Multi-parameter tunable synthetic matrix for engineering lymphatic vessels.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
04 Oct 2024
04 Oct 2024
Historique:
received:
22
11
2023
accepted:
20
09
2024
medline:
5
10
2024
pubmed:
5
10
2024
entrez:
4
10
2024
Statut:
epublish
Résumé
Controlling the formation of new lymphatic vessels has been postulated as an innovative therapeutic strategy for various disease phenotypes, including neurodegenerative diseases, metabolic syndrome, cardiovascular disease, and lymphedema. Yet, compared to the blood vascular system, little is known about the molecular regulation that controls lymphatic tube formation in a synthetic matrix. In this study, we utilize hyaluronic acid (HA)-hydrogels to design a novel platform for decoupled investigation into how mechanical and biochemical cues regulate lymphatic vessel formation in a synthetic matrix. Using HA and controlling the degree of modification provides a method to preserve and modulate key lymphatic markers Prox1, LYVE-1, and Pdpn. The chemistry of the system allows for spatial and temporal patterning of specific peptides and substrate stiffnesses, and an MMP-sensitive crosslinker allowed cells to degrade and remodel their matrix. Through systematic optimization of multiple parameters, we have designed a system that allows human lymphatic endothelial cells (LECs) to self-assemble into vessels in vitro within 3 days. These engineered vessels can be cultured for up to 3 weeks and can be used for high-throughput mechanistic studies, or can be implanted into immunodeficient mice where they have demonstrated the ability to integrate and mature. Collectively, these studies report a novel, fully-defined 3D synthetic matrix system capable of generating lymphatic vessels in vitro that provide promise as an in vitro screening platform and as a therapeutic vessel transplant, which to our knowledge, is the first ever 3D lymphatic tissue engineering approach to not require the use of support cells.
Identifiants
pubmed: 39367247
doi: 10.1038/s42003-024-06935-7
pii: 10.1038/s42003-024-06935-7
doi:
Substances chimiques
Hyaluronic Acid
9004-61-9
Hydrogels
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1262Subventions
Organisme : American Heart Association (American Heart Association, Inc.)
ID : 19-CDA-34630012
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
ID : 1R35-GM-143055-01
Organisme : National Science Foundation (NSF)
ID : 2047903
Informations de copyright
© 2024. The Author(s).
Références
Oliver, G., Kipnis, J., Randolph, G. J. & Harvey, N. L. The Lymphatic Vasculature in the 21
pubmed: 32707093
pmcid: 7392116
doi: 10.1016/j.cell.2020.06.039
Petrova, T. V. & Koh, G. Y. Biological functions of lymphatic vessels. Science 369, eaax4063 (2020).
Chakraborty, S., Zawieja, S., Wang, W., Zawieja, D. C. & Muthuchamy, M. Lymphatic system: A vital link between metabolic syndrome and inflammation. Ann. NY Acad. Sci. 1207. E94–E102 (2010).
Cao, E. et al. Mesenteric lymphatic dysfunction promotes insulin resistance and represents a potential treatment target in obesity. Nat. Metab. 3, 1175–1188 (2021).
pubmed: 34545251
doi: 10.1038/s42255-021-00457-w
Alderfer, L., Wei, A. & Hanjaya-Putra, D. Lymphatic Tissue Engineering and Regeneration. J. Biol. Eng. 12, (2018).
Ruliffson, B. N. K. & Whittington, C. F. Regulating Lymphatic Vasculature in Fibrosis: Understanding the Biology to Improve the Modeling. Adv. Biol. 7, 2200158 (2023).
doi: 10.1002/adbi.202200158
Helm, C.-L., Zisch, A. & Swartz, M. A. Engineered Blood and Lymphatic Capillaries in 3-D VEGF-Fibrin-Collagen Matrices with Interstitial Flow. Biotechnol. Bioeng. 96, 167–176 (2006).
doi: 10.1002/bit.21185
Marino, D., Luginbühl, J., Scola, S., Meuli, M. & Reichmann, E. Bioengineering: Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci. Transl. Med 6, 221 (2014).
doi: 10.1126/scitranslmed.3006894
Serrano, J. C., Gillrie M. R., Li R., Ishamuddin S. H., Kamm R. D.. On-chip engineered human lymphatic microvasculature for physio-/pathological transport phenomena studies. bioRxiv https://doi.org/10.1101/2022.03.06.483122 (2022).
Hooks, J. et al. Synthetic hydrogels engineered to promote collecting lymphatic vessel sprouting. Biomaterials 284, 121483 (2022).
pubmed: 35428014
pmcid: 9134840
doi: 10.1016/j.biomaterials.2022.121483
Landau, S. et al. Investigating lymphangiogenesis in vitro and in vivo using engineered human lymphatic vessel networks. PNAS https://doi.org/10.1073/pnas.2101931118/-/DCSupplemental (2021).
Joukov, V. et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 15, 290–298 (1996).
pubmed: 8617204
pmcid: 449944
doi: 10.1002/j.1460-2075.1996.tb00359.x
Frye, M. et al. Matrix stiffness controls lymphatic vessel formation through regulation of a GATA2- dependent transcriptional program. Nat Commun 1–16 https://doi.org/10.1038/s41467-018-03959-6 (2018).
Cao, Y. et al. Vascular Endothelial Growth Factor C Induces Angiogenesis in Vivo. 95. www.pnas.org . (1998).
Alderfer, L., Russo, E., Archilla, A., Coe, B. & Hanjaya-Putra, D. Matrix stiffness primes lymphatic tube formation directed by vascular endothelial growth factor-C. FASEB J. 35, 21498 (2021).
doi: 10.1096/fj.202002426RR
Banerji, S. et al. LYVE-1, a New Homologue of the CD44 Glycoprotein, Is a Lymph-specific Receptor for Hyaluronan. J. Cell Biol. 144, 789 (1999). LP – 801.
pubmed: 10037799
pmcid: 2132933
doi: 10.1083/jcb.144.4.789
Gramlich, W. M., Kim, I. L. & Burdick, J. A. Synthesis and orthogonal photopatterning of hyaluronic acid hydrogels with thiol-norbornene chemistry. Biomaterials 34, 9803–9811 (2013).
pubmed: 24060422
doi: 10.1016/j.biomaterials.2013.08.089
Pierschbacher, M. D. & Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30–33 (1984).
pubmed: 6325925
doi: 10.1038/309030a0
Mäkinen, T. et al. Isolated lymphatic endothelial cells transduce growth, surival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 20, 4762–4773 (2001).
pubmed: 11532940
pmcid: 125596
doi: 10.1093/emboj/20.17.4762
Bazigou, E. et al. Integrin-α9 Is Required for Fibronectin Matrix Assembly during Lymphatic Valve Morphogenesis. Dev. Cell 17, 175–186 (2009).
pubmed: 19686679
pmcid: 2747264
doi: 10.1016/j.devcel.2009.06.017
Mishima, K. et al. Prox1 Induces Lymphatic Endothelial Differentiation via Integrin 9 and Other Signaling Cascades □ D □ V. Mol. Biol. Cell 18, 1421–1429 (2007).
pubmed: 17287396
pmcid: 1838981
doi: 10.1091/mbc.e06-09-0780
Vlahakis, N. E., Young, B. A., Atakilit, A. & Sheppard, D. The lymphangiogenic vascular endothelial growth factors VEGF-C and -D are ligands for the integrin α9β1. J. Biol. Chem. 280, 4544–4552 (2005).
pubmed: 15590642
doi: 10.1074/jbc.M412816200
Gibot, L. et al. Cell-based approach for 3D reconstruction of lymphatic capillaries in vitro reveals distinct functions of HGF and VEGF-C in lymphangiogenesis. Biomaterials 78, 129–139 (2016).
pubmed: 26694987
doi: 10.1016/j.biomaterials.2015.11.027
Sweat, R. S., Sloas, D. C. & Murfee, W. L. VEGF-C induces lymphangiogenesis and angiogenesis in the rat mesentery culture model. Microcirculation 21, 532–540 (2014).
pubmed: 24654984
pmcid: 4126871
doi: 10.1111/micc.12132
Hartiala, P. et al. Phase 1 Lymfactin® Study: Short-term Safety of Combined Adenoviral VEGF-C and Lymph Node Transfer Treatment for Upper Extremity Lymphedema. J. Plast., Reconstructive Aesthetic Surg. 73, 1612–1621 (2020).
doi: 10.1016/j.bjps.2020.05.009
Tammela, T. et al. Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat. Med 13, 1458–1466 (2007).
pubmed: 18059280
doi: 10.1038/nm1689
Visuri, M. T. et al. VEGF-C and VEGF-C156S in the pro-lymphangiogenic growth factor therapy of lymphedema: a large animal study. Angiogenesis 18, 313–326 (2015).
pubmed: 26018927
doi: 10.1007/s10456-015-9469-2
Knezevic, L. et al. Engineering Blood and Lymphatic Microvascular Networks in Fibrin Matrices. Front Bioeng. Biotechnol. 5, 1–12 (2017).
doi: 10.3389/fbioe.2017.00025
Korhonen, E. A., et al. Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell-surface expression. J. Clin. Investig. 132, (2022).
Karaman, S. et al. Transgenic overexpression of VEGF-C induces weight gain and insulin resistance in mice. Sci. Rep. 6, 31566 (2016).
pubmed: 27511834
pmcid: 4980670
doi: 10.1038/srep31566
Hominick, D. et al. VEGF-C promotes the development of lymphatics in bone and bone loss. https://doi.org/10.7554/eLife.34323.001 (2018).
Gousopoulos, E. et al. An Important Role of VEGF-C in Promoting Lymphedema Development. J. Investig. Dermatol. 137, 1995–2004 (2017).
pubmed: 28526302
doi: 10.1016/j.jid.2017.04.033
SAARISTO, A. et al. Adenoviral VEGF‐C overexpression induces blood vessel enlargement, tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes. FASEB J. 16, 1041–1049 (2002).
pubmed: 12087065
doi: 10.1096/fj.01-1042com
Alderfer, L., Hall, E. & Hanjaya-Putra, D. Harnessing biomaterials for lymphatic system modulation. Acta Biomater. 133, 34–45 (2021).
pubmed: 34118451
pmcid: 9113193
doi: 10.1016/j.actbio.2021.06.006
Ilan, I., Yslas, A., Peng, Y., Lu, R. & Lee, E. A 3D Human Lymphatic Vessel-on-Chip Reveals the Roles of Interstitial Flow and VEGF-A/C for Lymphatic Sprouting and Discontinuous Junction Formation. Cell Mol. Bioeng. 16, 325–339 (2023).
pubmed: 37811004
pmcid: 10550886
doi: 10.1007/s12195-023-00780-0
Saharinen, P., Eklund, L. & Alitalo, K. Therapeutic targeting of the angiopoietin-TIE pathway. Nat. Rev. Drug Discov. 16, 635–661 (2017).
pubmed: 28529319
doi: 10.1038/nrd.2016.278
Souma, T. et al. Context-dependent functions of angiopoietin 2 are determined by the endothelial phosphatase VEPTP. Proc. Natl Acad. Sci. USA 115, 1298–1303 (2018).
pubmed: 29358379
pmcid: 5819405
doi: 10.1073/pnas.1714446115
Joukov, V. et al. A recombinant mutant vascular endothelial growth factor-C that has lost vascular endothelial growth factor receptor-2 binding, activation, and vascular permeability activities. J. Biol. Chem. 273, 6599–6602 (1998).
pubmed: 9506953
doi: 10.1074/jbc.273.12.6599
Dellinger, M. T., Meadows, S. M., Wynne, K., Cleaver, O. & Brekken, R. A. Vascular Endothelial Growth Factor Receptor-2 Promotes the Development of the Lymphatic Vasculature. PLoS One 8, e74686 (2013).
pubmed: 24023956
pmcid: 3759473
doi: 10.1371/journal.pone.0074686
Hirakawa, S. et al. Identification of Vascular Lineage-Specific Genes by Transcriptional Profiling of Isolated Blood Vascular and Lymphatic Endothelial Cells. Am. J. Pathol. 162, 575–586 (2003).
Suarez, C. D. & Littlepage, L. E. Patient-Derived Tumor Xenograft Models of Breast Cancer BT - Breast Cancer: Methods and Protocols. in (ed. Cao, J.) 211–223 (Springer New York, New York, NY, 2016). https://doi.org/10.1007/978-1-4939-3444-7_19 .
Hanjaya-Putra, D. et al. Integration and Regression of Implanted Engineered Human Vascular Networks During Deep Wound Healing. Stem Cells Transl. Med 2, 297–306 (2013).
pubmed: 23486832
pmcid: 3659834
doi: 10.5966/sctm.2012-0111
Hanjaya-Putra, D. et al. Controlled activation of morphogenesis to generate a functional human microvasculature in a synthetic matrix. Blood 118, 804–815 (2011).
pubmed: 21527523
pmcid: 3142913
doi: 10.1182/blood-2010-12-327338
Tai-Nagara, I. et al. Blood and lymphatic systems are segregated by the FLCN tumor suppressor. Nat. Commun. 11, 6314 (2020).
pubmed: 33298956
pmcid: 7725783
doi: 10.1038/s41467-020-20156-6
Cheng, G. et al. Engineered blood vessel networks connect to host vasculature via wrapping-and-tapping anastomosis. Blood 118, 4740–4749 (2011).
pubmed: 21835951
pmcid: 3208287
doi: 10.1182/blood-2011-02-338426
Bui, L. et al. Engineering bioactive nanoparticles to rejuvenate vascular progenitor cells. Commun. Biol. 5, 635 (2022).
pubmed: 35768543
pmcid: 9243106
doi: 10.1038/s42003-022-03578-4
Saha, S. et al. Synthetic Hyaluronic Acid Coating Preserves the Phenotypes of Lymphatic Endothelial Cells. Biomater Sci. https://doi.org/10.1039/d3bm00873h (2023).
Herzog, B. H. et al. Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature 502, 105–109 (2013).
pubmed: 23995678
pmcid: 3791160
doi: 10.1038/nature12501
Johnson, L. A. et al. Dendritic cells enter lymph vessels by hyaluronan-mediated docking to the endothelial receptor LYVE-1. Nat. Immunol. 18, 762–770 (2017).
pubmed: 28504698
doi: 10.1038/ni.3750
Uhrin, P. et al. Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood 115, 3997–4005 (2010).
pubmed: 20110424
doi: 10.1182/blood-2009-04-216069
Jeong, D. P., Montes, D., Chang, H.-C. & Hanjaya-Putra, D. Fractal dimension to characterize interactions between blood and lymphatic endothelial cells. Phys. Biol. 20, 045004 (2023).
pmcid: 10258918
doi: 10.1088/1478-3975/acd898
Jeong, D. P., Hall, E., Neu, E. & Hanjaya-Putra, D. Podoplanin is Responsible for the Distinct Blood and Lymphatic Capillaries. Cell Mol. Bioeng. 15, 467–478 (2022).
pubmed: 36444348
pmcid: 9700554
doi: 10.1007/s12195-022-00730-2
Khetan, S., Katz, J. S. & Burdick, J. A. Sequential crosslinking to control cellular spreading in 3-dimensional hydrogels. Soft Matter 5, 1601–1606 (2009).
doi: 10.1039/b820385g
Hanjaya-Putra, D. et al. Spatial control of cell-mediated degradation to regulate vasculogenesis and angiogenesis in hyaluronan hydrogels. Biomaterials 33, 6123–6131 (2012).
pubmed: 22672833
pmcid: 3481551
doi: 10.1016/j.biomaterials.2012.05.027
Fan, F. et al. Hyaluronic Acid Hydrogels with Phototunable Supramolecular Cross-Linking for Spatially Controlled Lymphatic Tube Formation. ACS Appl Mater. Interfaces 15, 58181–58195 (2023).
pubmed: 38065571
pmcid: 10739586
doi: 10.1021/acsami.3c12514
Hall, E., Mendiola, K., Lightsey, N. K. & Hanjaya-Putra, D. Mimicking blood and lymphatic vasculatures using microfluidic systems. Biomicrofluidics 18, 031502 (2024).
pubmed: 38726373
pmcid: 11081709
doi: 10.1063/5.0175154
Michalaki, E. et al. Lentiviral overexpression of VEGFC in transplanted MSCs leads to resolution of swelling in a mouse tail lymphedema model. Microcirculation 30, 12792 (2023).
doi: 10.1111/micc.12792
Weiler, M. J., Cribb, M. T., Nepiyushchikh, Z., Nelson, T. S. & Dixon, J. B. A novel mouse tail lymphedema model for observing lymphatic pump failure during lymphedema development. Sci. Rep. 9, 10405 (2019).
pubmed: 31320677
pmcid: 6639358
doi: 10.1038/s41598-019-46797-2
Hadamitzky, C. et al. Aligned Nanofibrillar Collagen Scaffolds – Guiding Lymphangiogenesis for Treatment of Acquired Lymphedema. Biomaterials. 102, 259-267 (2016).