D. P. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ. Res. 114, 1004–1021 (2014).
pubmed: 24625726 doi: 10.1161/CIRCRESAHA.113.302549
Tsai, W. C. et al. Autonomic modulation of atrial fibrillation. JACC Basic Transl. Sci. 8, 1398–1410 (2023).
pubmed: 38094692 pmcid: 10714180 doi: 10.1016/j.jacbts.2023.03.019
Fazio, G. et al. Sympathetic tone and ventricular tachycardia. J. Cardiovasc. Med. 9, 963–966 (2008).
doi: 10.2459/JCM.0b013e3282fbca9a
Carnagarin, R., Kiuchi, M. G., Ho, J. K., Matthews, V. B. & Schlaich, M. P. Sympathetic nervous system activation and its modulation: role in atrial fibrillation. Front. Neurosci. 12, 1058 (2018).
pubmed: 30728760 doi: 10.3389/fnins.2018.01058
Tsai, W. C. et al. Effects of renal sympathetic denervation on the stellate ganglion and brain stem in dogs. Heart Rhythm 14, 255–262 (2017).
pubmed: 27720832 doi: 10.1016/j.hrthm.2016.10.003
Kwon, S. et al. Novel laparoscopic renal denervation immediately reduces atrial fibrillation inducibility: a swine model study. Sci. Rep. 13, 19679 (2023).
pubmed: 37952064 pmcid: 10640613 doi: 10.1038/s41598-023-47077-w
Zhang, W. H. et al. Renal denervation reduced ventricular arrhythmia after myocardial infarction by inhibiting sympathetic activity and remodeling. J. Am. Heart Assoc. 7, e009938 (2018).
pubmed: 30371294 pmcid: 6474949 doi: 10.1161/JAHA.118.009938
Steinberg, J. S. et al. Effect of renal denervation and catheter ablation vs catheter ablation alone on atrial fibrillation recurrence among patients with paroxysmal atrial fibrillation and hypertension: the ERADICATE-AF randomized clinical trial. JAMA 323, 248–255 (2020).
pubmed: 31961420 pmcid: 6990678 doi: 10.1001/jama.2019.21187
Dzeshka, M. S., Shantsila, A., Shantsila, E. & Lip, G. Y. H. Atrial fibrillation and hypertension. Hypertension 70, 854–861 (2017).
pubmed: 28893897 doi: 10.1161/HYPERTENSIONAHA.117.08934
Parkash, R. et al. Effect of aggressive blood pressure control on the recurrence of atrial fibrillation after catheter ablation: a randomized, open-label clinical trial (SMAC-AF [Substrate Modification With Aggressive Blood Pressure Control]). Circulation 135, 1788–1798 (2017).
pubmed: 28228428 doi: 10.1161/CIRCULATIONAHA.116.026230
Kiuchi, M. G., Chen, S., Paz, L. M. R. & Purerfellner, H. Renal sympathetic denervation guided by renal nerve stimulation to treat ventricular arrhythmia in CKD patients with ICD. Oncotarget 8, 37296–37307 (2017).
pubmed: 28415795 pmcid: 5513716 doi: 10.18632/oncotarget.16278
Evranos, B. et al. Role of adjuvant renal sympathetic denervation in the treatment of ventricular arrhythmias. Am. J. Cardiol. 118, 1207–1210 (2016).
pubmed: 27600464 doi: 10.1016/j.amjcard.2016.07.036
Simon, O. R. & Schramm, L. P. The spinal course and medullary termination of myelinated renal afferents in the rat. Brain Res. 290, 239–247 (1984).
pubmed: 6198042 doi: 10.1016/0006-8993(84)90941-7
Kopp, U. C., Cicha, M. Z., Smith, L. A., Mulder, J. & Hokfelt, T. Renal sympathetic nerve activity modulates afferent renal nerve activity by PGE
pubmed: 17699565 doi: 10.1152/ajpregu.00485.2007

Auteurs

Louise C Evans (LC)

Department of Surgery, University of Minnesota, Minneapolis, MN, USA.

Alex Dayton (A)

Division of Nephrology and Hypertension, University of Minnesota, Minneapolis, MN, USA.

John W Osborn (JW)

Department of Surgery, University of Minnesota, Minneapolis, MN, USA. osbor003@umn.edu.

Classifications MeSH