Cryo-EM investigation of ryanodine receptor type 3.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
05 Oct 2024
05 Oct 2024
Historique:
received:
30
05
2024
accepted:
27
09
2024
medline:
5
10
2024
pubmed:
5
10
2024
entrez:
4
10
2024
Statut:
epublish
Résumé
Ryanodine Receptor isoform 3 (RyR3) is a large ion channel found in the endoplasmic reticulum membrane of many different cell types. Within the hippocampal region of the brain, it is found in dendritic spines and regulates synaptic plasticity. It controls myogenic tone in arteries and is upregulated in skeletal muscle in early development. RyR3 has a unique functional profile with a very high sensitivity to activating ligands, enabling high gain in Ca
Identifiants
pubmed: 39366997
doi: 10.1038/s41467-024-52998-9
pii: 10.1038/s41467-024-52998-9
doi:
Substances chimiques
Ryanodine Receptor Calcium Release Channel
0
Calcium
SY7Q814VUP
Adenosine Triphosphate
8L70Q75FXE
Ligands
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8630Subventions
Organisme : Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
ID : PJT-159601
Informations de copyright
© 2024. The Author(s).
Références
Woll, K. A. & Van Petegem, F. Calcium-release channels: structure and function of IP(3) receptors and ryanodine receptors. Physiol. Rev. 102, 209–268 (2022).
pubmed: 34280054
doi: 10.1152/physrev.00033.2020
Hakamata, Y., Nakai, J., Takeshima, H. & Imoto, K. Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. FEBS Lett. 312, 229–235 (1992).
pubmed: 1330694
doi: 10.1016/0014-5793(92)80941-9
Lanner, J. T., Georgiou, D. K., Joshi, A. D. & Hamilton, S. L. Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb. Perspect. Biol. 2, a003996 (2010).
pubmed: 20961976
pmcid: 2964179
doi: 10.1101/cshperspect.a003996
Torres, R. & Hidalgo, C. Subcellular localization and transcriptional regulation of brain ryanodine receptors. Functional implications. Cell Calcium 116, 102821 (2023).
pubmed: 37949035
doi: 10.1016/j.ceca.2023.102821
Mori, F., Fukaya, M., Abe, H., Wakabayashi, K. & Watanabe, M. Developmental changes in expression of the three ryanodine receptor mRNAs in the mouse brain. Neurosci. Lett. 285, 57–60 (2000).
pubmed: 10788707
doi: 10.1016/S0304-3940(00)01046-6
Murayama, T. & Ogawa, Y. Properties of Ryr3 ryanodine receptor isoform in mammalian brain. J. Biol. Chem. 271, 5079–5084 (1996).
pubmed: 8617786
doi: 10.1074/jbc.271.9.5079
Hidalgo, C. & Paula-Lima, A. RyR-mediated calcium release in hippocampal health and disease. Trends Mol. Med 30, 25–36 (2024).
pubmed: 37957056
doi: 10.1016/j.molmed.2023.10.008
Vega-Vasquez, I. et al. Hippocampal dendritic spines express the RyR3 but not the RyR2 ryanodine receptor isoform. Biochem Biophys. Res Commun. 633, 96–103 (2022).
pubmed: 36344175
doi: 10.1016/j.bbrc.2022.10.024
Balschun, D. et al. Deletion of the ryanodine receptor type 3 (RyR3) impairs forms of synaptic plasticity and spatial learning. EMBO J. 18, 5264–5273 (1999).
pubmed: 10508160
pmcid: 1171597
doi: 10.1093/emboj/18.19.5264
Galeotti, N. et al. Different involvement of type 1, 2, and 3 ryanodine receptors in memory processes. Learn Mem. 15, 315–323 (2008).
pubmed: 18441289
pmcid: 2364603
doi: 10.1101/lm.929008
Matsuo, N. et al. Comprehensive behavioral phenotyping of ryanodine receptor type 3 (RyR3) knockout mice: decreased social contact duration in two social interaction tests. Front, Behav. Neurosci. 3, 3 (2009).
pubmed: 19503748
doi: 10.3389/neuro.08.003.2009
Supnet, C., Grant, J., Kong, H., Westaway, D. & Mayne, M. Amyloid-beta-(1-42) increases ryanodine receptor-3 expression and function in neurons of TgCRND8 mice. J. Biol. Chem. 281, 38440–38447 (2006).
pubmed: 17050533
doi: 10.1074/jbc.M606736200
Supnet, C., Noonan, C., Richard, K., Bradley, J. & Mayne, M. Up-regulation of the type 3 ryanodine receptor is neuroprotective in the TgCRND8 mouse model of Alzheimer’s disease. J. Neurochem. 112, 356–365 (2010).
pubmed: 19903243
doi: 10.1111/j.1471-4159.2009.06487.x
Nakamura-Maruyama, E. et al. Ryanodine receptors are involved in the improvement of depression-like behaviors through electroconvulsive shock in stressed mice. Brain Stimul. 14, 36–47 (2021).
pubmed: 33166727
doi: 10.1016/j.brs.2020.11.001
Schmidt, G. et al. A fixed 20:1 combination of cafedrine/theodrenaline increases cytosolic Ca(2+) concentration in human tracheal epithelial cells via ryanodine receptor-mediated Ca(2+) release. Sci. Rep. 13, 16216 (2023).
pubmed: 37758747
pmcid: 10533847
doi: 10.1038/s41598-023-43342-0
Tsai, S. H. et al. Knockdown of RyR3 enhances adiponectin expression through an atf3-dependent pathway. Endocrinology 154, 1117–1129 (2013).
pubmed: 23389954
doi: 10.1210/en.2012-1515
Lohn, M. et al. Regulation of calcium sparks and spontaneous transient outward currents by RyR3 in arterial vascular smooth muscle cells. Circ. Res. 89, 1051–1057 (2001).
pubmed: 11717163
doi: 10.1161/hh2301.100250
Chang, Y. C. et al. Genome-wide linkage analysis and regional fine mapping identified variants in the RYR3 gene as a novel quantitative trait locus for circulating adiponectin in Chinese population. Medicine 95, e5174 (2016).
pubmed: 27858853
pmcid: 5591101
doi: 10.1097/MD.0000000000005174
Shendre, A. et al. RYR3 gene variants in subclinical atherosclerosis among HIV-infected women in the Women’s Interagency HIV Study (WIHS). Atherosclerosis 233, 666–672 (2014).
pubmed: 24561552
pmcid: 3965606
doi: 10.1016/j.atherosclerosis.2014.01.035
Shrestha, S. et al. Replication of RYR3 gene polymorphism association with cIMT among HIV-infected whites. AIDS 26, 1571–1573 (2012).
pubmed: 22627881
doi: 10.1097/QAD.0b013e328355359f
Zhao, C. et al. Association of the RYR3 gene polymorphisms with atherosclerosis in elderly Japanese population. BMC Cardiovasc. Disord. 14, 6 (2014).
pubmed: 24423397
pmcid: 3898238
doi: 10.1186/1471-2261-14-6
Gong, S. et al. Polymorphisms within RYR3 gene are associated with risk and age at onset of hypertension, diabetes, and Alzheimer’s disease. Am. J. Hypertens. 31, 818–826 (2018).
pubmed: 29590321
doi: 10.1093/ajh/hpy046
Pergande, M. et al. The genomic and clinical landscape of fetal akinesia. Genet. Med. 22, 511–523 (2020).
pubmed: 31680123
doi: 10.1038/s41436-019-0680-1
Dettling, M., Sander, T., Weber, M. & Steinlein, O. K. Mutation analysis of the ryanodine receptor gene isoform 3 (RYR3) in recurrent neuroleptic malignant syndrome. J. Clin. Psychopharmacol. 24, 471–473 (2004).
pubmed: 15232352
doi: 10.1097/01.jcp.0000130559.93748.65
Murayama, T. et al. Further characterization of the type 3 ryanodine receptor (RyR3) purified from rabbit diaphragm. J. Biol. Chem. 274, 17297–17308 (1999).
pubmed: 10358090
doi: 10.1074/jbc.274.24.17297
Perez, C. F., Lopez, J. R. & Allen, P. D. Expression levels of RyR1 and RyR3 control resting free Ca2+ in skeletal muscle. Am. J. Physiol. Cell Physiol. 288, C640–C649 (2005).
pubmed: 15548569
doi: 10.1152/ajpcell.00407.2004
Rossi, D. et al. RyR1 and RyR3 isoforms provide distinct intracellular Ca
pubmed: 12045220
doi: 10.1242/jcs.115.12.2497
Murayama, T. & Ogawa, Y. Characterization of type 3 ryanodine receptor (RyR3) of sarcoplasmic reticulum from rabbit skeletal muscles. J. Biol. Chem. 272, 24030–24037 (1997).
pubmed: 9295356
doi: 10.1074/jbc.272.38.24030
Protasi, F. et al. RYR1 and RYR3 have different roles in the assembly of calcium release units of skeletal muscle. Biophys. J. 79, 2494–2508 (2000).
pubmed: 11053125
pmcid: 1301133
doi: 10.1016/S0006-3495(00)76491-5
Perez, C. F., Mukherjee, S. & Allen, P. D. Amino acids 1-1,680 of ryanodine receptor type 1 hold critical determinants of skeletal type for excitation-contraction coupling. Role of divergence domain D2. J. Biol. Chem. 278, 39644–39652 (2003).
pubmed: 12900411
doi: 10.1074/jbc.M305160200
Perez, C. F., Voss, A., Pessah, I. N. & Allen, P. D. RyR1/RyR3 chimeras reveal that multiple domains of RyR1 are involved in skeletal-type E-C coupling. Biophys. J. 84, 2655–2663 (2003).
pubmed: 12668474
pmcid: 1302832
doi: 10.1016/S0006-3495(03)75071-1
Yang, D. et al. RyR3 amplifies RyR1-mediated Ca(2+)-induced Ca(2+) release in neonatal mammalian skeletal muscle. J. Biol. Chem. 276, 40210–40214 (2001).
pubmed: 11500519
doi: 10.1074/jbc.M106944200
Conti, A., Gorza, L. & Sorrentino, V. Differential distribution of ryanodine receptor type 3 (RyR3) gene product in mammalian skeletal muscles. Biochem. J. 316, 19–23 (1996).
pubmed: 8645204
pmcid: 1217321
doi: 10.1042/bj3160019
Conti, A., Reggiani, C. & Sorrentino, V. Selective expression of the type 3 isoform of ryanodine receptor Ca2+ release channel (RyR3) in a subset of slow fibers in diaphragm and cephalic muscles of adult rabbits. Biochem. Biophys. Res. Commun. 337, 195–200 (2005).
pubmed: 16176801
doi: 10.1016/j.bbrc.2005.09.027
Eckhardt, J. et al. Extraocular muscle function is impaired in ryr3 (-/-) mice. J. Gen. Physiol. 151, 929–943 (2019).
pubmed: 31085573
pmcid: 6605690
doi: 10.1085/jgp.201912333
Nilipour, Y. et al. Ryanodine receptor type 3 (RYR3) as a novel gene associated with a myopathy with nemaline bodies. Eur. J. Neurol. 25, 841–847 (2018).
pubmed: 29498452
doi: 10.1111/ene.13607
Yuchi, Z., Lau, K. & Van Petegem, F. Disease mutations in the ryanodine receptor central region: crystal structures of a phosphorylation hot spot domain. Structure 20, 1201–1211 (2012).
pubmed: 22705209
doi: 10.1016/j.str.2012.04.015
Sharma, M. R., Jeyakumar, L. H., Fleischer, S. & Wagenknecht, T. Three-dimensional structure of ryanodine receptor isoform three in two conformational states as visualized by cryo-electron microscopy. J. Biol. Chem. 275, 9485–9491 (2000).
pubmed: 10734096
doi: 10.1074/jbc.275.13.9485
Liu, Z. et al. Three-dimensional reconstruction of the recombinant type 3 ryanodine receptor and localization of its amino terminus. Proc. Natl. Acad. Sci. USA 98, 6104–6109 (2001).
pubmed: 11353864
pmcid: 33429
doi: 10.1073/pnas.111382798
des Georges, A. et al. Structural basis for gating and activation of RyR1. Cell 167, 145–157.e17 (2016).
pubmed: 27662087
pmcid: 5142848
doi: 10.1016/j.cell.2016.08.075
Miotto, M. C. et al. Structural analyses of human ryanodine receptor type 2 channels reveal the mechanisms for sudden cardiac death and treatment. Sci. Adv. 8, eabo1272 (2022).
pubmed: 35857850
pmcid: 9299551
doi: 10.1126/sciadv.abo1272
Melville, Z. et al. A drug and ATP binding site in type 1 ryanodine receptor. Structure (2022).
Cholak, S. et al. Allosteric modulation of ryanodine receptor RyR1 by nucleotide derivatives. Structure (2023).
Tung, C. C., Lobo, P. A., Kimlicka, L. & Van Petegem, F. The amino-terminal disease hotspot of ryanodine receptors forms a cytoplasmic vestibule. Nature 468, 585–588 (2010).
pubmed: 21048710
doi: 10.1038/nature09471
Kimlicka, L., Lau, K., Tung, C. C. & Van Petegem, F. Disease mutations in the ryanodine receptor N-terminal region couple to a mobile intersubunit interface. Nat. Commun. 4, 1506 (2013).
pubmed: 23422674
doi: 10.1038/ncomms2501
Kimlicka, L. et al. The cardiac ryanodine receptor N-terminal region contains an anion binding site that is targeted by disease mutations. Structure 21, 1440–1449 (2013).
pubmed: 23871484
doi: 10.1016/j.str.2013.06.012
Pancaroglu, R. & Van Petegem, F. Calcium channelopathies: structural insights into disorders of the muscle excitation-contraction complex. Annu. Rev. Genet 52, 373–396 (2018).
pubmed: 30208288
doi: 10.1146/annurev-genet-120417-031311
van den Bersselaar, L. R. et al. RYR1 variant c.38T>G, p.Leu13Arg causes hypersensitivity of the ryanodine receptor-1 and is pathogenic for malignant hyperthermia. Br. J. Anaesth. 127, e63–e65 (2021).
pubmed: 34127251
doi: 10.1016/j.bja.2021.05.008
Van Petegem, F. Ryanodine receptors: structure and function. J. Biol. Chem. 287, 31624–31632 (2012).
pubmed: 22822064
pmcid: 3442496
doi: 10.1074/jbc.R112.349068
Fessenden, J. D. et al. Divergent functional properties of ryanodine receptor types 1 and 3 expressed in a myogenic cell line. Biophys. J. 79, 2509–2525 (2000).
pubmed: 11053126
pmcid: 1301134
doi: 10.1016/S0006-3495(00)76492-7
Gong, D. et al. Modulation of cardiac ryanodine receptor 2 by calmodulin. Nature 572, 347–351 (2019).
pubmed: 31278385
doi: 10.1038/s41586-019-1377-y
Ma, R. et al. Structural basis for diamide modulation of ryanodine receptor. Nat. Chem. Biol. 16, 1246–1254 (2020).
pubmed: 32807966
doi: 10.1038/s41589-020-0627-5
Haji-Ghassemi, O. et al. Cryo-EM analysis of scorpion toxin binding to ryanodine receptors reveals subconductance that is abolished by PKA phosphorylation. Sci. Adv. 9, eadf4936 (2023).
pubmed: 37224245
pmcid: 10208580
doi: 10.1126/sciadv.adf4936
Landrum, M. J. et al. ClinVar: improvements to accessing data. Nucleic Acids Res. 48, D835–D844 (2020).
pubmed: 31777943
doi: 10.1093/nar/gkz972
Khan, S. & Al Baradie, R. Epileptic encephalopathies: an overview. Epilepsy Res. Treat. 2012, 403592 (2012).
pubmed: 23213494
pmcid: 3508533
Kalser, J. & Cross, J. H. The epileptic encephalopathy jungle—from Dr West to the concepts of aetiology-related and developmental encephalopathies. Curr. Opin. Neurol. 31, 216–222 (2018).
pubmed: 29356691
doi: 10.1097/WCO.0000000000000535
Medeiros-Domingo, A. et al. The RYR2-encoded ryanodine receptor/calcium release channel in patients diagnosed previously with either catecholaminergic polymorphic ventricular tachycardia or genotype negative, exercise-induced long QT syndrome: a comprehensive open reading frame mutational analysis. J. Am. Coll. Cardiol. 54, 2065–2074 (2009).
pubmed: 19926015
pmcid: 2880864
doi: 10.1016/j.jacc.2009.08.022
Tang, Y., Tian, X., Wang, R., Fill, M. & Chen, S. R. Abnormal termination of Ca2+ release is a common defect of RyR2 mutations associated with cardiomyopathies. Circ. Res. 110, 968–977 (2012).
pubmed: 22374134
pmcid: 3345272
doi: 10.1161/CIRCRESAHA.111.256560
Yin, L. et al. Impaired binding to junctophilin-2 and nanostructural alteration in CPVT mutation. Circ. Res. 129, e35–e52 (2021).
pubmed: 34111951
pmcid: 8320243
doi: 10.1161/CIRCRESAHA.121.319094
Chi, X. et al. Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators. Proc. Natl. Acad. Sci. USA 116, 25575–25582 (2019).
pubmed: 31792195
pmcid: 6926060
doi: 10.1073/pnas.1914451116
Brillantes, A. B. et al. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77, 513–523 (1994).
pubmed: 7514503
doi: 10.1016/0092-8674(94)90214-3
Betzenhauser, M. J. & Marks, A. R. Ryanodine receptor channelopathies. Pflug. Arch. 460, 467–480 (2010).
doi: 10.1007/s00424-010-0794-4
Studier, F. W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).
pubmed: 15915565
doi: 10.1016/j.pep.2005.01.016
Schoenmakers, T. J., Visser, G. J., Flik, G. & Theuvenet, A. P. CHELATOR: an improved method for computing metal ion concentrations in physiological solutions. Biotechniques 12, 876–879 (1992). 870-4.
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473
doi: 10.1038/nmeth.4169
Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019).
pubmed: 31240256
pmcid: 6584505
doi: 10.1038/s42003-019-0437-z
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
pubmed: 32881101
doi: 10.1002/pro.3943
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844
pmcid: 8371605
doi: 10.1038/s41586-021-03819-2
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr 66, 486–501 (2010).
pubmed: 20383002
pmcid: 2852313
doi: 10.1107/S0907444910007493
Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).
pubmed: 29872004
pmcid: 6096492
doi: 10.1107/S2059798318006551
Afonine, P. V. et al. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr. D Struct. Biol. 74, 814–840 (2018).
pubmed: 30198894
pmcid: 6130467
doi: 10.1107/S2059798318009324
Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).
pubmed: 29067766
doi: 10.1002/pro.3330
Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph 14, 376 (1996). 354-60.
pubmed: 9195488
doi: 10.1016/S0263-7855(97)00009-X
Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinform. 54, 5 6 1–5 6 37 (2016).
doi: 10.1002/cpbi.3
Madeira, F. et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 50, W276–W279 (2022).
pubmed: 35412617
pmcid: 9252731
doi: 10.1093/nar/gkac240
Persson, I. Hydrated metal ions in aqueous solution: How regular are their structures? Pure Appl. Chem. 82, 1901–1917 (2010).
doi: 10.1351/PAC-CON-09-10-22