Projected changes in heatwaves over Central and South America using high-resolution regional climate simulations.
Future scenarios
Heatwave
High resolution climate projections
Latin America
Population exposure
WRF modelling
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
04 Oct 2024
04 Oct 2024
Historique:
received:
06
05
2024
accepted:
18
09
2024
medline:
5
10
2024
pubmed:
5
10
2024
entrez:
4
10
2024
Statut:
epublish
Résumé
Heatwaves (HWs) pose a severe threat to human and ecological systems. Here we assess the projected changes in heatwaves over Latin America using bias corrected high-resolution regional climate simulations under two Representative Concentration Pathway scenarios (RCPs). Heatwaves are projected to be more frequent, long-lasting, and intense in the mid-century under both RCP2.6 and RCP8.5 scenarios, with severe increases under the RCP8.5 scenario. Even under the low emissions scenario of RCP2.6, the frequency of heatwaves doubles over most of the region. A three- to tenfold rise in population exposure to heatwave days is projected over Central and South America, with climate change playing a dominant role in driving these changes. Results show that following the low emission pathway would reduce 57% and 50% of heatwave exposure for Central and South American regions respectively, highlighting the need to control anthropogenic emissions and implement sustainable practices.
Identifiants
pubmed: 39367031
doi: 10.1038/s41598-024-73521-6
pii: 10.1038/s41598-024-73521-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
23145Subventions
Organisme : Wellcome Trust
ID : 205177/Z/16/Z
Pays : United Kingdom
Informations de copyright
© 2024. The Author(s).
Références
Eyring, V. et al. Human influence on the climate system. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 423–552 (Cambridge University Press, 2023). https://doi.org/10.1017/9781009157896.005 .
Frich, P. et al. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 19, 193–212 (2002).
doi: 10.3354/cr019193
Perkins, S. E., Alexander, L. & Nairn, J. R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 39, 20714 (2012).
doi: 10.1029/2012GL053361
Sun, X. et al. Effects of temperature and heat waves on emergency department visits and emergency ambulance dispatches in Pudong New Area, China: a time series analysis. Environ. Health 13, 1–8 (2014).
Russo, S., Sillmann, J. & Fischer, E. M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett.10, 124003 (2015).
doi: 10.1088/1748-9326/10/12/124003
Rohini, P., Rajeevan, M. & Srivastava, A. K. On the variability and increasing trends of Heat waves over India OPEN (2016). https://doi.org/10.1038/srep26153 .
Wuebbles, D. J. et al. Executive summary. Climate Science Special Report: Fourth National Climate Assessment. I, 12–34 (2017). https://doi.org/10.7930/J0DJ5CTG .
Ebi, K. L. et al. Hot weather and heat extremes: health risks. Lancet. 398, 698–708 (2021).
doi: 10.1016/S0140-6736(21)01208-3
pubmed: 34419205
Ballester, J. et al. Heat-related mortality in Europe during the summer of 2022. Nat. Med. 29, 1857–1866 (2023).
Zhao, Q. et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. Lancet Planet. Health. 5, e415–e425 (2021).
doi: 10.1016/S2542-5196(21)00081-4
pubmed: 34245712
Schär, C. et al. The role of increasing temperature variability in European summer heatwaves. Nature. 427, 332–336 (2004).
Trenberth, K. E. & Fasullo, J. T. Climate extremes and climate change: the Russian heat wave and other climate extremes of 2010. J. Geophys. Res. Atmos. 117, 17103 (2012).
Ghatak, D., Zaitchik, B., Hain, C. & Anderson, M. The role of local heating in the 2015 Indian Heat Wave. Sci. Rep. 7, 1–8 (2017).
Lhotka, O. & Kyselý, J. The 2021 European Heat Wave in the context of past major heat waves. Earth Space Sci. 9, e2022EA002567 (2022).
doi: 10.1029/2022EA002567
Perkins-Kirkpatrick, S. et al. Extreme terrestrial heat in 2023. Nat. Rev. Earth Environ. 5, 244–246 (2024).
Lau, N. C. & Nath, M. J. Model simulation and projection of european heat waves in present-day and future climates. J. Clim. 27, 3713–3730 (2014).
doi: 10.1175/JCLI-D-13-00284.1
Jones, B. et al. Future population exposure to US heat extremes. Nat. Clim. Chang. 5 (2015).
Schär, C. The worst heat waves to come. Nat. Clim. Change. 6 (2), 6–128 (2015).
Russo, S., Sillmann, J. & Sterl, A. Humid heat waves at different warming levels. Sci. Rep. 7, 1–7 (2017).
Oleson, K. W., Anderson, G. B., Jones, B., McGinnis, S. A. & Sanderson, B. Avoided climate impacts of urban and rural heat and cold waves over the U.S. using large climate model ensembles for RCP8.5 and RCP4.5. Clim. Change. 146, 377–392 (2018).
doi: 10.1007/s10584-015-1504-1
pubmed: 29520121
Dosio, A., Mentaschi, L., Fischer, E. M. & Wyser, K. Extreme heat waves under 1.5°C and 2°C global warming. Environ. Res. Lett. 13, 054006 (2018).
doi: 10.1088/1748-9326/aab827
Kendrovski, V. et al. Quantifying projected heat mortality impacts under 21st-Century warming conditions for selected European countries. Int. J. Environ. Res. Public. Health 2017. 14, 729 (2017).
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
doi: 10.1175/BAMS-D-11-00094.1
Jacob, D. et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Change. 14, 563–578 (2014).
doi: 10.1007/s10113-013-0499-2
Nikulin, G. et al. Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J. Clim. 25, 6057–6078 (2012).
doi: 10.1175/JCLI-D-11-00375.1
Feron, S. et al. Observations and projections of heat waves in South America. Sci. Rep. 9, 8173 (2019).
doi: 10.1038/s41598-019-44614-4
pubmed: 31160642
pmcid: 6547650
Sanjay, J. et al. Temperature changes in India. Assessment of Climate Change over the Indian Region: A Report of the Ministry of Earth Sciences (MoES), Government of India 21–45(2020). https://link.springer.com/chapter/10.1007/978-981-15-4327-2_2 .
Miranda, V. F. V. V. et al. Heat stress in South America over the last four decades: a bioclimatic analysis. Theor. Appl. Climatol. 155, 911–928 (2024).
doi: 10.1007/s00704-023-04668-x
Kephart, J. L. et al. City-level impact of extreme temperatures and mortality in Latin America. Nat. Med. 28, 1700–1705 (2022).
Langsdorf, S., Löschke, S., Möller, V. & Okem, A. Climate Change 2022 Impacts, Adaptation and Vulnerability Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (2022).
Russo, S. et al. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos. 119, 12500–12512 (2014).
Mora, C. et al. Global risk of deadly heat. Nat. Clim. Change 7, 501–506 (2017).
Duffy, P. B., Brando, P., Asner, G. P. & Field, C. B. Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl. Acad. Sci. U. S. A.. 112, 13172–13177 (2015).
doi: 10.1073/pnas.1421010112
pubmed: 26460046
pmcid: 4629378
O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change. 42, 169–180 (2017).
doi: 10.1016/j.gloenvcha.2015.01.004
Gasparrini, A. et al. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet. Health. 1, e360–e367 (2017).
doi: 10.1016/S2542-5196(17)30156-0
pubmed: 29276803
pmcid: 5729020
Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X. & Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J. Geophys. Res. Atmos. 118, 2473–2493 (2013).
doi: 10.1002/jgrd.50188
Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 5, 572–597 (2013).
doi: 10.1002/jame.20038
Skamarock, W. C. et al. A description of the Advanced Research WRF Model Version 4.1. doi: (2019). https://doi.org/10.5065/1DFH-6P97
Earth Syst. Dyn. 4, 219–236 (2013).
Warszawski, L. et al. The inter-sectoral impact model intercomparison project (ISI–MIP): Project framework. Proc. Natl. Acad. Sci. 111, 3228–3232 (2014).
Muñoz-Sabater, J. et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data. 13, 4349–4383 (2021).
doi: 10.5194/essd-13-4349-2021
Akinsanola, A. A. & Zhou, W. Projection of west African summer monsoon rainfall in dynamically downscaled CMIP5 models. Clim. Dyn. 53, 81–95 (2019).
doi: 10.1007/s00382-018-4568-6
Perkins, S. E., Pitman, A. J., Holbrook, N. J. & McAneney, J. Evaluation of the AR4 climate models’ simulated daily Maximum temperature, Minimum temperature, and precipitation over Australia using probability density functions. J. Clim. 20, 4356–4376 (2007).
doi: 10.1175/JCLI4253.1
Nairn, J. R. & Fawcett, R. J. B. The excess heat factor: a metric for heatwave intensity and its use in classifying heatwave severity. Int. J. Environ. Res. Public. Health. 12, 227–253 (2014).
doi: 10.3390/ijerph120100227
pubmed: 25546282
pmcid: 4306859
Gao, J. N. C. A. R. & Technical Notes NCAR/TN-537 + STR downscaling global spatial Population projections from 1/8-degree to 1-km Grid cells Jing Gao. NCAR Tech. Notes (2017).