Targeting a key protein-protein interaction surface on mitogen-activated protein kinases by a precision-guided warhead scaffold.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
04 Oct 2024
Historique:
received: 22 08 2023
accepted: 22 08 2024
medline: 5 10 2024
pubmed: 5 10 2024
entrez: 4 10 2024
Statut: epublish

Résumé

For mitogen-activated protein kinases (MAPKs) a shallow surface-distinct from the substrate binding pocket-called the D(ocking)-groove governs partner protein binding. Screening of broad range of Michael acceptor compounds identified a double-activated, sterically crowded cyclohexenone moiety as a promising scaffold. We show that compounds bearing this structurally complex chiral warhead are able to target the conserved MAPK D-groove cysteine via reversible covalent modification and interfere with the protein-protein interactions of MAPKs. The electronic and steric properties of the Michael acceptor can be tailored via different substitution patterns. The inversion of the chiral center of the warhead can reroute chemical bond formation with the targeted cysteine towards the neighboring, but less nucleophilic histidine. Compounds bind to the shallow MAPK D-groove with low micromolar affinity in vitro and perturb MAPK signaling networks in the cell. This class of chiral, cyclic and enhanced 3D shaped Michael acceptor scaffolds offers an alternative to conventional ATP-competitive drugs modulating MAPK signaling pathways.

Identifiants

pubmed: 39366929
doi: 10.1038/s41467-024-52574-1
pii: 10.1038/s41467-024-52574-1
doi:

Substances chimiques

Mitogen-Activated Protein Kinases EC 2.7.11.24
Protein Kinase Inhibitors 0
Cysteine K848JZ4886

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8607

Informations de copyright

© 2024. The Author(s).

Références

Gehringer, M. & Laufer, S. A. Emerging and re-emerging warheads for targeted covalent inhibitors: applications in medicinal chemistry and chemical biology. J. Medicinal Chem. 62, 5673–5724 (2019).
doi: 10.1021/acs.jmedchem.8b01153
Liu, Q. et al. Developing irreversible inhibitors of the protein kinase cysteinome. Chem. Biol. 20, 146–159 (2013).
pubmed: 23438744 pmcid: 3583020 doi: 10.1016/j.chembiol.2012.12.006
Miller, R. M. & Taunton, J. Targeting protein kinases with selective and semipromiscuous covalent inhibitors. Methods Enzymol. 548, 93–116 (2014).
pubmed: 25399643 pmcid: 4265651 doi: 10.1016/B978-0-12-397918-6.00004-5
Zhao, Z., Liu, Q., Bliven, S., Xie, L. & Bourne, P. E. Determining cysteines available for covalent inhibition across the human kinome. J. Med. Chem. 60, 2879–2889 (2017).
pubmed: 28326775 pmcid: 5493210 doi: 10.1021/acs.jmedchem.6b01815
Chaikuad, A., Koch, P., Laufer, S. A. & Knapp, S. The cysteinome of protein kinases as a target in drug development. Angew. Chem. - Int. Ed. 57, 4372–4385 (2018).
doi: 10.1002/anie.201707875
Jackson, P. A., Widen, J. C., Harki, D. A. & Brummond, K. M. Covalent modifiers: a chemical perspective on the reactivity of α,β-unsaturated carbonyls with thiols via hetero-Michael addition reactions. J. Med. Chem. 60, 839–885 (2017).
pubmed: 27996267 doi: 10.1021/acs.jmedchem.6b00788
Resnick, E. et al. Rapid covalent-probe discovery by electrophile-fragment screening. J. Am. Chem. Soc. 141, 8951–8968 (2019).
pubmed: 31060360 pmcid: 6556873 doi: 10.1021/jacs.9b02822
Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 534, 570–574 (2016).
pubmed: 27309814 pmcid: 4919207 doi: 10.1038/nature18002
Grossman, E. A. et al. Covalent ligand discovery against druggable hotspots targeted by anti-cancer natural products. Cell Chem. Biol. 24, 1368–1376.e4 (2017).
pubmed: 28919038 pmcid: 5693770 doi: 10.1016/j.chembiol.2017.08.013
Berdan, C. A. et al. Parthenolide covalently targets and inhibits focal adhesion kinase in breast cancer cells. Cell Chem. Biol. 26, 1027–1035.e22 (2019).
pubmed: 31080076 pmcid: 6756182 doi: 10.1016/j.chembiol.2019.03.016
Krishnan, S. et al. Design of reversible, cysteine-targeted michael acceptors guided by kinetic and computational analysis. J. Am. Chem. Soc. 136, 12624–12630 (2014).
pubmed: 25153195 pmcid: 4160273 doi: 10.1021/ja505194w
Lavoie, H., Gagnon, J. & Therrien, M. ERK signalling: a master regulator of cell behaviour, life and fate. Nat. Rev. Mol. Cell Biol. 21, 607–632 (2020).
pubmed: 32576977 doi: 10.1038/s41580-020-0255-7
Canovas, B. & Nebreda, A. R. Diversity and versatility of p38 kinase signalling in health and disease. Nat. Rev. Mol. Cell Biol. 22, 346–366 (2021).
pubmed: 33504982 pmcid: 7838852 doi: 10.1038/s41580-020-00322-w
Zeke, A., Misheva, M., Reményi, A. & Bogoyevitch, M. A. JNK signaling: Regulation and functions based on complex protein-protein partnerships. Microbiol. Mol. Biol. Rev. 80, 793–835 (2016).
pubmed: 27466283 pmcid: 4981676 doi: 10.1128/MMBR.00043-14
Smalley, I. & Smalley, K. S. M. ERK inhibition: a new front in the war against MAPK pathway-driven cancers? Cancer Discov. 8, 140–142 (2018).
pubmed: 29431672 doi: 10.1158/2159-8290.CD-17-1355
Tanoue, T., Maeda, R., Adachi, M. & Nishida, E. Identification of a docking groove on ERK and p38 MAP kinases that regulates the specificity of docking interactions. EMBO J. 20, 466–479 (2001).
pubmed: 11157753 pmcid: 133461 doi: 10.1093/emboj/20.3.466
Chang, C. I., Xu, B. E., Akella, R., Cobb, M. H. & Goldsmith, E. J. Crystal structures of MAP kinase p38 complexed to the docking sites on its nuclear substrate MEF2A and activator MKK3b. Mol. Cell 9, 1241–1249 (2002).
pubmed: 12086621 doi: 10.1016/S1097-2765(02)00525-7
Sammons, R. M., Ghose, R., Tsai, K. Y. & Dalby, K. N. Targeting ERK beyond the boundaries of the kinase active site in melanoma. Mol. Carcinog. 58, 1551–1570 (2019).
pubmed: 31190430 pmcid: 7107758 doi: 10.1002/mc.23047
Zeke, A. et al. Systematic discovery of linear binding motifs targeting an ancient protein interaction surface on MAP kinases. Mol. Syst. Biol. 11, 837 (2015).
pubmed: 26538579 pmcid: 4670726 doi: 10.15252/msb.20156269
Garai, A. et al. Specificity of linear motifs that bind to a common mitogen-activated protein kinase docking groove. Sci. Signal. 5, ra74 (2012).
pubmed: 23047924 pmcid: 3500698 doi: 10.1126/scisignal.2003004
Zhang, T. et al. Discovery of potent and selective covalent inhibitors of JNK. Chem. Biol. 19, 140–154 (2012).
pubmed: 22284361 pmcid: 3270411 doi: 10.1016/j.chembiol.2011.11.010
Ding, Y. et al. Discovery and development of natural product oridonin-inspired anticancer agents. Eur. J. Med. Chem. 122, 102–117 (2016).
pubmed: 27344488 pmcid: 5003635 doi: 10.1016/j.ejmech.2016.06.015
Gersch, M., Kreuzer, J. & Sieber, S. A. Electrophilic natural products and their biological targets. Nat. Prod. Rep. 29, 659–682 (2012).
pubmed: 22504336 doi: 10.1039/c2np20012k
Berkes, B. et al. Expedient and diastereodivergent assembly of terpenoid decalin subunits having quaternary stereocenters through organocatalytic Robinson annulation of nazarov reagent. Chemistry 22, 18101–18106 (2016).
pubmed: 27798820 doi: 10.1002/chem.201604541
Martin, G., Angyal, P., Egyed, O., Varga, S. & Soós, T. Total syntheses of dihydroindole aspidosperma alkaloids: reductive interrupted fischer indolization followed by redox diversification. Org. Lett. 22, 4675–4679 (2020).
pubmed: 32497431 pmcid: 7467818 doi: 10.1021/acs.orglett.0c01472
Kumar, G. S. et al. Dynamic activation and regulation of the mitogen-activated protein kinase p38. Proc. Natl Acad. Sci. Usa. 115, 4655–4660 (2018).
pubmed: 29666261 pmcid: 5939092 doi: 10.1073/pnas.1721441115
Póti, Á. L. et al. Phosphorylation-assisted luciferase complementation assay designed to monitor kinase activity and kinase-domain-mediated protein-protein binding. Int. J. Mol. Sci. 24, 14854 (2023).
pubmed: 37834301 pmcid: 10573712 doi: 10.3390/ijms241914854
Tanoue, T., Adachi, M., Moriguchi, T. & Nishida, E. A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat. Cell Biol. 2, 110–116 (2000).
pubmed: 10655591 doi: 10.1038/35000065
Dixon, A. S. et al. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11, 400–408 (2016).
pubmed: 26569370 doi: 10.1021/acschembio.5b00753
Whitmarsh, A. J. & Davis, R. J. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J. Mol. Med. (Berl.). 74, 589–607 (1996).
pubmed: 8912180 doi: 10.1007/s001090050063
Bálint, D. et al. Reversible covalent c-Jun N-terminal kinase (JNK) inhibitors targeting a specific cysteine by precision-guided Michael-acceptor warheads. Nat. Commun. https://doi.org/10.1038/s41467-024-52573-2 .
Cohen, M. S., Zhang, C., Shokat, K. M. & Taunton, J. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science 308, 1318–1321 (2005).
pubmed: 15919995 pmcid: 3641834 doi: 10.1126/science1108367
Rastelli, G., Rosenfeld, R., Reid, R. & Santi, D. V. Molecular modeling and crystal structure of ERK2-hypothemycin complexes. J. Struct. Biol. 164, 18–23 (2008).
pubmed: 18571434 doi: 10.1016/j.jsb.2008.05.002
Kwiatkowski, N. et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 511, 616–620 (2014).
pubmed: 25043025 pmcid: 4244910 doi: 10.1038/nature13393
Hancock, C. N. et al. Identification of novel extracellular signal-regulated kinase docking domain inhibitors. J. Med. Chem. 48, 4586–4595 (2005).
pubmed: 15999996 doi: 10.1021/jm0501174
Stebbins, J. L. et al. Identification of a new JNK inhibitor targeting the JNK-JIP interaction site. Proc. Natl Acad. Sci. Usa. 105, 16809–16813 (2008).
pubmed: 18922779 pmcid: 2567907 doi: 10.1073/pnas.0805677105
Miller, C. J., Muftuoglu, Y. & Turk, B. E. A high throughput assay to identify substrate-selective inhibitors of the ERK protein kinases. Biochem. Pharmacol. 142, 39–45 (2017).
pubmed: 28647489 pmcid: 5678991 doi: 10.1016/j.bcp.2017.06.127
Sammons, R. M. et al. A novel class of common docking domain inhibitors that prevent ERK2 activation and substrate phosphorylation. ACS Chem. Biol. 14, 1183–1194 (2019).
pubmed: 31058487 pmcid: 7105935 doi: 10.1021/acschembio.9b00093
Kaoud, T. S. et al. Modulating multi-functional ERK complexes by covalent targeting of a recruitment site in vivo. Nat. Commun. 10, 5232 (2019).
Singh, J., Petter, R. C., Baillie, T. A. & Whitty, A. The resurgence of covalent drugs. Nat. Rev. Drug Discov. 10, 307–317 (2011).
pubmed: 21455239 doi: 10.1038/nrd3410
Boike, L., Henning, N. J. & Nomura, D. K. Advances in covalent drug discovery. Nat. Rev. Drug Discov. 21, 881–898 (2022).
pubmed: 36008483 pmcid: 9403961 doi: 10.1038/s41573-022-00542-z
Bradshaw, J. M. et al. Prolonged and tunable residence time using reversible covalent kinase inhibitors. Nat. Chem. Biol. 11, 525–531 (2015).
pubmed: 26006010 pmcid: 4472506 doi: 10.1038/nchembio.1817
Meister, A. Glutathione metabolism and its selective modification. J. Biol. Chem. 263, 17205–17208 (1988).
pubmed: 3053703 doi: 10.1016/S0021-9258(19)77815-6
Jakob, C. G. et al. Novel modes of inhibition of wild-type isocitrate dehydrogenase 1 (IDH1): direct covalent modification of His315. J. Med. Chem. 61, 6647–6657 (2018).
pubmed: 30004704 doi: 10.1021/acs.jmedchem.8b00305
Joshi, P. N. & Rai, V. Single-site labeling of histidine in proteins, on-demand reversibility, and traceless metal-free protein purification. Chem. Commun. (Camb.). 55, 1100–1103 (2019).
pubmed: 30620346 doi: 10.1039/C8CC08733D
Wang, Z. X. An exact mathematical expression for describing competitive binding of two different ligands to a protein molecule. FEBS Lett. 360, 111–114 (1995).
pubmed: 7875313 doi: 10.1016/0014-5793(95)00062-E
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
pubmed: 19461840 pmcid: 2483472 doi: 10.1107/S0021889807021206
Adams, P. D. et al. PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D. Biol. Crystallogr. 66, 213–221 (2010).
doi: 10.1107/S0907444909052925
Lebedev, A. A. et al. JLigand: a graphical tool for the CCP4 template-restraint library. Acta Crystallogr. D. Biol. Crystallogr. 68, 431–440 (2012).
pubmed: 22505263 pmcid: 3322602 doi: 10.1107/S090744491200251X
Bianco, G., Forli, S., Goodsell, D. S. & Olson, A. J. Covalent docking using autodock: two-point attractor and flexible side chain methods. Protein Sci. 25, 295–301 (2016).
pubmed: 26103917 doi: 10.1002/pro.2733

Auteurs

Ádám Levente Póti (ÁL)

Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary.
Doctoral School of Biology, Eötvös Loránd University, Budapest, Hungary.

Dániel Bálint (D)

Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary.
Hevesy György PhD School of Chemistry, Eötvös Loránd University, Budapest, Hungary.

Anita Alexa (A)

Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary.

Péter Sok (P)

Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary.

Kristóf Ozsváth (K)

Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary.

Krisztián Albert (K)

Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary.

Gábor Turczel (G)

NMR Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, Budapest, Hungary.

Sarolt Magyari (S)

Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary.

Orsolya Ember (O)

Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary.

Kinga Papp (K)

Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary.

Sándor Balázs Király (SB)

Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary.

Tímea Imre (T)

MS Metabolomic Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, Budapest, Hungary.

Krisztina Németh (K)

MS Metabolomic Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, Budapest, Hungary.

Tibor Kurtán (T)

Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary.

Gergő Gógl (G)

Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary.

Szilárd Varga (S)

Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary.

Tibor Soós (T)

Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary. soos.tibor@ttk.hu.

Attila Reményi (A)

Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary. remenyi.attila@ttk.hu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH