Clinical and immune responses to neoadjuvant fulvestrant with or without enzalutamide in ER+/Her2- breast cancer.
Journal
NPJ breast cancer
ISSN: 2374-4677
Titre abrégé: NPJ Breast Cancer
Pays: United States
ID NLM: 101674891
Informations de publication
Date de publication:
06 Oct 2024
06 Oct 2024
Historique:
received:
19
03
2024
accepted:
22
09
2024
medline:
6
10
2024
pubmed:
6
10
2024
entrez:
5
10
2024
Statut:
epublish
Résumé
Most ER+ breast cancers (BC) express androgen receptors (AR). This randomized phase II trial of 4 months of neoadjuvant fulvestrant (Fulv) alone or with enzalutamide (Combo) assessed whether adding AR blockade to Fulv would limit residual tumor at the time of surgery, as measured by modified preoperative endocrine predictive index (PEPI) score. Eligible patients were women with ER+/HER2- primary BC cT2 or greater. Stratification factors were clinical node and T-stage. Fresh tumor biopsies were required at study entry, after 4 weeks on therapy (W5), and at surgery. Laboratory analyses on tumors included immunochemistry (IHC) for ER/PR/AR/GR and Ki67 protein, evaluation of gene expression, multiplex for myeloid lineage immune cells, reverse-phase protein array, and plasma metabolomic analyses. Of 69 consented patients, 59 were evaluable. Toxicity was as expected with endocrine therapy. Combo achieved PEPI = 0 more frequently (24%: 8/33) than Fulv (8%: 2/26). Ki67 was ≤10% across arms by W5 in 76% of tumors. Activation of mTOR pathway proteins was elevated in tumors with poor Ki67 response. Tumors in both arms showed decreased estrogen-regulated and cell division gene sets, while Combo arm tumors uniquely exhibited enrichment of immune activation gene sets, including interferon gamma, complement, inflammation, antigen processing, and B and T cell activation. Multiplex IHC showed significantly reduced tumor-associated macrophages and CD14+/HLADR-/CD68- MDSCs in Combo tumors at W5. In summary, Combo tumors showed a higher PEPI = 0 response, Ki67 response, and more activated tumor immune microenvironment than Fulv. The odds of response were 4.6-fold higher for patients with ILC versus IDC. (Trial registration: This trial is registered at Clinicaltrials.gov ( https://www.clinicaltrials.gov/study/NCT02955394?id=16-1042&rank=1 ). The trial registration number is NCT02955394. The full trial protocol is available under Study Details at the Clinicaltrials.gov link provided).
Identifiants
pubmed: 39368973
doi: 10.1038/s41523-024-00697-5
pii: 10.1038/s41523-024-00697-5
doi:
Banques de données
ClinicalTrials.gov
['NCT02955394']
Types de publication
Journal Article
Langues
eng
Pagination
88Subventions
Organisme : U.S. Department of Defense (United States Department of Defense)
ID : BCRP BC120183 W81XWH-13-1-0090/91
Organisme : U.S. Department of Defense (United States Department of Defense)
ID : BCRP BC120183 W81XWH-13-1-0090/91
Informations de copyright
© 2024. The Author(s).
Références
Collins, L. C. et al. Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses’ Health Study. Mod. Pathol. 24, 924–931 (2011).
doi: 10.1038/modpathol.2011.54
pubmed: 21552212
pmcid: 3128675
Ricciardelli, C. et al. The magnitude of androgen receptor positivity in breast cancer is critical for reliable prediction of disease outcome. Clin. Cancer Res. 24, 2328–2341 (2018).
doi: 10.1158/1078-0432.CCR-17-1199
pubmed: 29514843
Cao, L. et al. A high AR:ERα or PDEF:ERα ratio predicts a sub-optimal response to tamoxifen therapy in ERα-positive breast cancer. Cancer Chemother. Pharmacol. 84, 609–620 (2019).
doi: 10.1007/s00280-019-03891-6
pubmed: 31297554
Cochrane, D. R. et al. Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res. 16, R7 (2014).
doi: 10.1186/bcr3599
pubmed: 24451109
pmcid: 3978822
D’Amato, N. C. et al. Cooperative dynamics of AR and ER activity in breast cancer. Mol. Cancer Res. 14, 1054–1067 (2016).
doi: 10.1158/1541-7786.MCR-16-0167
pubmed: 27565181
pmcid: 5107172
Rangel, N. et al. AR/ER ratio correlates with expression of proliferation markers and with distinct subset of breast tumors. Cells 9, 1064 (2020).
doi: 10.3390/cells9041064
pubmed: 32344660
pmcid: 7226480
Rangel, N. et al. The role of the AR/ER ratio in ER-positive breast cancer patients. Endocr. Relat. Cancer 25, 163–172 (2018).
doi: 10.1530/ERC-17-0417
pubmed: 29386247
Schwartzberg, L. S. et al. A phase I/Ib study of enzalutamide alone and in combination with endocrine therapies in women with advanced breast cancer. Clin. Cancer Res. 23, 4046–4054 (2017).
doi: 10.1158/1078-0432.CCR-16-2339
pubmed: 28280092
Elias, A. D. et al. Phase II trial of fulvestrant plus enzalutamide in ER+/HER2- advanced breast cancer. NPJ Breast Cancer 9, 41 (2023).
doi: 10.1038/s41523-023-00544-z
pubmed: 37210417
pmcid: 10199936
Palmieri, C. et al. Activity and safety of enobosarm, a novel, oral, selective androgen receptor modulator, in androgen receptor-positive, oestrogen receptor-positive, and HER2-negative advanced breast cancer (Study G200802): a randomised, open-label, multicentre, multinational, parallel design, phase 2 trial. Lancet Oncol. 25, 317–325 (2024).
doi: 10.1016/S1470-2045(24)00004-4
pubmed: 38342115
Hickey, T. E. et al. The androgen receptor is a tumor suppressor in estrogen receptor-positive breast cancer. Nat. Med. 27, 310–320 (2021).
doi: 10.1038/s41591-020-01168-7
pubmed: 33462444
Ciupek, A. et al. Androgen receptor promotes tamoxifen agonist activity by activation of EGFR in ERα-positive breast cancer. Breast Cancer Res. Treat. 154, 225–237 (2015).
doi: 10.1007/s10549-015-3609-7
pubmed: 26487496
pmcid: 4749407
De Amicis, F. et al. Androgen receptor overexpression induces tamoxifen resistance in human breast cancer cells. Breast Cancer Res. Treat. 121, 1–11 (2010).
doi: 10.1007/s10549-009-0436-8
pubmed: 19533338
Gu, G. et al. Hormonal modulation of ESR1 mutant metastasis. Oncogene 40, 997–1011 (2021).
doi: 10.1038/s41388-020-01563-x
pubmed: 33323970
Williams, M. M. et al. Steroid hormone receptor and infiltrating immune cell status reveals therapeutic vulnerabilities of ESR1-mutant breast cancer. Cancer Res. 81, 732–746 (2021).
doi: 10.1158/0008-5472.CAN-20-1200
pubmed: 33184106
Ma, C. X. et al. Endocrine-sensitive disease rate in postmenopausal patients with estrogen receptor-rich/ERBB2-negative breast cancer receiving neoadjuvant anastrozole, fulvestrant, or their combination: a phase 3 randomized clinical trial. JAMA Oncol. 10, 362–371 (2024).
doi: 10.1001/jamaoncol.2023.6038
pubmed: 38236590
Ellis, M. J. et al. Ki67 proliferation index as a tool for chemotherapy decisions during and after neoadjuvant aromatase inhibitor treatment of breast cancer: results from the American College of Surgeons Oncology Group Z1031 Trial (Alliance). J. Clin. Oncol. 35, 1061–1069 (2017).
doi: 10.1200/JCO.2016.69.4406
pubmed: 28045625
pmcid: 5455353
Barton, V. N. et al. Multiple molecular subtypes of triple-negative breast cancer critically rely on androgen receptor and respond to enzalutamide in vivo. Mol. Cancer Ther. 14, 769–778 (2015).
doi: 10.1158/1535-7163.MCT-14-0926
pubmed: 25713333
pmcid: 4534304
Hanamura, T. et al. Secreted indicators of androgen receptor activity in breast cancer pre-clinical models. Breast Cancer Res. 23, 102 (2021).
doi: 10.1186/s13058-021-01478-9
pubmed: 34736512
pmcid: 8567567
Guan, X. et al. Androgen receptor activity in T cells limits checkpoint blockade efficacy. Nature 606, 791–796 (2022).
doi: 10.1038/s41586-022-04522-6
pubmed: 35322234
pmcid: 10294141
Madan, R. A. et al. Clinical and immunologic impact of short-course enzalutamide alone and with immunotherapy in non-metastatic castration sensitive prostate cancer. J. Immunother. Cancer 9, e001556 (2021).
doi: 10.1136/jitc-2020-001556
pubmed: 33664086
pmcid: 7934713
Consiglio, C. R., Udartseva, O., Ramsey, K. D., Bush, C. & Gollnick, S. O. Enzalutamide, an androgen receptor antagonist, enhances myeloid cell-mediated immune suppression and tumor progression. Cancer Immunol. Res. 8, 1215–1227 (2020).
doi: 10.1158/2326-6066.CIR-19-0371
pubmed: 32661092
pmcid: 7484281
Doane, A. S. et al. An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene 25, 3994–4008 (2006).
doi: 10.1038/sj.onc.1209415
pubmed: 16491124
Farmer, P. et al. Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24, 4660–4671 (2005).
doi: 10.1038/sj.onc.1208561
pubmed: 15897907
Lehmann, B. D. et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 121, 2750–2767 (2011).
doi: 10.1172/JCI45014
pubmed: 21633166
pmcid: 3127435
Opitz, C. A. et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478, 197–203 (2011).
doi: 10.1038/nature10491
pubmed: 21976023
Solvay, M. et al. Tryptophan depletion sensitizes the AHR pathway by increasing AHR expression and GCN2/LAT1-mediated kynurenine uptake, and potentiates induction of regulatory T lymphocytes. J. Immunother. Cancer 11, e006728 (2023).
doi: 10.1136/jitc-2023-006728
pubmed: 37344101
pmcid: 10314700
Greene, L. I. et al. A role for tryptophan-2,3-dioxygenase in CD8 T-cell suppression and evidence of tryptophan catabolism in breast cancer patient plasma. Mol. Cancer Res. 17, 131–139 (2019).
doi: 10.1158/1541-7786.MCR-18-0362
pubmed: 30143553
Stanton, S. E., Adams, S. & Disis, M. L. Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: a systematic review. JAMA Oncol. 2, 1354–1360 (2016).
doi: 10.1001/jamaoncol.2016.1061
pubmed: 27355489
Smyth, G. K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3 (2004).
doi: 10.2202/1544-6115.1027
pubmed: 16646809
Nemkov, T., Hansen, K. C. & D’Alessandro, A. A three-minute method for high-throughput quantitative metabolomics and quantitative tracing experiments of central carbon and nitrogen pathways. Rapid Commun. Mass Spectrom. 31, 663–673 (2017).
doi: 10.1002/rcm.7834
pubmed: 28195377
pmcid: 5364945
Reisz, J. A., Zheng, C., D’Alessandro, A. & Nemkov, T. Untargeted and semi-targeted lipid analysis of biological samples using mass spectrometry-based metabolomics. Methods Mol. Biol. 1978, 121–135 (2019).
doi: 10.1007/978-1-4939-9236-2_8
pubmed: 31119660
Damodar, S. & Mehta, D. S. Effect of scaling and root planing on gingival crevicular fluid level of YKL-40 acute phase protein in chronic periodontitis patients with or without type 2 diabetes mellitus: a clinico-biochemical study. J. Indian Soc. Periodontol. 22, 40–44 (2018).
doi: 10.4103/jisp.jisp_95_17
pubmed: 29568171
pmcid: 5855268
R Core Team. R: a language and environment for statistical computing (R Foundation, 2023).
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
doi: 10.1093/nar/gkv007
pubmed: 25605792
pmcid: 4402510
Cai, J. et al. Increased levels of CHI3L1 and HA are associated with higher occurrence of liver damage in patients with obstructive sleep apnea. Front. Med. 9, 854570 (2022).
doi: 10.3389/fmed.2022.854570
Sergushichev, A. A. An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. Preprint at bioRxiv. https://doi.org/10.1101/060012 (2016).
YKL-40. Arerugi 66, 1016–1017 (2017).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Slowikowski, K. ggrepel: Automatically Position Non-overlapping Text Labels With ‘ggplot2’, Vol. 2024 (Github, 2024).
Kramer, N. E. et al. Plotgardener: cultivating precise multi-panel figures in R. Bioinformatics 38, 2042–2045 (2022).
doi: 10.1093/bioinformatics/btac057
pubmed: 35134826
pmcid: 8963281