Mutations in fibronectin dysregulate chondrogenesis in skeletal dysplasia.


Journal

Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402

Informations de publication

Date de publication:
05 Oct 2024
Historique:
received: 10 06 2024
accepted: 06 09 2024
revised: 22 08 2024
medline: 6 10 2024
pubmed: 6 10 2024
entrez: 5 10 2024
Statut: epublish

Résumé

Fibronectin (FN) is an extracellular matrix glycoprotein essential for the development and function of major vertebrate organ systems. Mutations in FN result in an autosomal dominant skeletal dysplasia termed corner fracture-type spondylometaphyseal dysplasia (SMDCF). The precise pathomechanisms through which mutant FN induces impaired skeletal development remain elusive. Here, we have generated patient-derived induced pluripotent stem cells as a cell culture model for SMDCF to investigate the consequences of FN mutations on mesenchymal stem cells (MSCs) and their differentiation into cartilage-producing chondrocytes. In line with our previous data, FN mutations disrupted protein secretion from MSCs, causing a notable increase in intracellular FN and a significant decrease in extracellular FN levels. Analyses of plasma samples from SMDCF patients also showed reduced FN in circulation. FN and endoplasmic reticulum (ER) protein folding chaperones (BIP, HSP47) accumulated in MSCs within ribosome-covered cytosolic vesicles that emerged from the ER. Massive amounts of these vesicles were not cleared from the cytosol, and a smaller subset showed the presence of lysosomal markers. The accumulation of intracellular FN and ER proteins elevated cellular stress markers and altered mitochondrial structure. Bulk RNA sequencing revealed a specific transcriptomic dysregulation of the patient-derived cells relative to controls. Analysis of MSC differentiation into chondrocytes showed impaired mesenchymal condensation, reduced chondrogenic markers, and compromised cell proliferation in mutant cells. Moreover, FN mutant cells exhibited significantly lower transforming growth factor beta-1 (TGFβ1) expression, crucial for mesenchymal condensation. Exogenous FN or TGFβ1 supplementation effectively improved the MSC condensation and promoted chondrogenesis in FN mutant cells. These findings demonstrate the cellular consequences of FN mutations in SMDCF and explain the molecular pathways involved in the associated altered chondrogenesis.

Identifiants

pubmed: 39367925
doi: 10.1007/s00018-024-05444-4
pii: 10.1007/s00018-024-05444-4
doi:

Substances chimiques

Fibronectins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

419

Subventions

Organisme : CIHR
ID : PJT-156140
Pays : Canada
Organisme : CIHR
ID : PJT-156140
Pays : Canada
Organisme : Réseau de Recherche en Santé Buccodentaire et Osseuse
ID : Réseau de Recherche en Santé Buccodentaire et Osseuse
Organisme : Réseau de Recherche en Santé Buccodentaire et Osseuse
ID : Réseau de Recherche en Santé Buccodentaire et Osseuse
Organisme : Fonds de Recherche du Québec - Santé
ID : 291220

Informations de copyright

© 2024. The Author(s).

Références

Longtin R (2004) Birthday of a breakthrough: fibronectin research proves important, but not as originally expected. J Natl Cancer Inst 96(1):6–8
doi: 10.1093/jnci/96.1.6
Goudemand M (1983) Plasma fibronectin. Rev Fr Transfus Immunohematol 26(3):279–298
doi: 10.1016/S0338-4535(83)80032-4
Maurer LM, Ma W, Mosher DF (2015) Dynamic structure of plasma fibronectin. Crit Rev Biochem Mol Biol 51(4):213–227. https://doi.org/10.1080/10409238.2016.1184224
doi: 10.1080/10409238.2016.1184224
Sottile J, Hocking DC (2002) Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell 13(10):3546–3559
doi: 10.1091/mbc.e02-01-0048
Sottile J, Hocking DC, Langenbach KJ (2000) Fibronectin polymerization stimulates cell growth by RGD-dependent and -independent mechanisms. J Cell Sci 113 Pt 23:4287–4299
doi: 10.1242/jcs.113.23.4287
Prowse KR, Tricoli JV, Klebe RJ, Shows TB (1986) Assignment of the human fibronectin structural gene to chromosome 2. Cytogenet Cell Genet 41(1):42–46
doi: 10.1159/000132194
Dinesh NEH, Campeau PM, Reinhardt DP (2022) Fibronectin isoforms in skeletal development and associated disorders. Am J Physiol Cell Physiol 323(2):536–549. https://doi.org/10.1152/ajpcell.00226.2022
doi: 10.1152/ajpcell.00226.2022
Chen D, Wang X, Liang D, Gordon J, Mittal A, Manley N, Degenhardt K, Astrof S (2015) Fibronectin signals through integrin alpha5beta1 to regulate cardiovascular development in a cell type-specific manner. Dev Biol 407(2):195–210. https://doi.org/10.1016/j.ydbio.2015.09.016
doi: 10.1016/j.ydbio.2015.09.016
White ES, Muro AF (2011) Fibronectin splice variants: understanding their multiple roles in health and disease using engineered mouse models. IUBMB Life 63(7):538–546. https://doi.org/10.1002/iub.493
doi: 10.1002/iub.493
Lin TC, Yang CH, Cheng LH, Chang WT, Lin YR, Cheng HC (2019) Fibronectin in cancer: friend or foe. Cells 9(1). https://doi.org/10.3390/cells9010027
Astrof S, Crowley D, Hynes RO (2007) Multiple cardiovascular defects caused by the absence of alternatively spliced segments of fibronectin. Dev Biol 311(1):11–24
doi: 10.1016/j.ydbio.2007.07.005
Dalton CJ, Lemmon CA (2021) Fibronectin: molecular structure, fibrillar structure and mechanochemical signaling. Cells 10(9). https://doi.org/10.3390/cells10092443
George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119(4):1079–1091
doi: 10.1242/dev.119.4.1079
Takahashi S, Leiss M, Moser M, Ohashi T, Kitao T, Heckmann D, Pfeifer A, Kessler H, Takagi J, Erickson HP, Fässler R (2007) The RGD motif in fibronectin is essential for development but dispensable for fibril assembly. J Cell Biol 178(1):167–178
doi: 10.1083/jcb.200703021
Castelletti F, Donadelli R, Banterla F, Hildebrandt F, Zipfel PF, Bresin E, Otto E, Skerka C, Renieri A, Todeschini M, Caprioli J, Caruso RM, Artuso R, Remuzzi G, Noris M (2008) Mutations in FN1 cause glomerulopathy with fibronectin deposits. Proc Natl Acad Sci USA 105(7):2538–2543. https://doi.org/10.1073/pnas.0707730105
doi: 10.1073/pnas.0707730105
Lee CS, Fu H, Baratang N, Rousseau J, Kumra H, Sutton VR, Niceta M, Ciolfi A, Yamamoto G, Bertola D, Marcelis CL, Lugtenberg D, Bartuli A, Kim C, Hoover-Fong J, Sobreira N, Pauli R, Bacino C, Krakow D, Parboosingh J, Yap P, Kariminejad A, McDonald MT, Aracena MI, Lausch E, Unger S, Superti-Furga A, Lu JT, Baylor-Hopkins Center for Mendelian Genomics, Cohn DH, Tartaglia M, Lee BH, Reinhardt DP, Campeau PM (2017) Mutations in fibronectin cause a subtype of spondylometaphyseal dysplasia with corner fractures. Am J Hum Genet 101 (5):815–823. https://doi.org/10.1016/j.ajhg.2017.09.019
Costantini A, Valta H, Baratang NV, Yap P, Bertola DR, Yamamoto GL, Kim CA, Chen J, Wierenga KJ, Fanning EA, Escobar L, McWalter K, McLaughlin H, Willaert R, Begtrup A, Alm JJ, Reinhardt DP, Makitie O, Campeau PM (2019) Novel fibronectin mutations and expansion of the phenotype in spondylometaphyseal dysplasia with corner fractures. Bone 121:163–171. https://doi.org/10.1016/j.bone.2018.12.020
doi: 10.1016/j.bone.2018.12.020
Cadoff EB, Sheffer R, Wientroub S, Ovadia D, Meiner V, Schwarzbauer JE (2018) Mechanistic insights into the cellular effects of a novel FN1 variant associated with a spondylometaphyseal dysplasia. Clin Genet 94(5):429–437. https://doi.org/10.1111/cge.13424
doi: 10.1111/cge.13424
Newman B, Wallis GA (2003) Skeletal dysplasias caused by a disruption of skeletal patterning and endochondral ossification. Clin Genet 63(4):241–251
doi: 10.1034/j.1399-0004.2003.00046.x
Tsang KY, Tsang SW, Chan D, Cheah KS (2014) The chondrocytic journey in endochondral bone growth and skeletal dysplasia. Birth Defects Res 102(1):52–73. https://doi.org/10.1002/bdrc.21060
doi: 10.1002/bdrc.21060
Kulyk WM, Upholt WB, Kosher RA (1989) Fibronectin gene expression during limb cartilage differentiation. Development 106(3):449–455
doi: 10.1242/dev.106.3.449
Singh P, Schwarzbauer JE (2014) Fibronectin matrix assembly is essential for cell condensation during chondrogenesis. J Cell Sci 127(Pt 20):4420–4428. https://doi.org/10.1242/jcs.150276
doi: 10.1242/jcs.150276
Rein S, Esplugas M, Garcia-Elias M, Magin TM, Randau TM, Siemers F, Philipps HM (2020) Immunofluorescence analysis of sensory nerve endings in the interosseous membrane of the forearm. J Anat 236(5):906–915. https://doi.org/10.1111/joa.13138
doi: 10.1111/joa.13138
Nag R, Paul RR, Pal M, Chatterjee J, Das RK (2020) Epithelial distribution of E-cadherin, p63, and mitotic figures in ApoTome images to determine the oncogenic potentiality of oral submucous fibrosis. Microsc Microanal 26(6):1198–1210. https://doi.org/10.1017/S1431927620024538
doi: 10.1017/S1431927620024538
Hendershot LM (2004) The ER function BiP is a master regulator of ER function. Mt Sinai J Med 71(5):289–297
Haas IG (1994) BiP (GRP78), an essential hsp70 resident protein in the endoplasmic reticulum. Experientia 50(11–12):1012–1020
doi: 10.1007/BF01923455
Kang J, Brajanovski N, Chan KT, Xuan J, Pearson RB, Sanij E (2021) Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct Target Ther 6(1):323. https://doi.org/10.1038/s41392-021-00728-8
doi: 10.1038/s41392-021-00728-8
Bucci C, Parton RG, Mather IH, Stunnenberg H, Simons K, Hoflack B, Zerial M (1992) The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70(5):715–728
doi: 10.1016/0092-8674(92)90306-W
Vanlandingham PA, Ceresa BP (2009) Rab7 regulates late endocytic trafficking downstream of multivesicular body biogenesis and cargo sequestration. J Biol Chem 284(18):12110–12124. https://doi.org/10.1074/jbc.M809277200
doi: 10.1074/jbc.M809277200
Peng J, Zhang R, Cui Y, Liu H, Zhao X, Huang L, Hu M, Yuan X, Ma B, Ma X, Takashi U, Masaaki K, Liang X, Yu L (2014) Atg5 regulates late endosome and lysosome biogenesis. Sci China Life Sci 57(1):59–68. https://doi.org/10.1007/s11427-013-4588-8
doi: 10.1007/s11427-013-4588-8
Liang T, Li P, Liang A, Zhu Y, Qiu X, Qiu J, Peng Y, Huang D, Gao W, Gao B (2022) Identifying the key genes regulating mesenchymal stem cells chondrogenic differentiation: an in vitro study. BMC Musculoskelet Disord 23(1):985. https://doi.org/10.1186/s12891-022-05958-7
doi: 10.1186/s12891-022-05958-7
Qiu XB, Shao YM, Miao S, Wang L (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci 63(22):2560–2570
doi: 10.1007/s00018-006-6192-6
Wek RC (2018) Role of eIF2alpha kinases in translational control and adaptation to cellular stress. Cold Spring Harb Perspect Biol 10(7). https://doi.org/10.1101/cshperspect.a032870
Ninagawa S, Okada T, Sumitomo Y, Kamiya Y, Kato K, Horimoto S, Ishikawa T, Takeda S, Sakuma T, Yamamoto T, Mori K (2014) EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step. J Cell Biol 206(3):347–356. https://doi.org/10.1083/jcb.201404075
doi: 10.1083/jcb.201404075
Ghenea S, Chiritoiu M, Tacutu R, Miranda-Vizuete A, Petrescu SM (2022) Targeting EDEM protects against ER stress and improves development and survival in C. Elegans. PLoS Genet 18(2):e1010069. https://doi.org/10.1371/journal.pgen.1010069
doi: 10.1371/journal.pgen.1010069
Pankov R, Yamada KM (2002) Fibronectin at a glance. J Cell Sci 115(Pt 20):3861–3863
doi: 10.1242/jcs.00059
Akiyama SK, Yamada SS, Chen WT, Yamada KM (1989) Analysis of fibronectin receptor function with monoclonal antibodies: roles in cell adhesion, migration, matrix assembly, and cytoskeletal organization. J Cell Biol 109(2):863–875
doi: 10.1083/jcb.109.2.863
Fogerty FJ, Akiyama SK, Yamada KM, Mosher DF (1990) Inhibition of binding of fibronectin to matrix assembly sites by anti-integrin (alpha 5 beta 1) antibodies. J Cell Biol 111(2):699–708
doi: 10.1083/jcb.111.2.699
Wu C, Keivens VM, O’Toole TE, McDonald JA, Ginsberg MH (1995) Integrin activation and cytoskeletal interaction are essential for the assembly of a fibronectin matrix. Cell 83:715–724
doi: 10.1016/0092-8674(95)90184-1
Bravo R, Gutierrez T, Paredes F, Gatica D, Rodriguez AE, Pedrozo Z, Chiong M, Parra V, Quest AF, Rothermel BA, Lavandero S (2012) Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics. Int J Biochem Cell Biol 44(1):16–20. https://doi.org/10.1016/j.biocel.2011.10.012
doi: 10.1016/j.biocel.2011.10.012
Greco KV, Iqbal AJ, Rattazzi L, Nalesso G, Moradi-Bidhendi N, Moore AR, Goldring MB, Dell’Accio F, Perretti M (2011) High density micromass cultures of a human chondrocyte cell line: a reliable assay system to reveal the modulatory functions of pharmacological agents. Biochem Pharmacol 82(12):1919–1929. https://doi.org/10.1016/j.bcp.2011.09.009
doi: 10.1016/j.bcp.2011.09.009
Ryu NE, Lee SH, Park H (2019) Spheroid culture system methods and applications for mesenchymal stem cells. Cells 8(12). https://doi.org/10.3390/cells8121620
Rolfe RA, Shea CA, Murphy P (2022) Geometric analysis of chondrogenic self-organisation of embryonic limb bud cells in micromass culture. Cell Tissue Res 388(1):49–62. https://doi.org/10.1007/s00441-021-03564-y
doi: 10.1007/s00441-021-03564-y
Lu TJ, Chiu FY, Chiu HY, Chang MC, Hung SC (2017) Chondrogenic differentiation of mesenchymal stem cells in three-Dimensional Chitosan Film Culture. Cell Transpl 26(3):417–427. https://doi.org/10.3727/096368916X693464
doi: 10.3727/096368916X693464
Xu Y, Balooch G, Chiou M, Bekerman E, Ritchie RO, Longaker MT (2007) Analysis of the material properties of early chondrogenic differentiated adipose-derived stromal cells (ASC) using an in vitro three-dimensional micromass culture system. Biochem Biophys Res Commun 359(2):311–316
doi: 10.1016/j.bbrc.2007.05.098
Tang Y, Pan ZY, Zou Y, He Y, Yang PY, Tang QQ, Yin F (2017) A comparative assessment of adipose-derived stem cells from subcutaneous and visceral fat as a potential cell source for knee osteoarthritis treatment. J Cell Mol Med 21(9):2153–2162. https://doi.org/10.1111/jcmm.13138
doi: 10.1111/jcmm.13138
Lamande SR, Ng ES, Cameron TL, Kung LHW, Sampurno L, Rowley L, Lilianty J, Patria YN, Stenta T, Hanssen E, Bell KM, Saxena R, Stok KS, Stanley EG, Elefanty AG, Bateman JF (2023) Modeling human skeletal development using human pluripotent stem cells. Proc Natl Acad Sci USA 120(19):e2211510120. https://doi.org/10.1073/pnas.2211510120
doi: 10.1073/pnas.2211510120
Wang W, Rigueur D, Lyons KM (2014) TGFbeta signaling in cartilage development and maintenance. Birth Defects Res 102(1):37–51. https://doi.org/10.1002/bdrc.21058
doi: 10.1002/bdrc.21058
Williams MJ, Phan I, Harvey TS, Rostagno A, Gold LI, Campbell ID (1994) Solution structure of a pair of fibronectin type 1 modules with fibrin binding activity. J Mol Biol 235(4):1302–1311
doi: 10.1006/jmbi.1994.1083
Oberhauser AF, Badilla-Fernandez C, Carrion-Vazquez M, Fernandez JM (2002) The mechanical hierarchies of fibronectin observed with single-molecule AFM. J Mol Biol 319(2):433–447
doi: 10.1016/S0022-2836(02)00306-6
Sottile J, Schwarzbauer J, Selegue J, Mosher DF (1991) Five type I modules of fibronectin form a functional unit that binds to fibroblasts and Staphylococcus aureus. J Biol Chem 266(20):12840–12843
doi: 10.1016/S0021-9258(18)98769-7
Homewood CA, Warhurst DC, Peters W, Baggaley VC (1972) Lysosomes, pH and the anti-malarial action of chloroquine. Nature 235(5332):50–52
doi: 10.1038/235050a0
Mauvezin C, Neufeld TP (2015) Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy 11(8):1437–1438. https://doi.org/10.1080/15548627.2015.1066957
doi: 10.1080/15548627.2015.1066957
Kamimoto T, Shoji S, Hidvegi T, Mizushima N, Umebayashi K, Perlmutter DH, Yoshimori T (2006) Intracellular inclusions containing mutant alpha1-antitrypsin Z are propagated in the absence of autophagic activity. J Biol Chem 281(7):4467–4476
doi: 10.1074/jbc.M509409200
Fregno I, Fasana E, Bergmann TJ, Raimondi A, Loi M, Solda T, Galli C, D’Antuono R, Morone D, Danieli A, Paganetti P, van Anken E, Molinari M (2018) ER-to-lysosome-associated degradation of proteasome-resistant ATZ polymers occurs via receptor-mediated vesicular transport. EMBO J 37(17). https://doi.org/10.15252/embj.201899259
Fregno I, Fasana E, Solda T, Galli C, Molinari M (2021) N-glycan processing selects ERAD-resistant misfolded proteins for ER-to-lysosome-associated degradation. EMBO J 40(15):e107240. https://doi.org/10.15252/embj.2020107240
doi: 10.15252/embj.2020107240
Noda T, Farquhar MG (1992) A non-autophagic pathway for diversion of ER secretory proteins to lysosomes. J Cell Biol 119(1):85–97
doi: 10.1083/jcb.119.1.85
Jin H, Komita M, Aoe T (2017) The role of BiP retrieval by the KDEL receptor in the early secretory pathway and its effect on protein quality control and neurodegeneration. Front Mol Neurosci 10:222. https://doi.org/10.3389/fnmol.2017.00222
doi: 10.3389/fnmol.2017.00222
Czaja MJ, Ding WX, Donohue TM Jr., Friedman SL, Kim JS, Komatsu M, Lemasters JJ, Lemoine A, Lin JD, Ou JH, Perlmutter DH, Randall G, Ray RB, Tsung A, Yin XM (2013) Functions of autophagy in normal and diseased liver. Autophagy 9(8):1131–1158. https://doi.org/10.4161/auto.25063
doi: 10.4161/auto.25063
van Hoolwerff M, Rodriguez Ruiz A, Bouma M, Suchiman HED, Koning RI, Jost CR, Mulder AA, Freund C, Guilak F, Ramos YFM, Meulenbelt I (2021) High-impact FN1 mutation decreases chondrogenic potential and affects cartilage deposition via decreased binding to collagen type II. Sci Adv 7(45):eabg8583. https://doi.org/10.1126/sciadv.abg8583
doi: 10.1126/sciadv.abg8583
Nishioka T, Arima N, Kano K, Hama K, Itai E, Yukiura H, Kise R, Inoue A, Kim SH, Solnica-Krezel L, Moolenaar WH, Chun J, Aoki J (2016) ATX-LPA1 axis contributes to proliferation of chondrocytes by regulating fibronectin assembly leading to proper cartilage formation. Sci Rep 6:23433. https://doi.org/10.1038/srep23433
doi: 10.1038/srep23433
White DG, Hershey HP, Moss JJ, Daniels H, Tuan RS, Bennett VD (2003) Functional analysis of fibronectin isoforms in chondrogenesis: full-length recombinant mesenchymal fibronectin reduces spreading and promotes condensation and chondrogenesis of limb mesenchymal cells. Differ Res Biol Divers 71(4–5):251–261
Hsiao CT, Cheng HW, Huang CM, Li HR, Ou MH, Huang JR, Khoo KH, Yu HW, Chen YQ, Wang YK, Chiou A, Kuo JC (2017) Fibronectin in cell adhesion and migration via N-glycosylation. Oncotarget 8(41):70653–70668. https://doi.org/10.18632/oncotarget.19969
doi: 10.18632/oncotarget.19969
Lefort CT, Wojciechowski K, Hocking DC (2011) N-cadherin cell-cell adhesion complexes are regulated by fibronectin matrix assembly. J Biol Chem 286(4):3149–3160. https://doi.org/10.1074/jbc.M110.115733
doi: 10.1074/jbc.M110.115733
Mostafavi-Pour Z, Askari JA, Parkinson SJ, Parker PJ, Ng TT, Humphries MJ (2003) Integrin-specific signaling pathways controlling focal adhesion formation and cell migration. J Cell Biol 161(1):155–167
doi: 10.1083/jcb.200210176
Dallas SL, Sivakumar P, Jones CJ, Chen Q, Peters DM, Mosher DF, Humphries MJ, Kielty CM (2005) Fibronectin regulates latent transforming growth factor-beta (TGF beta) by controlling matrix assembly of latent TGF beta-binding protein-1. J Biol Chem 280(19):18871–18880
doi: 10.1074/jbc.M410762200
Sabatier L, Chen D, Fagotto-Kaufmann C, Hubmacher D, McKee MD, Annis DS, Mosher DF, Reinhardt DP (2009) Fibrillin assembly requires fibronectin. Mol Biol Cell 20:846–858
doi: 10.1091/mbc.e08-08-0830
Matsunobu T, Torigoe K, Ishikawa M, de Vega S, Kulkarni AB, Iwamoto Y, Yamada Y (2009) Critical roles of the TGF-beta type I receptor ALK5 in perichondrial formation and function, cartilage integrity, and osteoblast differentiation during growth plate development. Dev Biol 332(2):325–338. https://doi.org/10.1016/j.ydbio.2009.06.002
doi: 10.1016/j.ydbio.2009.06.002
Longobardi L, Li T, Myers TJ, O’Rear L, Ozkan H, Li Y, Contaldo C, Spagnoli A (2012) TGF-beta type II receptor/MCP-5 axis: at the crossroad between joint and growth plate development. Dev Cell 23(1):71–81. https://doi.org/10.1016/j.devcel.2012.05.004
doi: 10.1016/j.devcel.2012.05.004
Zhang H, Chen X, Xue P, Ma X, Li J, Zhang J (2021) FN1 promotes chondrocyte differentiation and collagen production via TGF-beta/PI3K/Akt pathway in mice with femoral fracture. Gene 769:145–253. https://doi.org/10.1016/j.gene.2020.145253
doi: 10.1016/j.gene.2020.145253
Benabdallah B, Desaulniers-Langevin C, Goyer ML, Colas C, Maltais C, Li Y, Guimond JV, Tremblay JP, Haddad E, Beausejour C (2021) Myogenic progenitor cells derived from human induced pluripotent stem cell are immune-tolerated in humanized mice. Stem Cells Transl Med 10(2):267–277. https://doi.org/10.1002/sctm.19-0452
doi: 10.1002/sctm.19-0452
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089
doi: 10.1038/nmeth.2089
Bourgey M, Dali R, Eveleigh R, Chen KC, Letourneau L, Fillon J, Michaud M, Caron M, Sandoval J, Lefebvre F, Leveque G, Mercier E, Bujold D, Marquis P, Van PT, Anderson de Lima Morais D, Tremblay J, Shao X, Henrion E, Gonzalez E, Quirion PO, Caron B, Bourque G (2019) GenPipes: an open-source framework for distributed and scalable genomic analyses. GigaScience 8(6). https://doi.org/10.1093/gigascience/giz037
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170
doi: 10.1093/bioinformatics/btu170
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635
doi: 10.1093/bioinformatics/bts635
Anders S, Pyl PT, Huber W (2015) HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169. https://doi.org/10.1093/bioinformatics/btu638
doi: 10.1093/bioinformatics/btu638
Love MI, Huber W, Anders S (2014) Moderated estimation of Fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550
doi: 10.1186/s13059-014-0550-8
Stephens M (2017) False discovery rates: a new deal. Biostatistics 18(2):275–294. https://doi.org/10.1093/biostatistics/kxw041
doi: 10.1093/biostatistics/kxw041
Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J (2019) G:profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 47(W1):W191–W198. https://doi.org/10.1093/nar/gkz369
doi: 10.1093/nar/gkz369
Mirdita M, Schutze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M (2022) ColabFold: making protein folding accessible to all. Nat Methods 19(6):679–682. https://doi.org/10.1038/s41592-022-01488-1
doi: 10.1038/s41592-022-01488-1
Barber RD (2021) Software to visualize proteins and perform structural alignments. Curr Protoc 1(11):e292. https://doi.org/10.1002/cpz1.292
doi: 10.1002/cpz1.292
Rosignoli S, Paiardini A (2022) Boosting the full potential of PyMOL with structural biology plugins. Biomolecules 12(12). https://doi.org/10.3390/biom12121764
Zhang RM, Kumra H, Reinhardt DP (2019) Quantification of extracellular matrix fiber systems related to ADAMTS proteins. Methods Mol Biol 2043:237–250. https://doi.org/10.1007/978-1-4939-9698-8_19
doi: 10.1007/978-1-4939-9698-8_19

Auteurs

Neha E H Dinesh (NEH)

Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, Canada.

Justine Rousseau (J)

Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada.

Deane F Mosher (DF)

Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, WI, USA.

Mike Strauss (M)

Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, Canada.

Jeannie Mui (J)

Facility for Electron Microscopy Research of McGill University, Montreal, QC, Canada.

Philippe M Campeau (PM)

Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada.

Dieter P Reinhardt (DP)

Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, Canada. dieter.reinhardt@mcgill.ca.
Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada. dieter.reinhardt@mcgill.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH