Tumor necrosis factor superfamily signaling: life and death in cancer.
Cancer
Immunotherapy
Novel immunotherapy targets
Personalized oncology
TNFRSF
TNFSF
Tumor necrosis factor
Journal
Cancer metastasis reviews
ISSN: 1573-7233
Titre abrégé: Cancer Metastasis Rev
Pays: Netherlands
ID NLM: 8605731
Informations de publication
Date de publication:
04 Oct 2024
04 Oct 2024
Historique:
received:
10
05
2024
accepted:
13
08
2024
medline:
4
10
2024
pubmed:
4
10
2024
entrez:
3
10
2024
Statut:
aheadofprint
Résumé
Immune checkpoint inhibitors have shaped the landscape of cancer treatment. However, many patients either do not respond or suffer from later progression. Numerous proteins can control immune system activity, including multiple tumor necrosis factor (TNF) superfamily (TNFSF) and TNF receptor superfamily (TNFRSF) members; these proteins play a complex role in regulating cell survival and death, cellular differentiation, and immune system activity. Notably, TNFSF/TNFRSF molecules may display either pro-tumoral or anti-tumoral activity, or even both, depending on tumor type. Therefore, TNF is a prototype of an enigmatic two-faced mediator in oncogenesis. To date, multiple anti-TNF agents have been approved and/or included in guidelines for treating autoimmune disorders and immune-related toxicities after immune checkpoint blockade for cancer. A confirmed role for the TNFSF/TNFRSF members in treating cancer has proven more elusive. In this review, we highlight the cancer-relevant TNFSF/TNFRSF family members, focusing on the death domain-containing and co-stimulation members and their signaling pathways, as well as their complicated role in the life and death of cancer cells.
Identifiants
pubmed: 39363128
doi: 10.1007/s10555-024-10206-6
pii: 10.1007/s10555-024-10206-6
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NCI NIH HHS
ID : 5U01CA180888-08 and 5UG1CA233198-05
Pays : United States
Informations de copyright
© 2024. The Author(s).
Références
Fountzilas, E., Kurzrock, R., Vo, H. H., & Tsimberidou, A. M. (2021). Wedding of molecular alterations and immune checkpoint blockade: genomics as a matchmaker. JNCI: Journal of the National Cancer Institute, 113(12), 1634–1647. https://doi.org/10.1093/JNCI/DJAB067
doi: 10.1093/JNCI/DJAB067
pubmed: 33823006
pmcid: 9890928
Adashek, J. J., Kato, S., Nishizaki, D., Miyashita, H., De, P., Lee, S., … Kurzrock, R. (2023). LAG-3 transcriptomic expression patterns across malignancies: Implications for precision immunotherapeutics. Cancer Medicine, 12(12), 13155–13166. https://doi.org/10.1002/CAM4.6000
Miyashita, H., Kurzrock, R., Bevins, N. J., Thangathurai, K., Lee, S., Pabla, S., … Kato, S. (2023). T-cell priming transcriptomic markers: Implications of immunome heterogeneity for precision immunotherapy. NPJ Genomic Medicine, 8(1). https://doi.org/10.1038/S41525-023-00359-8
Fujiwara, Y., Kato, S., Nesline, M. K., Conroy, J. M., DePietro, P., Pabla, S., & Kurzrock, R. (2022). Indoleamine 2,3-dioxygenase (IDO) inhibitors and cancer immunotherapy. Cancer Treatment Reviews, 110, 102461. https://doi.org/10.1016/J.CTRV.2022.102461
doi: 10.1016/J.CTRV.2022.102461
pubmed: 36058143
Müller, D. (2023). Targeting co-stimulatory receptors of the TNF superfamily for cancer immunotherapy. BioDrugs, 37(1), 21–33. https://doi.org/10.1007/S40259-022-00573-3/TABLES/4
doi: 10.1007/S40259-022-00573-3/TABLES/4
pubmed: 36571696
Takahashi, H., Yoshimatsu, G., & Faustman, D. L. (2022). The roles of TNFR2 signaling in cancer cells and the tumor microenvironment and the potency of TNFR2 targeted therapy. Cells, 11(12), 1952. https://doi.org/10.3390/CELLS11121952
doi: 10.3390/CELLS11121952
pubmed: 35741080
pmcid: 9222015
Alves Costa Silva, C., Facchinetti, F., Routy, B., & Derosa, L. (2020). New pathways in immune stimulation: Targeting OX40. ESMO Open, 5(1), e000573. https://doi.org/10.1136/ESMOOPEN-2019-000573
doi: 10.1136/ESMOOPEN-2019-000573
pubmed: 32392177
pmcid: 7046367
Elgueta, R., Benson, M. J., De Vries, V. C., Wasiuk, A., Guo, Y., & Noelle, R. J. (2009). Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunological Reviews, 229(1), 152–172. https://doi.org/10.1111/J.1600-065X.2009.00782.X
doi: 10.1111/J.1600-065X.2009.00782.X
pubmed: 19426221
Peter, M. E., Hadji, A., Murmann, A. E., Brockway, S., Putzbach, W., Pattanayak, A., & Ceppi, P. (2015). The role of CD95 and CD95 ligand in cancer. Cell Death and Differentiation, 22(4), 549–559. https://doi.org/10.1038/cdd.2015.3
doi: 10.1038/cdd.2015.3
pubmed: 25656654
pmcid: 4356349
Borst, J., Hendriks, J., & Xiao, Y. (2005). CD27 and CD70 in T cell and B cell activation. Current Opinion in Immunology, 17(3), 275–281. https://doi.org/10.1016/J.COI.2005.04.004
doi: 10.1016/J.COI.2005.04.004
pubmed: 15886117
Kennedy, M. K., Willis, C. R., & Armitage, R. J. (2006). Deciphering CD30 ligand biology and its role in humoral immunity. Immunology, 118(2), 143. https://doi.org/10.1111/J.1365-2567.2006.02354.X
doi: 10.1111/J.1365-2567.2006.02354.X
pubmed: 16771849
pmcid: 1782289
Kim, A. M. J., Nemeth, M. R., & Lim, S. O. (2022). 4–1BB: A promising target for cancer immunotherapy. Frontiers in Oncology, 12, 968360. https://doi.org/10.3389/FONC.2022.968360/PDF
doi: 10.3389/FONC.2022.968360/PDF
pubmed: 36185242
pmcid: 9515902
Wajant, H. (2019). Molecular mode of action of TRAIL receptor agonists-common principles and their translational exploitation. Cancers, 11(7), 954. https://doi.org/10.3390/CANCERS11070954
doi: 10.3390/CANCERS11070954
pubmed: 31284696
pmcid: 6678900
Burkly, L. C., Michaelson, J. S., & Zheng, T. S. (2011). TWEAK/Fn14 pathway: An immunological switch for shaping tissue responses. Immunological Reviews, 244(1), 99–114. https://doi.org/10.1111/J.1600-065X.2011.01054.X
doi: 10.1111/J.1600-065X.2011.01054.X
pubmed: 22017434
Kampa, M., Notas, G., Stathopoulos, E. N., Tsapis, A., & Castanas, E. (2020). The TNFSF members APRIL and BAFF and their receptors TACI, BCMA, and BAFFR in oncology, with a special focus in breast cancer. Frontiers in Oncology, 10, 827. https://doi.org/10.3389/FONC.2020.00827/PDF
doi: 10.3389/FONC.2020.00827/PDF
pubmed: 32612943
pmcid: 7308424
Cai, G., & Freeman, G. J. (2009). The CD160, BTLA, LIGHT/HVEM pathway: A bidirectional switch regulating T-cell activation. Immunological Reviews, 229(1), 244–258. https://doi.org/10.1111/J.1600-065X.2009.00783.X
doi: 10.1111/J.1600-065X.2009.00783.X
pubmed: 19426226
Valatas, V., Kolios, G., & Bamias, G. (2019). TL1A (TNFSF15) and DR3 (TNFRSF25): A co-stimulatory system of cytokines with diverse functions in gut mucosal immunity. Frontiers in Immunology, 10(22), 421466. https://doi.org/10.3389/FIMMU.2019.00583/BIBTEX
doi: 10.3389/FIMMU.2019.00583/BIBTEX
Clouthier, D. L., & Watts, T. H. (2014). Cell-specific and context-dependent effects of GITR in cancer, autoimmunity, and infection. Cytokine and Growth Factor Reviews, 25(2), 91–106. https://doi.org/10.1016/J.CYTOGFR.2013.12.003
doi: 10.1016/J.CYTOGFR.2013.12.003
pubmed: 24484736
Dostert, C., Grusdat, M., Letellier, E., & Brenner, D. (2019). The TNF family of ligands and receptors: Communication modules in the immune system and beyond. Physiological Reviews, 99(1), 115–160. https://doi.org/10.1152/PHYSREV.00045.2017/ASSET/IMAGES/LARGE/Z9J0041828770007.JPEG
doi: 10.1152/PHYSREV.00045.2017/ASSET/IMAGES/LARGE/Z9J0041828770007.JPEG
pubmed: 30354964
So, T., & Ishii, N. (2019). The TNF-TNFR family of co-signal molecules. Advances in Experimental Medicine and Biology, 1189, 53–84. https://doi.org/10.1007/978-981-32-9717-3_3
doi: 10.1007/978-981-32-9717-3_3
pubmed: 31758531
Clement, M. V., & Stamenkovic, I. (1994). Fas and tumor necrosis factor receptor-mediated cell death: similarities and distinctions. The Journal of Experimental Medicine, 180(2), 557–567. https://doi.org/10.1084/JEM.180.2.557
doi: 10.1084/JEM.180.2.557
pubmed: 7519240
Carswell, E. A., Old, L. J., Kassel, R. L., Green, S., Fiore, N., & Williamson, B. (1975). An endotoxin-induced serum factor that causes necrosis of tumors. Proceedings of the National Academy of Sciences, 72(9), 3666–3670. https://doi.org/10.1073/PNAS.72.9.3666
doi: 10.1073/PNAS.72.9.3666
Balkwill, F. (2009). Tumour necrosis factor and cancer. Nature Reviews Cancer, 9(5), 361–371. https://doi.org/10.1038/NRC2628
doi: 10.1038/NRC2628
pubmed: 19343034
Wajant, H., Pfizenmaier, K., & Scheurich, P. (2003). Tumor necrosis factor signaling. Cell Death and Differentiation, 10(1), 45–65. https://doi.org/10.1038/SJ.CDD.4401189
doi: 10.1038/SJ.CDD.4401189
pubmed: 12655295
Wajant, H. (2015). Principles of antibody-mediated TNF receptor activation. Cell Death and Differentiation, 22(11), 1727–1741. https://doi.org/10.1038/cdd.2015.109
doi: 10.1038/cdd.2015.109
pubmed: 26292758
pmcid: 4648319
Vanamee, É. S., & Faustman, D. L. (2018). Structural principles of tumor necrosis factor superfamily signaling. Science Signaling, 11(511), eaao4910. https://doi.org/10.1126/SCISIGNAL.AAO4910
doi: 10.1126/SCISIGNAL.AAO4910
pubmed: 29295955
Shi, G., & Hu, Y. (2023). TNFR1 and TNFR2, which link NF-κB activation, drive lung cancer progression, cell dedifferentiation, and metastasis. Cancers, 15(17), 4299. https://doi.org/10.3390/CANCERS15174299
doi: 10.3390/CANCERS15174299
pubmed: 37686574
pmcid: 10487001
Kartikasari, A. E. R., Cassar, E., Razqan, M. A. M., Szydzik, C., Huertas, C. S., Mitchell, A., & Plebanski, M. (2022). Elevation of circulating TNF receptor 2 in cancer: A systematic meta-analysis for its potential as a diagnostic cancer biomarker. Frontiers in Immunology, 13, 918254. https://doi.org/10.3389/FIMMU.2022.918254/BIBTEX
doi: 10.3389/FIMMU.2022.918254/BIBTEX
pubmed: 36466914
pmcid: 9708892
Li, M., Zhang, X., Bai, X., & Liang, T. (2022). Targeting TNFR2: A novel breakthrough in the treatment of cancer. Frontiers in Oncology, 12, 862154. https://doi.org/10.3389/FONC.2022.862154/BIBTEX
doi: 10.3389/FONC.2022.862154/BIBTEX
pubmed: 35494080
pmcid: 9048045
Yang, Y., Islam, M. S., Hu, Y., & Chen, X. (2021). TNFR2: Role in cancer immunology and immunotherapy. ImmunoTargets and Therapy, 10, 103–122. https://doi.org/10.2147/ITT.S255224
doi: 10.2147/ITT.S255224
pubmed: 33907692
pmcid: 8071081
Kulbe, H., Thompson, R., Wilson, J. L., Robinson, S., Hagemann, T., Fatah, R., … Balkwill, F. (2007). The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Research, 67(2), 585–592. https://doi.org/10.1158/0008-5472.CAN-06-2941
Kim, E. Y., & Teh, H.-S. (2001). TNF type 2 receptor (p75) lowers the threshold of T cell activation. Journal of Immunology (Baltimore, Md. : 1950), 167(12), 6812–6820. https://doi.org/10.4049/JIMMUNOL.167.12.6812
doi: 10.4049/JIMMUNOL.167.12.6812
pubmed: 11739497
Twu, Y. C., Gold, M. R., & Teh, H. S. (2011). TNFR1 delivers pro-survival signals that are required for limiting TNFR2-dependent activation-induced cell death (AICD) in CD8+ T cells. European Journal of Immunology, 41(2), 335–344. https://doi.org/10.1002/EJI.201040639
doi: 10.1002/EJI.201040639
pubmed: 21268004
Chakraborty, S., Panda, A. K., Bose, S., Roy, D., Kajal, K., Guha, D., & Sa, G. (2017). Transcriptional regulation of FOXP3 requires integrated activation of both promoter and CNS regions in tumor-induced CD8+ Treg cells. Scientific Reports, 7(1), 1628. https://doi.org/10.1038/S41598-017-01788-Z
doi: 10.1038/S41598-017-01788-Z
pubmed: 28487507
pmcid: 5431671
Chen, X., Wu, X., Zhou, Q., Howard, O. M. Z., Netea, M. G., & Oppenheim, J. J. (2013). TNFR2 is critical for the stabilization of the CD4+Foxp3+ regulatory T cell phenotype in the inflammatory environment. Journal of Immunology (Baltimore, Md. : 1950), 190(3), 1076–1084. https://doi.org/10.4049/JIMMUNOL.1202659
doi: 10.4049/JIMMUNOL.1202659
pubmed: 23277487
He, L., Bhat, K., Duhacheck-Muggy, S., Ioannidis, A., Zhang, L., Nguyen, N. T., … Pajonk, F. (2021). Tumor necrosis factor receptor signaling modulates carcinogenesis in a mouse model of breast cancer. Neoplasia (New York, N.Y.), 23(2), 197–209. https://doi.org/10.1016/J.NEO.2020.12.007
Ham, B., Wang, N., D’Costa, Z., Fernandez, M. C., Bourdeau, F., Auguste, P., … Brodt, P. (2015). TNF receptor-2 facilitates an immunosuppressive microenvironment in the liver to promote the colonization and growth of hepatic metastases. Cancer Research, 75(24), 5235–5245. https://doi.org/10.1158/0008-5472.CAN-14-3173
Chopra, M., Riedel, S. S., Biehl, M., Krieger, S., von Krosigk, V., Bäuerlein, C. A., … Beilhack, A. (2013). Tumor necrosis factor receptor 2-dependent homeostasis of regulatory T cells as a player in TNF-induced experimental metastasis. Carcinogenesis, 34(6), 1296–1303. https://doi.org/10.1093/CARCIN/BGT038
Deroose, J. P., Grünhagen, D. J., Van Geel, A. N., De Wilt, J. H. W., Eggermont, A. M. M., & Verhoef, C. (2011). Long-term outcome of isolated limb perfusion with tumour necrosis factor-α for patients with melanoma in-transit metastases. British Journal of Surgery, 98(11), 1573–1580. https://doi.org/10.1002/BJS.7621
doi: 10.1002/BJS.7621
pubmed: 21739427
Noorda, E. M., Vrouenraets, B. C., Nieweg, O. E., Van Coevorden, F., Van Slooten, G. W., & Kroon, B. B. R. (2003). Isolated limb perfusion with tumor necrosis factor-alpha and melphalan for patients with unresectable soft tissue sarcoma of the extremities. Cancer, 98(7), 1483–1490. https://doi.org/10.1002/CNCR.11648
doi: 10.1002/CNCR.11648
pubmed: 14508836
Elia, A. R., Grioni, M., Basso, V., Curnis, F., Freschi, M., Corti, A., … Bellone, M. (2018). Targeting tumor vasculature with TNF leads effector t cells to the tumor and enhances therapeutic efficacy of immune checkpoint blockers in combination with adoptive cell therapy. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 24(9), 2171–2181. https://doi.org/10.1158/1078-0432.CCR-17-2210
Montfort, A., Filleron, T., Virazels, M., Dufau, C., Milhes, J., Pages, C., … Meyer, N. (2021). Combining nivolumab and ipilimumab with infliximab or certolizumab in patients with advanced melanoma: First results of a phase Ib clinical trial. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 27(4), 1037–1047. https://doi.org/10.1158/1078-0432.CCR-20-3449
Meyer, N., Lusque, A., Virazels, M., Filleron, T., Colacios, C., Montfort, A., & Ségui, B. (2022). 846P Triple combination of ipilimumab + nivolumab + anti-TNF in treatment naive melanoma patients: Final analysis of TICIMEL, a phase Ib prospective clinical trial. Annals of Oncology, 33, S936–S937. https://doi.org/10.1016/J.ANNONC.2022.07.972
doi: 10.1016/J.ANNONC.2022.07.972
Tsimberidou, A. M., Giles, F. J., Duvic, M., & Kurzrock, R. (2004). Pilot study of etanercept in patients with relapsed cutaneous T-cell lymphomas. Journal of the American Academy of Dermatology, 51(2), 200–204. https://doi.org/10.1016/J.JAAD.2003.05.009
doi: 10.1016/J.JAAD.2003.05.009
pubmed: 15280837
Badran, Y. R., Zou, F., Durbin, S. M., Dutra, B. E., Abu-Sbeih, H., Thomas, A. S., … Dougan, M. (2023). Concurrent immune checkpoint inhibition and selective immunosuppressive therapy in patients with immune-related enterocolitis. Journal for ImmunoTherapy of Cancer, 11(6), e007195. https://doi.org/10.1136/JITC-2023-007195
Roberts, N. J., Zhou, S., Diaz, L. A., Holdhoff, M., Roberts, N. J., Zhou, S., … Holdhoff, M. (2011). Systemic use of tumor necrosis factor alpha as an anticancer agent. Oncotarget, 2(10), 739–751. https://doi.org/10.18632/ONCOTARGET.344
Shen, J., Xiao, Z., Zhao, Q., Li, M., Wu, X., Zhang, L., … Cho, C. H. (2018). Anti-cancer therapy with TNFα and IFNγ: A comprehensive review. Cell Proliferation, 51(4), e12441. https://doi.org/10.1111/CPR.12441
Kali, A. (2015). TNFerade, an innovative cancer immunotherapeutic. Indian Journal of Pharmacology, 47(5), 479–483. https://doi.org/10.4103/0253-7613.165190
doi: 10.4103/0253-7613.165190
pubmed: 26600634
pmcid: 4621666
Feinberg, B., Kurzrock, R., Talpaz, M., Blick, M., Saks, S., & Gutterman, J. U. (1988). A phase I trial of intravenously-administered recombinant tumor necrosis factor-alpha in cancer patients. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 6(8), 1328–1334. https://doi.org/10.1200/JCO.1988.6.8.1328
doi: 10.1200/JCO.1988.6.8.1328
pubmed: 3411344
Govindaraj, C., Tan, P., Walker, P., Wei, A., Spencer, A., & Plebanski, M. (2014). Reducing TNF receptor 2+ regulatory T cells via the combined action of azacitidine and the HDAC inhibitor, panobinostat for clinical benefit in acute myeloid leukemia patients. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 20(3), 724–735. https://doi.org/10.1158/1078-0432.CCR-13-1576
doi: 10.1158/1078-0432.CCR-13-1576
pubmed: 24297862
Torrey, H., Butterworth, J., Mera, T., Okubo, Y., Wang, L., Baum, D., … Faustman, D. L. (2017). Targeting TNFR2 with antagonistic antibodies inhibits proliferation of ovarian cancer cells and tumor-associated Tregs. Science Signaling, 10(462). https://doi.org/10.1126/SCISIGNAL.AAF8608/SUPPL_FILE/AAF8608_SM.PDF
Nie, Y., He, J., Shirota, H., Trivett, A. L., Yang, D., Klinman, D. M., … Chen, X. (2018). Blockade of TNFR2 signaling enhances the immunotherapeutic effect of CpG ODN in a mouse model of colon cancer. Science Signaling, 11(511). https://doi.org/10.1126/SCISIGNAL.AAN0790
Case, K., Tran, L., Yang, M., Zheng, H., Kuhtreiber, W. M., & Faustman, D. L. (2020). TNFR2 blockade alone or in combination with PD-1 blockade shows therapeutic efficacy in murine cancer models. Journal of Leukocyte Biology, 107(6), 981–991. https://doi.org/10.1002/JLB.5MA0420-375RRRRR
doi: 10.1002/JLB.5MA0420-375RRRRR
pubmed: 32449229
O’Brien, D. I., Nally, K., Kelly, R. G., O’Connor, T. M., Shanahan, F., & O’Connell, J. (2005). Targeting the Fas/Fas ligand pathway in cancer. Expert Opinion on Therapeutic Targets, 9(5), 1031–1044. https://doi.org/10.1517/14728222.9.5.1031
doi: 10.1517/14728222.9.5.1031
pubmed: 16185156
Abrahams, V. M., Kamsteeg, M., & Mor, G. (2003). The Fas/Fas ligand system and cancer: Immune privilege and apoptosis. Molecular Biotechnology, 25(1), 19–30. https://doi.org/10.1385/MB:25:1:19
doi: 10.1385/MB:25:1:19
pubmed: 13679631
Li, Q., Peng, J., Li, X. H., Liu, T., Liang, Q. C., & Zhang, G. Y. (2010). Clinical significance of Fas and FasL protein expression in gastric carcinoma and local lymph node tissues. World Journal of Gastroenterology, 16(10), 1274–1278. https://doi.org/10.3748/WJG.V16.I10.1274
doi: 10.3748/WJG.V16.I10.1274
pubmed: 20222173
pmcid: 2839182
Cheng, J., Zhou, T., Liu, C., Shapiro, J. P., Brauer, M. J., Kiefer, M. C., … Mountz, J. D. (1994). Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science (New York, N.Y.), 263(5154), 1759–1762. https://doi.org/10.1126/SCIENCE.7510905
Owen-Schaub, L. B., Angelo, L. S., Radinsky, R., Ware, C. F., Gesner, T. G., & Bartos, D. P. (1995). Soluble Fas/APO-1 in tumor cells: A potential regulator of apoptosis? Cancer Letters, 94(1), 1–8. https://doi.org/10.1016/0304-3835(95)03834-J
doi: 10.1016/0304-3835(95)03834-J
pubmed: 7542559
Pitti, R. M., Marsters, S. A., Lawrence, D. A., Roy, M., Kischkel, F. C., Dowd, P., … Ashkenazi, A. (1998). Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature, 396(6712), 699–703. https://doi.org/10.1038/25387
Hahne, M., Rimoldi, D., Schröter, M., Romero, P., Schreier, M., French, L. E., … Tschopp, J. (1996). Melanoma cell expression of Fas(Apo-1/CD95) ligand: Implications for tumor immune escape. Science (New York, N.Y.), 274(5291), 1363–1366. https://doi.org/10.1126/SCIENCE.274.5291.1363
Strand, S., Hofmann, W. J., Hug, H., Müller, M., Otto, G., Strand, D., … Galle, P. R. (1996). Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells--A mechanism of immune evasion? Nature Medicine, 2(12), 1361–1366. https://doi.org/10.1038/NM1296-1361
O’Connell, J., O’Sullivan, G. C., Collins, J. K., & Shanahan, F. (1996). The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. The Journal of Experimental Medicine, 184(3), 1075–1082. https://doi.org/10.1084/JEM.184.3.1075
doi: 10.1084/JEM.184.3.1075
pubmed: 9064324
Igney, F. H., & Krammer, P. H. (2005). Tumor counterattack: Fact or fiction? Cancer Immunology, Immunotherapy : CII, 54(11), 1127–1136. https://doi.org/10.1007/S00262-005-0680-7
doi: 10.1007/S00262-005-0680-7
pubmed: 15889255
pmcid: 11034178
Motz, G. T., Santoro, S. P., Wang, L. P., Garrabrant, T., Lastra, R. R., Hagemann, I. S., … Coukos, G. (2014). Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nature Medicine, 20(6), 607–615. https://doi.org/10.1038/NM.3541
Ceppi, P., Hadji, A., Kohlhapp, F. J., Pattanayak, A., Hau, A., Liu, X., … Peter, M. E. (2014). CD95 and CD95L promote and protect cancer stem cells. Nature Communications, 5. https://doi.org/10.1038/NCOMMS6238
Teodorczyk, M., Kleber, S., Wollny, D., Sefrin, J. P., Aykut, B., Mateos, A., … Martin-Villalba, A. (2015). CD95 promotes metastatic spread via Sck in pancreatic ductal adenocarcinoma. Cell Death and Differentiation, 22(7), 1192–1202. https://doi.org/10.1038/CDD.2014.217
Zheng, H., Li, W., Wang, Y., Liu, Z., Cai, Y., Xie, T., … Jiang, B. (2013). Glycogen synthase kinase-3 beta regulates snail and β-catenin expression during Fas-induced epithelial-mesenchymal transition in gastrointestinal cancer. European Journal of Cancer (Oxford, England : 1990), 49(12), 2734–2746. https://doi.org/10.1016/J.EJCA.2013.03.014
Zheng, H. X., Cai, Y. D., Wang, Y. D., Cui, X. B., Xie, T. T., Li, W. J., … Jiang, B. (2013). Fas signaling promotes motility and metastasis through epithelial-mesenchymal transition in gastrointestinal cancer. Oncogene, 32(9), 1183–1192. https://doi.org/10.1038/ONC.2012.126
Ogasawara, J., Watanabe-Fukunaga, R., Adachi, M., Matsuzawa, A., Kasugai, T., Kitamura, Y., … Nagata, S. (1993). Lethal effect of the anti-Fas antibody in mice. Nature, 364(6440), 806–809. https://doi.org/10.1038/364806A0
Greaney, P., Nahimana, A., Lagopoulos, L., Etter, A. L., Aubry, D., Attinger, A., … Duchosal, M. A. (2006). A Fas agonist induces high levels of apoptosis in haematological malignancies. Leukemia Research, 30(4), 415–426. https://doi.org/10.1016/J.LEUKRES.2005.08.006
Rikhof, B., Van Der Graaf, W. T. A., Meijer, C., Le, P. T. K., Meersma, G. J., De Jong, S., … Suurmeijer, A. J. H. (2008). Abundant Fas expression by gastrointestinal stromal tumours may serve as a therapeutic target for MegaFasL. British Journal of Cancer, 99(10), 1600–1606. https://doi.org/10.1038/SJ.BJC.6604736
Orbach, A., Rachmilewitz, J., Shani, N., Isenberg, Y., Parnas, M., Huang, J. H., … Dranitzki-Elhalel, M. (2010). CD40·FasL and CTLA-4·FasL fusion proteins induce apoptosis in malignant cell lines by dual signaling. The American Journal of Pathology, 177(6), 3159–3168. https://doi.org/10.2353/AJPATH.2010.100301
Wiley, S. R., Schooley, K., Smolak, P. J., Din, W. S., Huang, C. P., Nicholl, J. K., … Goodwin, R. G. (1995). Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity, 3(6), 673–682. https://doi.org/10.1016/1074-7613(95)90057-8
Yuan, X., Gajan, A., Chu, Q., Xiong, H., Wu, K., & Wu, G. S. (2018). Developing TRAIL/TRAIL death receptor-based cancer therapies. Cancer Metastasis Reviews, 37(4), 733–748. https://doi.org/10.1007/S10555-018-9728-Y
doi: 10.1007/S10555-018-9728-Y
pubmed: 29541897
pmcid: 6138568
Lamoureux, F., Moriceau, G., Picarda, G., Rousseau, J., Trichet, V., & Rédini, F. (2010). Regulation of osteoprotegerin pro- or anti-tumoral activity by bone tumor microenvironment. Biochimica et Biophysica Acta, 1805(1), 17–24. https://doi.org/10.1016/J.BBCAN.2009.08.004
doi: 10.1016/J.BBCAN.2009.08.004
pubmed: 19733222
Pimentel, J. M., Zhou, J. Y., & Wu, G. S. (2023). The role of TRAIL in apoptosis and immunosurveillance in cancer. Cancers, 15(10), 2752. https://doi.org/10.3390/CANCERS15102752
doi: 10.3390/CANCERS15102752
pubmed: 37345089
pmcid: 10216286
Mirandola, P., Ponti, C., Gobbi, G., Sponzilli, I., Vaccarezza, M., Cocco, L., … Vitale, M. (2004). Activated human NK and CD8+ T cells express both TNF-related apoptosis-inducing ligand (TRAIL) and TRAIL receptors but are resistant to TRAIL-mediated cytotoxicity. Blood, 104(8), 2418–2424. https://doi.org/10.1182/BLOOD-2004-04-1294
Sag, D., Ayyildiz, Z. O., Gunalp, S., & Wingender, G. (2019). The role of TRAIL/DRs in the modulation of immune cells and responses. Cancers, 11(10), 1469. https://doi.org/10.3390/CANCERS11101469
doi: 10.3390/CANCERS11101469
pubmed: 31574961
pmcid: 6826877
Zerafa, N., Westwood, J. A., Cretney, E., Mitchell, S., Waring, P., Iezzi, M., & Smyth, M. J. (2005). Cutting edge: TRAIL deficiency accelerates hematological malignancies. Journal of Immunology (Baltimore, Md. : 1950), 175(9), 5586–5590. https://doi.org/10.4049/JIMMUNOL.175.9.5586
doi: 10.4049/JIMMUNOL.175.9.5586
pubmed: 16237043
Cretney, E., Takeda, K., Yagita, H., Glaccum, M., Peschon, J. J., & Smyth, M. J. (2002). Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. Journal of Immunology (Baltimore, Md. : 1950), 168(3), 1356–1361. https://doi.org/10.4049/JIMMUNOL.168.3.1356
doi: 10.4049/JIMMUNOL.168.3.1356
pubmed: 11801676
Takeda, K., Hayakawa, Y., Smyth, M. J., Kayagaki, N., Yamaguchi, N., Kakuta, S., … Okumura, K. (2001). Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nature Medicine, 7(1), 94–100. https://doi.org/10.1038/83416
Di Cristofano, F., George, A., Tajiknia, V., Ghandali, M., Wu, L., Zhang, Y., … El-Deiry, W. S. (2023). Therapeutic targeting of TRAIL death receptors. Biochemical Society Transactions, 51(1), 57–70. https://doi.org/10.1042/BST20220098
Ashkenazi, A., Pai, R. C., Fong, S., Leung, S., Lawrence, D. A., Marsters, S. A., … Schwall, R. H. (1999). Safety and antitumor activity of recombinant soluble Apo2 ligand. The Journal of Clinical Investigation, 104(2), 155–162. https://doi.org/10.1172/JCI6926
Schneider, P. (2000). Production of recombinant TRAIL and TRAIL receptor: Fc chimeric proteins. Methods in Enzymology, 322, 325–345. https://doi.org/10.1016/S0076-6879(00)22031-4
doi: 10.1016/S0076-6879(00)22031-4
pubmed: 10914028
Walczak, H., Miller, R. E., Ariail, K., Gliniak, B., Griffith, T. S., Kubin, M., … Lynch, D. H. (1999). Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nature Medicine, 5(2), 157–163. https://doi.org/10.1038/5517
Herbst, R. S., Eckhardt, S. G., Kurzrock, R., Ebbinghaus, S., O’Dwyer, P. J., Gordon, M. S., … Mendelson, D. S. (2010). Phase I dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer. Journal of Clinical Oncology, 28(17), 2839–2846. https://doi.org/10.1200/JCO.2009.25.1991
Subbiah, V., Brown, R. E., Buryanek, J., Trent, J., Ashkenazi, A., Herbst, R., & Kurzrock, R. (2012). Targeting the apoptotic pathway in chondrosarcoma using recombinant human Apo2L/TRAIL (dulanermin), a dual proapoptotic receptor (DR4/DR5) agonist. Molecular Cancer Therapeutics, 11(11), 2541–2546. https://doi.org/10.1158/1535-7163.MCT-12-0358
doi: 10.1158/1535-7163.MCT-12-0358
pubmed: 22914439
pmcid: 3496030
Horak, P., Pils, D., Haller, G., Pribill, I., Roessler, M., Tomek, S., … Krainer, M. (2005). Contribution of epigenetic silencing of tumor necrosis factor-related apoptosis inducing ligand receptor 1 (DR4) to TRAIL resistance and ovarian cancer. Molecular Cancer Research : MCR, 3(6), 335–343. https://doi.org/10.1158/1541-7786.MCR-04-0136
Zhang, L., Zhang, X., Barrisford, G. W., & Olumi, A. F. (2007). Lexatumumab (TRAIL-receptor 2 mAb) induces expression of DR5 and promotes apoptosis in primary and metastatic renal cell carcinoma in a mouse orthotopic model. Cancer Letters, 251(1), 146–157. https://doi.org/10.1016/J.CANLET.2006.11.013
doi: 10.1016/J.CANLET.2006.11.013
pubmed: 17184908
Plummer, R., Attard, G., Pacey, S., Li, L., Razak, A., Perrett, R., … De Bono, J. (2007). Phase 1 and pharmacokinetic study of lexatumumab in patients with advanced cancers. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 13(20), 6187–6194. https://doi.org/10.1158/1078-0432.CCR-07-0950
Hotte, S. J., Hirte, H. W., Chen, E. X., Siu, L. L., Le, L. H., Corey, A., … Oza, A. M. (2008). A phase 1 study of mapatumumab (fully human monoclonal antibody to TRAIL-R1) in patients with advanced solid malignancies. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 14(11), 3450–3455. https://doi.org/10.1158/1078-0432.CCR-07-1416
Herbst, R. S., Kurzrock, R., Hong, D. S., Valdivieso, M., Hsu, C. P., Goyal, L., … LoRusso, P. M. (2010). A first-in-human study of conatumumab in adult patients with advanced solid tumors. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 16(23), 5883–5891. https://doi.org/10.1158/1078-0432.CCR-10-0631
Camidge, D. R., Herbst, R. S., Gordon, M. S., Eckhardt, S. G., Kurzrock, R., Durbin, B., … Mendelson, D. (2010). A phase I safety and pharmacokinetic study of the death receptor 5 agonistic antibody PRO95780 in patients with advanced malignancies. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 16(4), 1256–1263. https://doi.org/10.1158/1078-0432.CCR-09-1267
Forero-Torres, A., Shah, J., Wood, T., Posey, J., Carlisle, R., Copigneaux, C., … Saleh, M. (2010). Phase I trial of weekly tigatuzumab, an agonistic humanized monoclonal antibody targeting death receptor 5 (DR5). Cancer Biotherapy and Radiopharmaceuticals, 25(1), 13–19. https://doi.org/10.1089/CBR.2009.0673
Milligan, K. L., & Barenkamp, S. J. (2013). Neonatal meningitis due to Morganella morganii. Clinical Pediatrics, 52(5), 462–464. https://doi.org/10.1177/0009922811435166
doi: 10.1177/0009922811435166
pubmed: 22267858
Liu, H., Su, D., Zhang, J., Ge, S., Li, Y., Wang, F., … Liang, P. (2017). Improvement of pharmacokinetic profile of TRAIL via trimer-tag enhances its antitumor activity in vivo. Scientific Reports, 7(1). https://doi.org/10.1038/S41598-017-09518-1
Phillips, D. C., Buchanan, F. G., Cheng, D., Solomon, L. R., Xiao, Y., Xue, J., … Morgan-Lappe, S. E. (2021). Hexavalent TRAIL fusion protein eftozanermin alfa optimally clusters apoptosis-inducing TRAIL receptors to induce on-target antitumor activity in solid tumors. Cancer Research, 81(12), 3402–3414. https://doi.org/10.1158/0008-5472.CAN-20-2178
de Jonge, M. J. A., Carneiro, B. A., Devriese, L., Doi, T., Penugonda, S., Petrich, A. M., … Moreno, V. (2019). First-in-human study of Abbv-621, a TRAIL receptor agonist fusion protein, in patients (Pts) with relapsed/refractory (RR) acute myeloid leukemia (AML) and diffuse large B-cell lymphoma (DLBCL). Blood, 134(Supplement_1), 3924–3924. https://doi.org/10.1182/BLOOD-2019-129783
LoRusso, P., Ratain, M. J., Doi, T., Rasco, D. W., de Jonge, M. J. A., Moreno, V., … Calvo, E. (2022). Eftozanermin alfa (ABBV-621) monotherapy in patients with previously treated solid tumors: Findings of a phase 1, first-in-human study. Investigational New Drugs, 40(4), 762–772. https://doi.org/10.1007/S10637-022-01247-1
Papadopoulos, K. P., Isaacs, R., Bilic, S., Kentsch, K., Huet, H. A., Hofmann, M., … Mahipal, A. (2015). Unexpected hepatotoxicity in a phase I study of TAS266, a novel tetravalent agonistic Nanobody® targeting the DR5 receptor. Cancer Chemotherapy and Pharmacology, 75(5), 887–895. https://doi.org/10.1007/S00280-015-2712-0
Eliopoulos, A. G., & Young, L. S. (2004). The role of the CD40 pathway in the pathogenesis and treatment of cancer. Current Opinion in Pharmacology, 4(4), 360–367. https://doi.org/10.1016/j.coph.2004.02.008
doi: 10.1016/j.coph.2004.02.008
pubmed: 15251129
Enell Smith, K., Deronic, A., Hägerbrand, K., Norlén, P., & Ellmark, P. (2021). Rationale and clinical development of CD40 agonistic antibodies for cancer immunotherapy. Expert Opinion on Biological Therapy, 21(12), 1635–1646. https://doi.org/10.1080/14712598.2021.1934446
doi: 10.1080/14712598.2021.1934446
pubmed: 34043482
Vonderheide, R. H., Dutcher, J. P., Anderson, J. E., Eckhardt, S. G., Stephans, K. F., Razvillas, B., … Gribben, J. G. (2001). Phase I study of recombinant human CD40 ligand in cancer patients. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 19(13), 3280–3287. https://doi.org/10.1200/JCO.2001.19.13.3280
Vonderheide, R. H. (2020). CD40 agonist antibodies in cancer immunotherapy. Annual Review of Medicine, 71, 47–58. https://doi.org/10.1146/ANNUREV-MED-062518-045435
doi: 10.1146/ANNUREV-MED-062518-045435
pubmed: 31412220
Vonderheide, R. H. (2018). The immune revolution: A case for priming, not checkpoint. Cancer Cell, 33(4), 563–569. https://doi.org/10.1016/J.CCELL.2018.03.008
doi: 10.1016/J.CCELL.2018.03.008
pubmed: 29634944
pmcid: 5898647
Piechutta, M., & Berghoff, A. S. (2019). New emerging targets in cancer immunotherapy: The role of cluster of differentiation 40 (CD40/TNFR5). ESMO Open, 4(Suppl 3), e000510. https://doi.org/10.1136/ESMOOPEN-2019-000510
doi: 10.1136/ESMOOPEN-2019-000510
pubmed: 31275618
pmcid: 6579575
Dahan, R., Barnhart, B. C., Li, F., Yamniuk, A. P., Korman, A. J., & Ravetch, J. V. (2016). Therapeutic activity of agonistic, human anti-CD40 monoclonal antibodies requires selective FcγR engagement. Cancer Cell, 29(6), 820–831. https://doi.org/10.1016/J.CCELL.2016.05.001
doi: 10.1016/J.CCELL.2016.05.001
pubmed: 27265505
pmcid: 4975533
Byrne, K. T., & Vonderheide, R. H. (2016). CD40 stimulation obviates innate sensors and drives T cell immunity in cancer. Cell Reports, 15(12), 2719–2732. https://doi.org/10.1016/J.CELREP.2016.05.058
doi: 10.1016/J.CELREP.2016.05.058
pubmed: 27292635
Li, F., & Ravetch, J. V. (2013). Antitumor activities of agonistic anti-TNFR antibodies require differential FcγRIIB coengagement in vivo. Proceedings of the National Academy of Sciences of the United States of America, 110(48), 19501–19506. https://doi.org/10.1073/PNAS.1319502110
doi: 10.1073/PNAS.1319502110
pubmed: 24218606
pmcid: 3845179
White, A. L., Chan, H. T. C., Roghanian, A., French, R. R., Mockridge, C. I., Tutt, A. L., … Glennie, M. J. (2011). Interaction with FcγRIIB is critical for the agonistic activity of anti-CD40 monoclonal antibody. Journal of Immunology (Baltimore, Md. : 1950), 187(4), 1754–1763. https://doi.org/10.4049/JIMMUNOL.1101135
Irenaeus, S. M. M., Nielsen, D., Ellmark, P., Yachnin, J., Deronic, A., Nilsson, A., … Ullenhag, G. J. (2019). First-in-human study with intratumoral administration of a CD40 agonistic antibody, ADC-1013, in advanced solid malignancies. International Journal of Cancer, 145(5), 1189–1199. https://doi.org/10.1002/IJC.32141
White, A. L., Chan, H. T. C., French, R. R., Willoughby, J., Mockridge, C. I., Roghanian, A., … Glennie, M. J. (2015). Conformation of the human immunoglobulin G2 hinge imparts superagonistic properties to immunostimulatory anticancer antibodies. Cancer Cell, 27(1), 138–148. https://doi.org/10.1016/J.CCELL.2014.11.001
Djureinovic, D., Wang, M., & Kluger, H. M. (2021). Agonistic CD40 antibodies in cancer treatment. Cancers, 13(6), 1–18. https://doi.org/10.3390/CANCERS13061302
doi: 10.3390/CANCERS13061302
Vonderheide, R. H., Flaherty, K. T., Khalil, M., Stumacher, M. S., Bajor, D. L., Hutnick, N. A., … Antonia, S. J. (2007). Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 25(7), 876–883. https://doi.org/10.1200/JCO.2006.08.3311
Sanborn, R., Gabrail, N., Carneiro, B., O’Hara, M., Bordoni, R., Gordon, M., … Yellin, M. (2022). 596 Results from a phase 1 study of CDX-1140, a fully human anti-CD40 agonist monoclonal antibody (mAb), in combination with pembrolizumab. Journal for ImmunoTherapy of Cancer, 10(Suppl 2), A623–A623. https://doi.org/10.1136/JITC-2022-SITC2022.0596
Salomon, R., & Dahan, R. (2022). Next generation CD40 agonistic antibodies for cancer immunotherapy. Frontiers in Immunology, 13, 940674. https://doi.org/10.3389/FIMMU.2022.940674/PDF
doi: 10.3389/FIMMU.2022.940674/PDF
pubmed: 35911742
pmcid: 9326085
Padrón, L. J., Maurer, D. M., O’Hara, M. H., O’Reilly, E. M., Wolff, R. A., Wainberg, Z. A., … Vonderheide, R. H. (2022). Sotigalimab and/or nivolumab with chemotherapy in first-line metastatic pancreatic cancer: Clinical and immunologic analyses from the randomized phase 2 PRINCE trial. Nature Medicine, 28(6), 1167–1177. https://doi.org/10.1038/S41591-022-01829-9
Ye, S., Cohen, D., Belmar, N. A., Choi, D., Tan, S. S., Sho, M., … Chao, D. T. (2019). A bispecific molecule targeting CD40 and tumor antigen mesothelin enhances tumor-specific immunity. Cancer Immunology Research, 7(11), 1864–1875. https://doi.org/10.1158/2326-6066.CIR-18-0805
Luke, J. J., Barlesi, F., Chung, K., Tolcher, A. W., Kelly, K., Hollebecque, A., … Fong, L. (2021). Phase I study of ABBV-428, a mesothelin-CD40 bispecific, in patients with advanced solid tumors. Journal for Immunotherapy of Cancer, 9(2). https://doi.org/10.1136/JITC-2020-002015
Willoughby, J., Griffiths, J., Tews, I., & Cragg, M. S. (2017). OX40: Structure and function-What questions remain? Molecular Immunology, 83, 13–22. https://doi.org/10.1016/J.MOLIMM.2017.01.006
doi: 10.1016/J.MOLIMM.2017.01.006
pubmed: 28092803
Soroosh, P., Ine, S., Sugamura, K., & Ishii, N. (2006). OX40-OX40 ligand interaction through T cell-T cell contact contributes to CD4 T cell longevity. Journal of Immunology (Baltimore, Md. : 1950), 176(10), 5975–5987. https://doi.org/10.4049/JIMMUNOL.176.10.5975
doi: 10.4049/JIMMUNOL.176.10.5975
pubmed: 16670306
Zhang, X., Xiao, X., Lan, P., Li, J., Dou, Y., Chen, W., … Li, X. C. (2018). OX40 costimulation inhibits Foxp3 expression and treg induction via BATF3-dependent and independent mechanisms. Cell Reports, 24(3), 607–618. https://doi.org/10.1016/J.CELREP.2018.06.052
Oberst, M. D., Auge, C., Morris, C., Kentner, S., Mulgrew, K., McGlinchey, K., … Hammond, S. A. (2018). Potent immune modulation by MEDI6383, an engineered human OX40 ligand IgG4P Fc fusion protein. Molecular Cancer Therapeutics, 17(5), 1024–1038. https://doi.org/10.1158/1535-7163.MCT-17-0200
Messenheimer, D. J., Jensen, S. M., Afentoulis, M. E., Wegmann, K. W., Feng, Z., Friedman, D. J., … Fox, B. A. (2017). Timing of PD-1 blockade is critical to effective combination immunotherapy with anti-OX40. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 23(20), 6165–6177. https://doi.org/10.1158/1078-0432.CCR-16-2677
Malamas, A. S., Hammond, S. A., Schlom, J., & Hodge, J. W. (2017). Combination therapy with an OX40L fusion protein and a vaccine targeting the transcription factor twist inhibits metastasis in a murine model of breast cancer. Oncotarget, 8(53), 90825–90841. https://doi.org/10.18632/ONCOTARGET.19967
doi: 10.18632/ONCOTARGET.19967
pubmed: 29207606
pmcid: 5710887
Redmond, W. L., Linch, S. N., & Kasiewicz, M. J. (2014). Combined targeting of costimulatory (OX40) and coinhibitory (CTLA-4) pathways elicits potent effector T cells capable of driving robust antitumor immunity. Cancer Immunology Research, 2(2), 142–153. https://doi.org/10.1158/2326-6066.CIR-13-0031-T
doi: 10.1158/2326-6066.CIR-13-0031-T
pubmed: 24778278
Pourakbari, R., Hajizadeh, F., Parhizkar, F., Aghebati-Maleki, A., Mansouri, S., & Aghebati-Maleki, L. (2021). Co-stimulatory agonists: An insight into the immunotherapy of cancer. EXCLI Journal, 20, 1055–1085. https://doi.org/10.17179/EXCLI2021-3522
doi: 10.17179/EXCLI2021-3522
pubmed: 34267616
pmcid: 8278219
Curti, B. D., Kovacsovics-Bankowski, M., Morris, N., Walker, E., Chisholm, L., Floyd, K., … Weinberg, A. D. (2013). OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer Research, 73(24), 7189–7198. https://doi.org/10.1158/0008-5472.CAN-12-4174
Davis, E. J., Martin-Liberal, J., Kristeleit, R., Cho, D. C., Blagden, S. P., Berthold, D., … Mehnert, J. M. (2022). First-in-human phase I/II, open-label study of the anti-OX40 agonist INCAGN01949 in patients with advanced solid tumors. Journal for Immunotherapy Of Cancer, 10(10). https://doi.org/10.1136/JITC-2021-004235
Postel-Vinay, S., Lam, V. K., Ros, W., Bauer, T. M., Hansen, A. R., Cho, D. C., … Heymach, J. V. (2023). First-in-human phase I study of the OX40 agonist GSK3174998 with or without pembrolizumab in patients with selected advanced solid tumors (ENGAGE-1). Journal for Immunotherapy of Cancer, 11(3). https://doi.org/10.1136/JITC-2022-005301
Yang, Z. Z., Novak, A. J., Ziesmer, S. C., Witzig, T. E., & Ansell, S. M. (2007). CD70+ non-Hodgkin lymphoma B cells induce Foxp3 expression and regulatory function in intratumoral CD4+CD25- T cells. Blood, 110(7), 2537–2544. https://doi.org/10.1182/BLOOD-2007-03-082578
doi: 10.1182/BLOOD-2007-03-082578
pubmed: 17615291
pmcid: 1988926
Flieswasser, T., Van den Eynde, A., Van Audenaerde, J., De Waele, J., Lardon, F., Riether, C., … Jacobs, J. (2022). The CD70-CD27 axis in oncology: The new kids on the block. Journal of Experimental and Clinical Cancer Research, 41(1). https://doi.org/10.1186/S13046-021-02215-Y
Riether, C., Schürch, C. M., Bührer, E. D., Hinterbrandner, M., Huguenin, A. L., Hoepner, S., … Ochsenbein, A. F. (2017). CD70/CD27 signaling promotes blast stemness and is a viable therapeutic target in acute myeloid leukemia. The Journal of Experimental Medicine, 214(2), 359–380. https://doi.org/10.1084/JEM.20152008
Nilsson, A., De Milito, A., Mowafi, F., Winberg, G., Björk, O., Wolpert, E. Z., & Chiodi, F. (2005). Expression of CD27-CD70 on early B cell progenitors in the bone marrow: Implication for diagnosis and therapy of childhood ALL. Experimental Hematology, 33(12), 1500–1507. https://doi.org/10.1016/J.EXPHEM.2005.10.005
doi: 10.1016/J.EXPHEM.2005.10.005
pubmed: 16338493
Flieswasser, T., Camara-Clayette, V., Danu, A., Bosq, J., Ribrag, V., Zabrocki, P., … Jacobs, J. (2019). Screening a broad range of solid and haematological tumour types for CD70 expression using a uniform IHC methodology as potential patient stratification method. Cancers, 11(10). https://doi.org/10.3390/cancers11101611
Katayama, Y., Sakai, A., Oue, N., Asaoku, H., Otsuki, T., Shiomomura, T., … Kimura, A. (2003). A possible role for the loss of CD27-CD70 interaction in myelomagenesis. British Journal of Haematology, 120(2), 223–234. https://doi.org/10.1046/j.1365-2141.2003.04069.x
Liu, L., Yin, B., Yi, Z., Liu, X. J., Hu, Z. Q., Gao, W. C., … Li, Q. Q. (2018). Breast cancer stem cells characterized by CD70 expression preferentially metastasize to the lungs. Breast Cancer, 25(6), 706–716. https://doi.org/10.1007/S12282-018-0880-6
Jacobs, J., Deschoolmeester, V., Rolfo, C., Zwaenepoel, K., Van den Bossche, J., Deben, C., … Pauwels, P. (2017). Preclinical data on the combination of cisplatin and anti-CD70 therapy in non-small cell lung cancer as an excellent match in the era of combination therapy. Oncotarget, 8(43), 74058–74067. https://doi.org/10.18632/ONCOTARGET.18202
Claus, C., Riether, C., Schürch, C., Matter, M. S., Hilmenyuk, T., & Ochsenbein, A. F. (2012). CD27 signaling increases the frequency of regulatory T cells and promotes tumor growth. Cancer Research, 72(14), 3664–3676. https://doi.org/10.1158/0008-5472.CAN-11-2791
doi: 10.1158/0008-5472.CAN-11-2791
pubmed: 22628427
Liu, L., Yin, B., Yi, Z., Liu, X. J., Hu, Z. Q., Gao, W. C., … Li, Q. Q. (2018). Breast cancer stem cells characterized by CD70 expression preferentially metastasize to the lungs. Breast Cancer (Tokyo, Japan), 25(6), 706–716. https://doi.org/10.1007/S12282-018-0880-6
Pich, C., Sarrabayrouse, G., Teiti, I., Mariamé, B., Rochaix, P., Lamant, L., … Tilkin-Mariamé, A. F. (2016). Melanoma-expressed CD70 is involved in invasion and metastasis. British Journal of Cancer, 114(1), 63–70. https://doi.org/10.1038/BJC.2015.412
Starzer, A. M., & Berghoff, A. S. (2020). New emerging targets in cancer immunotherapy: CD27 (TNFRSF7). ESMO Open, 4(Suppl 3), e000629. https://doi.org/10.1136/ESMOOPEN-2019-000629
doi: 10.1136/ESMOOPEN-2019-000629
pubmed: 32152062
pmcid: 7082637
Owonikoko, T. K., Hussain, A., Stadler, W. M., Smith, D. C., Kluger, H., Molina, A. M., … Cohen, L. J. (2016). First-in-human multicenter phase i study of BMS-936561 (MDX-1203), an antibody-drug conjugate targeting CD70. Cancer Chemotherapy and Pharmacology, 77(1), 155–162. https://doi.org/10.1007/S00280-015-2909-2
Silence, K., Dreier, T., Moshir, M., Ulrichts, P., Gabriels, S. M. E., Saunders, M., … De Haard, H. J. (2014). ARGX-110, a highly potent antibody targeting CD70, eliminates tumors via both enhanced ADCC and immune checkpoint blockade. mAbs, 6(2), 523–532. https://doi.org/10.4161/MABS.27398
Aftimos, P., Rolfo, C., Rottey, S., Offner, F., Bron, D., Maerevoet, M., … Awada, A. (2017). Phase I dose-escalation study of the anti-CD70 antibody ARGX-110 in advanced malignancies. Clinical Cancer Research, 23(21), 6411–6420. https://doi.org/10.1158/1078-0432.CCR-17-0613
Leupin, N., Zinzani, P. L., Morschhauser, F., Dalle, S., Maerevoet, M., Michot, J. M., … Bagot, M. (2022). Cusatuzumab for treatment of CD70-positive relapsed or refractory cutaneous T-cell lymphoma. Cancer, 128(5), 1004–1014. https://doi.org/10.1002/CNCR.34005
Vanegas, Y. M., Mohty, R., Gadd, M. E., Luo, Y., Aljurf, M., Qin, H., & Kharfan-Dabaja, M. A. (2022). CAR-T cell therapies for B-cell lymphoid malignancies: Identifying targets beyond CD19. Hematology/Oncology and Stem Cell Therapy, 15(3), 8. https://doi.org/10.56875/2589-0646.1026
doi: 10.56875/2589-0646.1026
Lutfi, F., Wu, L., Sunshine, S., & Cao, X. (2021). Targeting the CD27-CD70 pathway to improve outcomes in both checkpoint immunotherapy and allogeneic hematopoietic cell transplantation. Frontiers in Immunology, 12, 715909. https://doi.org/10.3389/fimmu.2021.715909
doi: 10.3389/fimmu.2021.715909
pubmed: 34630390
pmcid: 8493876
Burris, H. A., Infante, J. R., Ansell, S. M., Nemunaitis, J. J., Weiss, G. R., Villalobos, V. M., … Bullock, T. (2017). Safety and activity of varlilumab, a novel and first-in-class agonist anti-CD27 antibody, in patients with advanced solid tumors. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 35(18), 2028–2036. https://doi.org/10.1200/JCO.2016.70.1508
Sanborn, R. E., Pishvaian, M. J., Callahan, M. K., Weise, A., Sikic, B. I., Rahma, O., … Keler, T. (2022). Safety, tolerability and efficacy of agonist anti-CD27 antibody (varlilumab) administered in combination with anti-PD-1 (nivolumab) in advanced solid tumors. Journal for Immunotherapy of Cancer, 10(8). https://doi.org/10.1136/JITC-2022-005147
Villasboas, J. C., Kline, J. P., Lazaryan, A., Bartlett, N. L., Hernandez-Ilizaliturri, F. J., Awan, F. T., … Ansell, S. M. (2022). Results of the DIAL study (NCI 10089), a randomized phase 2 trial of varlilumab combined with nivolumab in patients with relapsed/refractory aggressive B-cell non-Hodgkin lymphoma (r/r B-NHL), 40(17_suppl), LBA7564–LBA7564. https://doi.org/10.1200/JCO.2022.40.17_SUPPL.LBA7564
Lee, H.-W., Park, S.-J., Choi, B. K., Kim, H. H., Nam, K.-O., & Kwon, B. S. (2002). 4–1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. Journal of Immunology (Baltimore, Md. : 1950), 169(9), 4882–4888. https://doi.org/10.4049/JIMMUNOL.169.9.4882
doi: 10.4049/JIMMUNOL.169.9.4882
pubmed: 12391199
Wang, C., Lin, G. H. Y., McPherson, A. J., & Watts, T. H. (2009). Immune regulation by 4–1BB and 4–1BBL: Complexities and challenges. Immunological Reviews, 229(1), 192–215. https://doi.org/10.1111/J.1600-065X.2009.00765.X
doi: 10.1111/J.1600-065X.2009.00765.X
pubmed: 19426223
Sabbagh, L., Pulle, G., Liu, Y., Tsitsikov, E. N., & Watts, T. H. (2008). ERK-dependent Bim modulation downstream of the 4–1BB-TRAF1 signaling axis is a critical mediator of CD8 T cell survival in vivo. Journal of Immunology (Baltimore, Md. : 1950), 180(12), 8093–8101. https://doi.org/10.4049/JIMMUNOL.180.12.8093
doi: 10.4049/JIMMUNOL.180.12.8093
pubmed: 18523273
Qi, X., Li, F., Wu, Y., Cheng, C., Han, P., Wang, J., & Yang, X. (2019). Optimization of 4–1BB antibody for cancer immunotherapy by balancing agonistic strength with FcγR affinity. Nature Communications, 10(1), 2141. https://doi.org/10.1038/S41467-019-10088-1
doi: 10.1038/S41467-019-10088-1
pubmed: 31105267
pmcid: 6526162
Wilcox, R. A., Tamada, K., Strome, S. E., & Chen, L. (2002). Signaling through NK cell-associated CD137 promotes both helper function for CD8+ cytolytic T cells and responsiveness to IL-2 but not cytolytic activity. The Journal of Immunology, 169(8), 4230–4236. https://doi.org/10.4049/JIMMUNOL.169.8.4230
doi: 10.4049/JIMMUNOL.169.8.4230
pubmed: 12370353
Futagawa, T., Akiba, H., Kodama, T., Takeda, K., Hosoda, Y., Yagita, H., & Okumura, K. (2002). Expression and function of 4–1BB and 4–1BB ligand on murine dendritic cells. International Immunology, 14(3), 275–286. https://doi.org/10.1093/INTIMM/14.3.275
doi: 10.1093/INTIMM/14.3.275
pubmed: 11867564
Barsoumian, H. B., Yolcu, E. S., & Shirwan, H. (2016). 4–1BB signaling in conventional T cells drives IL-2 production that overcomes CD4+CD25+FoxP3+ T regulatory cell suppression. PloS One, 11(4), e0153088. https://doi.org/10.1371/JOURNAL.PONE.0153088
doi: 10.1371/JOURNAL.PONE.0153088
pubmed: 27049955
pmcid: 4822835
Melero, I., Shuford, W. W., Newby, S. A., Aruffo, A., Ledbetter, J. A., Hellström, K. E., … Chen, L. (1997). Monoclonal antibodies against the 4–1BB T-cell activation molecule eradicate established tumors. Nature Medicine, 3(6), 682–685. https://doi.org/10.1038/NM0697-682
Curran, M. A., Kim, M., Montalvo, W., Al-Shamkhani, A., & Allison, J. P. (2011). Combination CTLA-4 blockade and 4–1BB activation enhances tumor rejection by increasing T-cell infiltration, proliferation, and cytokine production. PloS one, 6(4), e19499. https://doi.org/10.1371/JOURNAL.PONE.0019499
doi: 10.1371/JOURNAL.PONE.0019499
pubmed: 21559358
pmcid: 3085474
Chen, S., Lee, L. F., Fisher, T. S., Jessen, B., Elliott, M., Evering, W., … Lin, J. C. (2015). Combination of 4–1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model. Cancer Immunology Research, 3(2), 149–160. https://doi.org/10.1158/2326-6066.CIR-14-0118
Sznol, M., Hodi, F. S., Margolin, K., McDermott, D. F., Ernstoff, M. S., Kirkwood, J. M., … Logan, T. (2008). Phase I study of BMS-663513, a fully human anti-CD137 agonist monoclonal antibody, in patients (pts) with advanced cancer (CA), 26(15_suppl), 3007–3007. https://doi.org/10.1200/JCO.2008.26.15_SUPPL.3007
Chester, C., Sanmamed, M. F., Wang, J., & Melero, I. (2018). Immunotherapy targeting 4–1BB: Mechanistic rationale, clinical results, and future strategies. Blood, 131(1), 49–57. https://doi.org/10.1182/BLOOD-2017-06-741041
doi: 10.1182/BLOOD-2017-06-741041
pubmed: 29118009
Segal, N. H., He, A. R., Doi, T., Levy, R., Bhatia, S., Pishvaian, M. J., … Gopal, A. K. (2018). Phase i study of single-agent utomilumab (PF-05082566), a 4–1bb/cd137 agonist, in patients with advanced cancer. Clinical Cancer Research, 24(8), 1816–1823. https://doi.org/10.1158/1078-0432.CCR-17-1922
Papadopoulos, K. P., Autio, K., Golan, T., Dobrenkov, K., Chartash, E., Chen, Q., … Long, G. V. (2021). Phase I study of MK-4166, an anti-human glucocorticoid-induced TNF receptor antibody, alone or with pembrolizumab in advanced solid tumors. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 27(7), 1904–1911. https://doi.org/10.1158/1078-0432.CCR-20-2886
Cohen, E. E. W., Pishvaian, M. J., Shepard, D. R., Wang, D., Weiss, J., Johnson, M. L., … Powell, S. F. (2019). A phase Ib study of utomilumab (PF-05082566) in combination with mogamulizumab in patients with advanced solid tumors. Journal for Immunotherapy of Cancer, 7(1). https://doi.org/10.1186/S40425-019-0815-6
Asmamaw Dejenie, T., Tiruneh G/Medhin, M., Dessie Terefe, G., Tadele Admasu, F., Wale Tesega, W., & Chekol Abebe, E. (2022). Current updates on generations, approvals, and clinical trials of CAR T-cell therapy. Human Vaccines and Immunotherapeutics, 18(6). https://doi.org/10.1080/21645515.2022.2114254
Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y., & Sakaguchi, S. (2002). Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nature Immunology, 3(2), 135–142. https://doi.org/10.1038/NI759
doi: 10.1038/NI759
pubmed: 11812990
Ronchetti, S., Nocentini, G., Bianchini, R., Krausz, L. T., Migliorati, G., & Riccardi, C. (2007). Glucocorticoid-induced TNFR-related protein lowers the threshold of CD28 costimulation in CD8+ T Cells. The Journal of Immunology, 179(9), 5916–5926. https://doi.org/10.4049/jimmunol.179.9.5916
doi: 10.4049/jimmunol.179.9.5916
pubmed: 17947665
Buzzatti, G., Dellepiane, C., & Del Mastro, L. (2020). New emerging targets in cancer immunotherapy: The role of GITR. ESMO Open, 4(Suppl 3), e000738. https://doi.org/10.1136/ESMOOPEN-2020-000738
doi: 10.1136/ESMOOPEN-2020-000738
pubmed: 32817129
pmcid: 7451269
Riccardi, C., Ronchetti, S., & Nocentini, G. (2018). Glucocorticoid-induced TNFR-related gene (GITR) as a therapeutic target for immunotherapy. Expert Opinion on Therapeutic Targets, 22(9), 783–797. https://doi.org/10.1080/14728222.2018.1512588
doi: 10.1080/14728222.2018.1512588
pubmed: 30107134
Knee, D. A., Hewes, B., & Brogdon, J. L. (2016). Rationale for anti-GITR cancer immunotherapy. European Journal Of Cancer (Oxford, England : 1990), 67, 1–10. https://doi.org/10.1016/J.EJCA.2016.06.028
doi: 10.1016/J.EJCA.2016.06.028
pubmed: 27591414
Coe, D., Begom, S., Addey, C., White, M., Dyson, J., & Chai, J. G. (2010). Depletion of regulatory T cells by anti-GITR mAb as a novel mechanism for cancer immunotherapy. Cancer Immunology, Immunotherapy : CII, 59(9), 1367–1377. https://doi.org/10.1007/S00262-010-0866-5
doi: 10.1007/S00262-010-0866-5
pubmed: 20480365
pmcid: 11030908
Kim, Y. H., Shin, S. M., Choi, B. K., Oh, H. S., Kim, C. H., Lee, S. J., … Kwon, B. S. (2015). Authentic GITR signaling fails to induce tumor regression unless Foxp3+ regulatory T cells are depleted. The Journal of Immunology, 195(10), 4721–4729. https://doi.org/10.4049/jimmunol.1403076
Mitsui, J., Nishikawa, H., Muraoka, D., Wang, L., Noguchi, T., Sato, E., … Shiku, H. (2010). Two distinct mechanisms of augmented antitumor activity by modulation of immunostimulatory/inhibitory signals. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 16(10), 2781–2791. https://doi.org/10.1158/1078-0432.CCR-09-3243
Villarreal, D. O., Chin, D., Smith, M. A., Luistro, L. L., & Snyder, L. A. (2017). Combination GITR targeting/PD-1 blockade with vaccination drives robust antigen-specific antitumor immunity. Oncotarget, 8(24), 39117–39130. https://doi.org/10.18632/ONCOTARGET.16605
doi: 10.18632/ONCOTARGET.16605
pubmed: 28388572
pmcid: 5503599
Leyland, R., Watkins, A., Mulgrew, K. A., Holoweckyj, N., Bamber, L., Tigue, N. J., … Stewart, R. (2017). A novel murine GITR ligand fusion protein induces antitumor activity as a monotherapy that is further enhanced in combination with an OX40 agonist. Clinical Cancer Research, 23(13), 3416–3427. https://doi.org/10.1158/1078-0432.CCR-16-2000
Tran, B., Carvajal, R. D., Marabelle, A., Patel, S. P., Lorusso, P. M., Rasmussen, E., … Schöffski, P. (2018). Dose escalation results from a first-in-human, phase 1 study of glucocorticoid-induced TNF receptor-related protein agonist AMG 228 in patients with advanced solid tumors. Journal for ImmunoTherapy of Cancer, 6(1). https://doi.org/10.1186/S40425-018-0407-X
Heinhuis, K. M., Carlino, M., Joerger, M., Di Nicola, M., Meniawy, T., Rottey, S., … Siu, L. L. (2020). Safety, tolerability, and potential clinical activity of a glucocorticoid-induced TNF receptor-related protein agonist alone or in combination with nivolumab for patients with advanced solid tumors: A phase 1/2a dose-escalation and cohort-expansion clinical trial. JAMA Oncology, 6(1), 100–107. https://doi.org/10.1001/JAMAONCOL.2019.3848
Piha-Paul, S. A., Geva, R., Tan, T. J., Lim, D. W. T., Hierro, C., Doi, T., … Bedard, P. L. (2021). First-in-human phase I/Ib open-label dose-escalation study of GWN323 (anti-GITR) as a single agent and in combination with spartalizumab (anti-PD-1) in patients with advanced solid tumors and lymphomas. Journal for Immunotherapy Of Cancer, 9(8). https://doi.org/10.1136/JITC-2021-002863
Davar, D., & Zappasodi, R. (2023). Targeting GITR in cancer immunotherapy–There is no perfect knowledge. Oncotarget, 14(1), 614–621. https://doi.org/10.18632/ONCOTARGET.28461
doi: 10.18632/ONCOTARGET.28461
pubmed: 37335294
pmcid: 10278658
Balmanoukian, A. S., Infante, J. R., Aljumaily, R., Naing, A., Chintakuntlawar, A. V., Rizvi, N. A., … Denlinger, C. S. (2020). Safety and clinical activity of MEDI1873, a novel GITR agonist, in advanced solid tumors. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 26(23), 6196–6203. https://doi.org/10.1158/1078-0432.CCR-20-0452
Montgomery, R. I., Warner, M. S., Lum, B. J., & Spear, P. G. (1996). Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell, 87(3), 427–436. https://doi.org/10.1016/S0092-8674(00)81363-X
doi: 10.1016/S0092-8674(00)81363-X
pubmed: 8898196
Cheung, T. C., & Ware, C. F. (2011). The canonical and unconventional ligands of the herpesvirus entry mediator. Advances in Experimental Medicine and Biology, 691, 353. https://doi.org/10.1007/978-1-4419-6612-4_36
doi: 10.1007/978-1-4419-6612-4_36
pubmed: 21153339
pmcid: 3492955
Jones, A., Bourque, J., Kuehm, L., Opejin, A., Teague, R. M., Gross, C., & Hawiger, D. (2016). Immunomodulatory functions of BTLA and HVEM govern induction of extrathymic regulatory T cells and tolerance by dendritic cells. Immunity, 45(5), 1066–1077. https://doi.org/10.1016/J.IMMUNI.2016.10.008
doi: 10.1016/J.IMMUNI.2016.10.008
pubmed: 27793593
pmcid: 5112132
Mohamed, A. H., Obeid, R. A., Fadhil, A. A., Amir, A. A., Adhab, Z. H., Jabouri, E. A., … Alshahrani, M. Y. (2023). BTLA and HVEM: Emerging players in the tumor microenvironment and cancer progression. Cytokine, 172, 156412. https://doi.org/10.1016/J.CYTO.2023.156412
Pasero, C., Speiser, D. E., Derré, L., & Olive, D. (2012). The HVEM network: New directions in targeting novel costimulatory/co-inhibitory molecules for cancer therapy. Current Opinion in Pharmacology, 12(4), 478–485. https://doi.org/10.1016/J.COPH.2012.03.001
doi: 10.1016/J.COPH.2012.03.001
pubmed: 22445654
Cheung, K. J. J., Johnson, N. A., Affleck, J. G., Severson, T., Steidl, C., Ben-Neriah, S., … Horsman, D. E. (2010). Acquired TNFRSF14 mutations in follicular lymphoma are associated with worse prognosis. Cancer Research, 70(22), 9166–9174. https://doi.org/10.1158/0008-5472.CAN-10-2460
Gubernatorova, E. O., Polinova, A. I., Petropavlovskiy, M. M., Namakanova, O. A., Medvedovskaya, A. D., Zvartsev, R. V., … Nedospasov, S. A. (2021). Dual role of TNF and LTα in carcinogenesis as implicated by studies in mice. Cancers, 13(8). https://doi.org/10.3390/CANCERS13081775
Skeate, J. G., Otsmaa, M. E., Prins, R., Fernandez, D. J., Da Silva, D. M., & Kast, W. M. (2020). TNFSF14: LIGHTing the way for effective cancer immunotherapy. Frontiers in Immunology, 11, 537705. https://doi.org/10.3389/FIMMU.2020.00922/BIBTEX
doi: 10.3389/FIMMU.2020.00922/BIBTEX
Mauri, D. N., Ebner, R., Montgomery, R. I., Kochel, K. D., Cheung, T. C., Yu, G. L., … Ware, C. F. (1998). LIGHT, a new member of the TNF superfamily, and lymphotoxin alpha are ligands for herpesvirus entry mediator. Immunity, 8(1), 21–30. https://doi.org/10.1016/S1074-7613(00)80455-0
Holmes, T. D., Wilson, E. B., Black, E. V. I., Benest, A. V., Vaz, C., Tan, B., … Cook, G. P. (2014). Licensed human natural killer cells aid dendritic cell maturation via TNFSF14/LIGHT. Proceedings of the National Academy of Sciences of the United States of America, 111(52), E5688–E5696. https://doi.org/10.1073/PNAS.1411072112
Yu, P., Lee, Y., Wang, Y., Liu, X., Auh, S., Gajewski, T. F., … Fu, Y.-X. (2007). Targeting the primary tumor to generate CTL for the effective eradication of spontaneous metastases. Journal of Immunology (Baltimore, Md. : 1950), 179(3), 1960–1968. https://doi.org/10.4049/JIMMUNOL.179.3.1960
Jazowiecka-Rakus, J., Hadrys, A., Rahman, M. M., McFadden, G., Fidyk, W., Chmielik, E., … Sochanik, A. (2021). Myxoma virus expressing LIGHT (TNFSF14) pre-loaded into adipose-derived mesenchymal stem cells is effective treatment for murine pancreatic adenocarcinoma. Cancers, 13(6), 1–23. https://doi.org/10.3390/CANCERS13061394
Christie, J. D., Appel, N., Zhang, L., Lowe, K., Kilbourne, J., Daggett-Vondras, J., … McFadden, G. (2022). Systemic delivery of mLIGHT-armed myxoma virus is therapeutic for later-stage syngeneic murine lung metastatic osteosarcoma. Cancers, 14(2). https://doi.org/10.3390/CANCERS14020337
Tang, H., Wang, Y., Chlewicki, L. K., Zhang, Y., Guo, J., Liang, W., … Fu, Y. X. (2016). Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer Cell, 29(3), 285–296. https://doi.org/10.1016/J.CCELL.2016.02.004
Lasaro, M. O., Sazanovich, M., Giles-Davis, W., Mrass, P., Bunte, R. M., Sewell, D. A., … Ertl, H. C. J. (2011). Active immunotherapy combined with blockade of a coinhibitory pathway achieves regression of large tumor masses in cancer-prone mice. Molecular Therapy, 19(9), 1727–1736. https://doi.org/10.1038/MT.2011.88
Sordo-Bahamonde, C., Lorenzo-Herrero, S., Gonzalez-Rodriguez, A. P., Payer, Á. R., González-García, E., López-Soto, A., & Gonzalez, S. (2021). Btla/hvem axis induces nk cell immunosuppression and poor outcome in chronic lymphocytic leukemia. Cancers, 13(8), 1766. https://doi.org/10.3390/CANCERS13081766/S1
doi: 10.3390/CANCERS13081766/S1
pubmed: 33917094
pmcid: 8067870
Schilder, R. J., Powderly, J. D., Park, H., Bilen, M. A., McKean, M., May, R., … Naing, A. (2022). Phase Ia dose-escalation study of the anti-BTLA antibody icatolimab as a monotherapy in patients with advanced solid tumor, 40(16_suppl), 2643–2643. https://doi.org/10.1200/JCO.2022.40.16_SUPPL.2643
Cheng, Y., Wang, J., Yu, Y., Wang, Q., Yang, R., Lv, D., … Wang, W. (2023). Phase I/II combination study of tifcemalimab with toripalimab in patients with refractory extensive stage small cell lung cancer (ES-SCLC), 41(16_suppl), 8579–8579. https://doi.org/10.1200/JCO.2023.41.16_SUPPL.8579
Ma, J., Song, Y., Xie, Y., Zhang, H.-L., Shuang, Y., Peng, Z., … Zhu, J. (2022). Phase I study of the anti-Btla antibody tifcemalimab as a single agent or in combination with toripalimab in relapsed/refractory lymphomas. Blood, 140(Supplement 1), 3716–3717. https://doi.org/10.1182/BLOOD-2022-157497
Berdeja, J. G., Madduri, D., Usmani, S. Z., Jakubowiak, A., Agha, M., Cohen, A. D., … Jagannath, S. (2021). Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): A phase 1b/2 open-label study. Lancet (London, England), 398(10297), 314–324. https://doi.org/10.1016/S0140-6736(21)00933-8
Hu, S., Wang, R., Zhang, M., Liu, K., Tao, J., Tai, Y., … Wei, W. (2019). BAFF promotes T cell activation through the BAFF-BAFF-R-PI3K-Akt signaling pathway. Biomedicine and Pharmacotherapy = Biomedecine and Pharmacotherapie, 114. https://doi.org/10.1016/J.BIOPHA.2019.108796
Moreaux, J., Veyrune, J. L., De Vos, J., & Klein, B. (2009). APRIL is overexpressed in cancer: Link with tumor progression. BMC Cancer, 9, 1–9. https://doi.org/10.1186/1471-2407-9-83
doi: 10.1186/1471-2407-9-83
Nowacka, K. H., & Jabłońska, E. (2021). Role of the APRIL molecule in solid tumors. Cytokine and Growth Factor Reviews, 61, 38–44. https://doi.org/10.1016/J.CYTOGFR.2021.08.001
doi: 10.1016/J.CYTOGFR.2021.08.001
pubmed: 34446365
Mhawech-Fauceglia, P., Allal, A., Odunsi, K., Andrews, C., Herrmann, F. R., & Huard, B. (2008). Role of the tumour necrosis family ligand APRIL in solid tumour development: Retrospective studies in bladder, ovarian and head and neck carcinomas. European Journal of Cancer (Oxford, England : 1990), 44(15), 2097–2100. https://doi.org/10.1016/J.EJCA.2008.07.007
doi: 10.1016/J.EJCA.2008.07.007
pubmed: 18718755
Ullah, M. A., & Mackay, F. (2023). The BAFF-APRIL system in cancer. Cancers, 15(6), 1791. https://doi.org/10.3390/CANCERS15061791
doi: 10.3390/CANCERS15061791
pubmed: 36980677
pmcid: 10046288
Lonial, S., Lee, H. C., Badros, A., Trudel, S., Nooka, A. K., Chari, A., … Cohen, A. D. (2020). Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): A two-arm, randomised, open-label, phase 2 study. The Lancet Oncology, 21(2), 207–221. https://doi.org/10.1016/S1470-2045(19)30788-0
Munshi, N. C., Anderson, L. D., Shah, N., Madduri, D., Berdeja, J., Lonial, S., … San-Miguel, J. (2021). Idecabtagene vicleucel in relapsed and refractory multiple myeloma. The New England Journal of Medicine, 384(8), 705–716. https://doi.org/10.1056/NEJMOA2024850
Martins, F., Sofiya, L., Sykiotis, G. P., Lamine, F., Maillard, M., Fraga, M., … Obeid, M. (2019). Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance. Nature Reviews Clinical Oncology, 16(9), 563–580. https://doi.org/10.1038/S41571-019-0218-0
Schneider, B. J., Naidoo, J., Santomasso, B. D., Lacchetti, C., Adkins, S., Anadkat, M., … Bollin, K. (2021). Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO guideline update. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 39(36), 4073–4126. https://doi.org/10.1200/JCO.21.01440
Haanen, J., Obeid, M., Spain, L., Carbonnel, F., Wang, Y., Robert, C., … Larkin, J. (2022). Management of toxicities from immunotherapy: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Annals of Oncology : Official Journal of the European Society for Medical Oncology, 33(12), 1217–1238. https://doi.org/10.1016/J.ANNONC.2022.10.001
Thompson, J. A., Schneider, B. J., Brahmer, J., Andrews, S., Armand, P., Bhatia, S., … Engh, A. (2020). NCCN guidelines insights: Management of immunotherapy-related toxicities, version 1.2020. Journal of the National Comprehensive Cancer Network : JNCCN, 18(3), 231–241. https://doi.org/10.6004/JNCCN.2020.0012
Brahmer, J. R., Abu-Sbeih, H., Ascierto, P. A., Brufsky, J., Cappelli, L. C., Cortazar, F. B., … Ernstoff, M. S. (2021). Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events. Journal for Immunotherapy of Cancer, 9(6). https://doi.org/10.1136/JITC-2021-002435
Morgado, M., Plácido, A., Morgado, S., & Roque, F. (2020). Management of the adverse effects of immune checkpoint inhibitors. Vaccines, 8(4), 1–15. https://doi.org/10.3390/VACCINES8040575
doi: 10.3390/VACCINES8040575
Johnson, D. H., Zobniw, C. M., Trinh, V. A., Ma, J., Bassett, R. L., Abdel-Wahab, N., … Diab, A. (2018). Infliximab associated with faster symptom resolution compared with corticosteroids alone for the management of immune-related enterocolitis. Journal for ImmunoTherapy of Cancer, 6(1). https://doi.org/10.1186/S40425-018-0412-0
Suresh, K., Voong, K. R., Shankar, B., Forde, P. M., Ettinger, D. S., Marrone, K. A., … Naidoo, J. (2018). Pneumonitis in non-small cell lung cancer patients receiving immune checkpoint immunotherapy: Incidence and risk factors. Journal of Thoracic Oncology : Official Publication of the International Association for the Study of Lung Cancer, 13(12), 1930–1939. https://doi.org/10.1016/J.JTHO.2018.08.2035
Mukherjee, E. M., & Phillips, E. J. (2022). Where to place etanercept and combination treatment for Stevens-Johnson syndrome and toxic epidermal necrolysis? Annals of Allergy, Asthma and Immunology, 129(3), 269–270. https://doi.org/10.1016/j.anai.2022.06.025
doi: 10.1016/j.anai.2022.06.025
pubmed: 35988972
Verheijden, R. J., May, A. M., Blank, C. U., Aarts, M. J. B., Berkmortel, F. W. P. J. V. Den, Eertwegh, A. J. M. V. Den, … Suijkerbuijk, K. P. M. (2020). Association of anti-TNF with decreased survival in steroid refractory ipilimumab and anti-PD1-treated patients in the Dutch melanoma treatment registry. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 26(9), 2268–2274. https://doi.org/10.1158/1078-0432.CCR-19-3322
Wang, Y., Abu-Sbeih, H., Mao, E., Ali, N., Ali, F. S., Qiao, W., … Diab, A. (2018). Immune-checkpoint inhibitor-induced diarrhea and colitis in patients with advanced malignancies: Retrospective review at MD Anderson. Journal for ImmunoTherapy of Cancer, 6(1). https://doi.org/10.1186/S40425-018-0346-6
Chen, A. Y., Wolchok, J. D., & Bass, A. R. (2021). TNF in the era of immune checkpoint inhibitors: Friend or foe? Nature Reviews Rheumatology, 17(4), 213–223. https://doi.org/10.1038/S41584-021-00584-4
doi: 10.1038/S41584-021-00584-4
pubmed: 33686279
pmcid: 8366509
Ogusu, S., Harutani, Y., Tozuka, T., Saito, R., Koyama, J., Sakamoto, H., … Ariyasu, R. (2023). Second-line immunosuppressant administration for steroid-refractory immune-related adverse events in patients with lung cancer. Cancer Immunology, Immunotherapy. https://doi.org/10.1007/S00262-023-03528-X
Croft, M., Duan, W., Choi, H., Eun, S. Y., Madireddi, S., & Mehta, A. (2012). TNF superfamily in inflammatory disease: Translating basic insights. Trends in Immunology, 33(3), 144–152. https://doi.org/10.1016/J.IT.2011.10.004
doi: 10.1016/J.IT.2011.10.004
pubmed: 22169337
Pagnini, C., & Cominelli, F. (2021). Tumor necrosis factor’s pathway in Crohn’s disease: Potential for intervention. International Journal of Molecular Sciences, 22(19), 10273. https://doi.org/10.3390/IJMS221910273
doi: 10.3390/IJMS221910273
pubmed: 34638616
pmcid: 8508644
Jang, D. I., Lee, A. H., Shin, H. Y., Song, H. R., Park, J. H., Kang, T. B., … Yang, S. H. (2021). The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. International Journal of Molecular Sciences, 22(5), 1–16. https://doi.org/10.3390/IJMS22052719
Chen, X., Wu, X., Zhou, Q., Howard, O. M. Z., Netea, M. G., & Oppenheim, J. J. (2013). TNFR2 is critical for the stabilization of the CD4+Foxp3+ regulatory T. cell phenotype in the inflammatory environment. Journal of Immunology (Baltimore, Md. : 1950), 190(3), 1076–1084. https://doi.org/10.4049/JIMMUNOL.1202659
doi: 10.4049/JIMMUNOL.1202659
pubmed: 23277487
Peyrin-Biroulet, L., Sandborn, W. J., Panaccione, R., Domènech, E., Pouillon, L., Siegmund, B., … Ghosh, S. (2021). Tumour necrosis factor inhibitors in inflammatory bowel disease: The story continues. Therapeutic Advances in Gastroenterology, 14. https://doi.org/10.1177/17562848211059954/ASSET/IMAGES/LARGE/10.1177_17562848211059954-FIG2.JPEG
Lopetuso, L. R., Cuomo, C., Mignini, I., Gasbarrini, A., & Papa, A. (2023). Focus on anti-tumour necrosis factor (TNF)-α-related autoimmune diseases. International Journal of Molecular Sciences, 24(9), 8187. https://doi.org/10.3390/IJMS24098187
doi: 10.3390/IJMS24098187
pubmed: 37175894
pmcid: 10179362
LaMattina, K. C., & Goldstein, D. A. (2017). Adalimumab for the treatment of uveitis. Expert Review of Clinical Immunology, 13(3), 181–188. https://doi.org/10.1080/1744666X.2017.1288097
doi: 10.1080/1744666X.2017.1288097
pubmed: 28140700
Ghilardi, N., Pappu, R., Arron, J. R., & Chan, A. C. (2020). 30 Years of biotherapeutics development-What have we learned? Annual Review of Immunology, 38, 249–287. https://doi.org/10.1146/ANNUREV-IMMUNOL-101619-031510
doi: 10.1146/ANNUREV-IMMUNOL-101619-031510
pubmed: 32340579
Ward-Kavanagh, L. K., Lin, W. W., Šedý, J. R., & Ware, C. F. (2016). The TNF receptor superfamily in co-stimulating and co-inhibitory responses. Immunity, 44(5), 1005–1019. https://doi.org/10.1016/J.IMMUNI.2016.04.019
doi: 10.1016/J.IMMUNI.2016.04.019
pubmed: 27192566
pmcid: 4882112
Croft, M., Benedict, C. A., & Ware, C. F. (2013). Clinical targeting of the TNF and TNFR superfamilies. Nature Reviews Drug Discovery, 12(2), 147. https://doi.org/10.1038/NRD3930
doi: 10.1038/NRD3930
pubmed: 23334208
pmcid: 3625401
Stohl, W., & Hilbert, D. M. (2012). The discovery and development of belimumab: The anti-BLyS–lupus connection. Nature Biotechnology, 30(1), 69. https://doi.org/10.1038/NBT.2076
doi: 10.1038/NBT.2076
pubmed: 22231104
pmcid: 3264947
Liossis, S. N. C., & Sfikakis, P. P. (2004). Costimulation blockade in the treatment of rheumatic diseases. BioDrugs, 18(2), 95–102. https://doi.org/10.2165/00063030-200418020-00003/METRICS
doi: 10.2165/00063030-200418020-00003/METRICS
pubmed: 15046525
Tian, J., Zhang, B., Rui, K., & Wang, S. (2020). The role of GITR/GITRL interaction in autoimmune diseases. Frontiers in Immunology, 11, 588682. https://doi.org/10.3389/FIMMU.2020.588682/BIBTEX
doi: 10.3389/FIMMU.2020.588682/BIBTEX
pubmed: 33163004
pmcid: 7581784
Salek-Ardakani, S., Zajonc, D. M., & Croft, M. (2023). Agonism of 4–1BB for immune therapy: A perspective on possibilities and complications. Frontiers in Immunology, 14, 1228486. https://doi.org/10.3389/FIMMU.2023.1228486/BIBTEX
doi: 10.3389/FIMMU.2023.1228486/BIBTEX
pubmed: 37662949
pmcid: 10469789
Lee, J., Lee, E. N., Kim, E. Y., Park, H. J., Chang, C. Y., Jung, D. Y., … Kim, S. J. (2005). Administration of agonistic anti-4–1BB monoclonal antibody leads to the amelioration of inflammatory bowel disease. Immunology Letters, 101(2), 210–216. https://doi.org/10.1016/J.IMLET.2005.06.001
Harris, J., & Keane, J. (2010). How tumour necrosis factor blockers interfere with tuberculosis immunity. Clinical and Experimental Immunology, 161(1), 1. https://doi.org/10.1111/J.1365-2249.2010.04146.X
doi: 10.1111/J.1365-2249.2010.04146.X
pubmed: 20491796
pmcid: 2940142
Strangfeld, A., Listing, J., Herzer, P., Liebhaber, A., Rockwitz, K., Richter, C., & Zink, A. (2009). Risk of herpes zoster in patients with rheumatoid arthritis treated with anti–TNF-α agents. JAMA, 301(7), 737–744. https://doi.org/10.1001/JAMA.2009.146
doi: 10.1001/JAMA.2009.146
pubmed: 19224750
Mohd Zawawi, Z., Kalyanasundram, J., Mohd Zain, R., Thayan, R., Basri, D. F., & Yap, W. B. (2023). Prospective roles of tumor necrosis factor-alpha (TNF-α) in COVID-19: Prognosis, therapeutic and management. International Journal of Molecular Sciences, 24(7), 6142. https://doi.org/10.3390/IJMS24076142
doi: 10.3390/IJMS24076142
pubmed: 37047115
pmcid: 10094668
Wang, X., & Lin, Y. (2008). Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacologica Sinica, 29(11), 1275. https://doi.org/10.1111/J.1745-7254.2008.00889.X
doi: 10.1111/J.1745-7254.2008.00889.X
pubmed: 18954521
Ababneh, O. E., Kato, S., Nishizaki, D., Miyashita, H., Lee, S., Nesline, M., … Kurzrock, R. (2024). Abstract 6393: The predictive role of TNF-related genes in patients receiving immune checkpoint inhibitors. Cancer Research, 84(6_Supplement), 6393–6393. https://doi.org/10.1158/1538-7445.AM2024-6393
Kato, S., Kim, K. H., Lim, H. J., Boichard, A., Nikanjam, M., Weihe, E., … Kurzrock, R. (2020). Real-world data from a molecular tumor board demonstrates improved outcomes with a precision N-of-One strategy. Nature Communications, 11(1). https://doi.org/10.1038/S41467-020-18613-3
Nikanjam, M., Kato, S., Sicklick, J. K., & Kurzrock, R. (2023). At the right dose: Personalised (N-of-1) dosing for precision oncology. European Journal of Cancer, 194, 113359. https://doi.org/10.1016/j.ejca.2023.113359
doi: 10.1016/j.ejca.2023.113359
pubmed: 37832506
Sicklick, J. K., Kato, S., Okamura, R., Schwaederle, M., Hahn, M. E., Williams, C. B., … Kurzrock, R. (2019). Molecular profiling of cancer patients enables personalized combination therapy: The I-PREDICT study. Nature Medicine, 25(5), 744–750. https://doi.org/10.1038/S41591-019-0407-5
Rodon, J., Soria, J. C., Berger, R., Miller, W. H., Rubin, E., Kugel, A., … Kurzrock, R. (2019). Genomic and transcriptomic profiling expands precision cancer medicine: The WINTHER trial. Nature Medicine 2019 25:5, 25(5), 751–758. https://doi.org/10.1038/s41591-019-0424-4
Sicklick, J. K., Kato, S., Okamura, R., Patel, H., Nikanjam, M., Fanta, P. T., … Kurzrock, R. (2021). Molecular profiling of advanced malignancies guides first-line N-of-1 treatments in the I-PREDICT treatment-naïve study. Genome Medicine, 13(1), 1–14. https://doi.org/10.1186/S13073-021-00969-W/FIGURES/3
Herman, J. M., Wild, A. T., Wang, H., Tran, P. T., Chang, K. J., Taylor, G. E., … Laheru, D. A. (2013). Randomized phase III multi-institutional study of TNFerade biologic with fluorouracil and radiotherapy for locally advanced pancreatic cancer: Final results. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 31(7), 886–894. https://doi.org/10.1200/JCO.2012.44.7516