Clinical and immune responses to neoadjuvant fulvestrant with or without enzalutamide in ER+/Her2- breast cancer.


Journal

NPJ breast cancer
ISSN: 2374-4677
Titre abrégé: NPJ Breast Cancer
Pays: United States
ID NLM: 101674891

Informations de publication

Date de publication:
06 Oct 2024
Historique:
received: 19 03 2024
accepted: 22 09 2024
medline: 6 10 2024
pubmed: 6 10 2024
entrez: 5 10 2024
Statut: epublish

Résumé

Most ER+ breast cancers (BC) express androgen receptors (AR). This randomized phase II trial of 4 months of neoadjuvant fulvestrant (Fulv) alone or with enzalutamide (Combo) assessed whether adding AR blockade to Fulv would limit residual tumor at the time of surgery, as measured by modified preoperative endocrine predictive index (PEPI) score. Eligible patients were women with ER+/HER2- primary BC cT2 or greater. Stratification factors were clinical node and T-stage. Fresh tumor biopsies were required at study entry, after 4 weeks on therapy (W5), and at surgery. Laboratory analyses on tumors included immunochemistry (IHC) for ER/PR/AR/GR and Ki67 protein, evaluation of gene expression, multiplex for myeloid lineage immune cells, reverse-phase protein array, and plasma metabolomic analyses. Of 69 consented patients, 59 were evaluable. Toxicity was as expected with endocrine therapy. Combo achieved PEPI = 0 more frequently (24%: 8/33) than Fulv (8%: 2/26). Ki67 was ≤10% across arms by W5 in 76% of tumors. Activation of mTOR pathway proteins was elevated in tumors with poor Ki67 response. Tumors in both arms showed decreased estrogen-regulated and cell division gene sets, while Combo arm tumors uniquely exhibited enrichment of immune activation gene sets, including interferon gamma, complement, inflammation, antigen processing, and B and T cell activation. Multiplex IHC showed significantly reduced tumor-associated macrophages and CD14+/HLADR-/CD68- MDSCs in Combo tumors at W5. In summary, Combo tumors showed a higher PEPI = 0 response, Ki67 response, and more activated tumor immune microenvironment than Fulv. The odds of response were 4.6-fold higher for patients with ILC versus IDC. (Trial registration: This trial is registered at Clinicaltrials.gov ( https://www.clinicaltrials.gov/study/NCT02955394?id=16-1042&rank=1 ). The trial registration number is NCT02955394. The full trial protocol is available under Study Details at the Clinicaltrials.gov link provided).

Identifiants

pubmed: 39368973
doi: 10.1038/s41523-024-00697-5
pii: 10.1038/s41523-024-00697-5
doi:

Banques de données

ClinicalTrials.gov
['NCT02955394']

Types de publication

Journal Article

Langues

eng

Pagination

88

Subventions

Organisme : U.S. Department of Defense (United States Department of Defense)
ID : BCRP BC120183 W81XWH-13-1-0090/91
Organisme : U.S. Department of Defense (United States Department of Defense)
ID : BCRP BC120183 W81XWH-13-1-0090/91

Informations de copyright

© 2024. The Author(s).

Références

Collins, L. C. et al. Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses’ Health Study. Mod. Pathol. 24, 924–931 (2011).
doi: 10.1038/modpathol.2011.54 pubmed: 21552212 pmcid: 3128675
Ricciardelli, C. et al. The magnitude of androgen receptor positivity in breast cancer is critical for reliable prediction of disease outcome. Clin. Cancer Res. 24, 2328–2341 (2018).
doi: 10.1158/1078-0432.CCR-17-1199 pubmed: 29514843
Cao, L. et al. A high AR:ERα or PDEF:ERα ratio predicts a sub-optimal response to tamoxifen therapy in ERα-positive breast cancer. Cancer Chemother. Pharmacol. 84, 609–620 (2019).
doi: 10.1007/s00280-019-03891-6 pubmed: 31297554
Cochrane, D. R. et al. Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res. 16, R7 (2014).
doi: 10.1186/bcr3599 pubmed: 24451109 pmcid: 3978822
D’Amato, N. C. et al. Cooperative dynamics of AR and ER activity in breast cancer. Mol. Cancer Res. 14, 1054–1067 (2016).
doi: 10.1158/1541-7786.MCR-16-0167 pubmed: 27565181 pmcid: 5107172
Rangel, N. et al. AR/ER ratio correlates with expression of proliferation markers and with distinct subset of breast tumors. Cells 9, 1064 (2020).
doi: 10.3390/cells9041064 pubmed: 32344660 pmcid: 7226480
Rangel, N. et al. The role of the AR/ER ratio in ER-positive breast cancer patients. Endocr. Relat. Cancer 25, 163–172 (2018).
doi: 10.1530/ERC-17-0417 pubmed: 29386247
Schwartzberg, L. S. et al. A phase I/Ib study of enzalutamide alone and in combination with endocrine therapies in women with advanced breast cancer. Clin. Cancer Res. 23, 4046–4054 (2017).
doi: 10.1158/1078-0432.CCR-16-2339 pubmed: 28280092
Elias, A. D. et al. Phase II trial of fulvestrant plus enzalutamide in ER+/HER2- advanced breast cancer. NPJ Breast Cancer 9, 41 (2023).
doi: 10.1038/s41523-023-00544-z pubmed: 37210417 pmcid: 10199936
Palmieri, C. et al. Activity and safety of enobosarm, a novel, oral, selective androgen receptor modulator, in androgen receptor-positive, oestrogen receptor-positive, and HER2-negative advanced breast cancer (Study G200802): a randomised, open-label, multicentre, multinational, parallel design, phase 2 trial. Lancet Oncol. 25, 317–325 (2024).
doi: 10.1016/S1470-2045(24)00004-4 pubmed: 38342115
Hickey, T. E. et al. The androgen receptor is a tumor suppressor in estrogen receptor-positive breast cancer. Nat. Med. 27, 310–320 (2021).
doi: 10.1038/s41591-020-01168-7 pubmed: 33462444
Ciupek, A. et al. Androgen receptor promotes tamoxifen agonist activity by activation of EGFR in ERα-positive breast cancer. Breast Cancer Res. Treat. 154, 225–237 (2015).
doi: 10.1007/s10549-015-3609-7 pubmed: 26487496 pmcid: 4749407
De Amicis, F. et al. Androgen receptor overexpression induces tamoxifen resistance in human breast cancer cells. Breast Cancer Res. Treat. 121, 1–11 (2010).
doi: 10.1007/s10549-009-0436-8 pubmed: 19533338
Gu, G. et al. Hormonal modulation of ESR1 mutant metastasis. Oncogene 40, 997–1011 (2021).
doi: 10.1038/s41388-020-01563-x pubmed: 33323970
Williams, M. M. et al. Steroid hormone receptor and infiltrating immune cell status reveals therapeutic vulnerabilities of ESR1-mutant breast cancer. Cancer Res. 81, 732–746 (2021).
doi: 10.1158/0008-5472.CAN-20-1200 pubmed: 33184106
Ma, C. X. et al. Endocrine-sensitive disease rate in postmenopausal patients with estrogen receptor-rich/ERBB2-negative breast cancer receiving neoadjuvant anastrozole, fulvestrant, or their combination: a phase 3 randomized clinical trial. JAMA Oncol. 10, 362–371 (2024).
doi: 10.1001/jamaoncol.2023.6038 pubmed: 38236590
Ellis, M. J. et al. Ki67 proliferation index as a tool for chemotherapy decisions during and after neoadjuvant aromatase inhibitor treatment of breast cancer: results from the American College of Surgeons Oncology Group Z1031 Trial (Alliance). J. Clin. Oncol. 35, 1061–1069 (2017).
doi: 10.1200/JCO.2016.69.4406 pubmed: 28045625 pmcid: 5455353
Barton, V. N. et al. Multiple molecular subtypes of triple-negative breast cancer critically rely on androgen receptor and respond to enzalutamide in vivo. Mol. Cancer Ther. 14, 769–778 (2015).
doi: 10.1158/1535-7163.MCT-14-0926 pubmed: 25713333 pmcid: 4534304
Hanamura, T. et al. Secreted indicators of androgen receptor activity in breast cancer pre-clinical models. Breast Cancer Res. 23, 102 (2021).
doi: 10.1186/s13058-021-01478-9 pubmed: 34736512 pmcid: 8567567
Guan, X. et al. Androgen receptor activity in T cells limits checkpoint blockade efficacy. Nature 606, 791–796 (2022).
doi: 10.1038/s41586-022-04522-6 pubmed: 35322234 pmcid: 10294141
Madan, R. A. et al. Clinical and immunologic impact of short-course enzalutamide alone and with immunotherapy in non-metastatic castration sensitive prostate cancer. J. Immunother. Cancer 9, e001556 (2021).
doi: 10.1136/jitc-2020-001556 pubmed: 33664086 pmcid: 7934713
Consiglio, C. R., Udartseva, O., Ramsey, K. D., Bush, C. & Gollnick, S. O. Enzalutamide, an androgen receptor antagonist, enhances myeloid cell-mediated immune suppression and tumor progression. Cancer Immunol. Res. 8, 1215–1227 (2020).
doi: 10.1158/2326-6066.CIR-19-0371 pubmed: 32661092 pmcid: 7484281
Doane, A. S. et al. An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene 25, 3994–4008 (2006).
doi: 10.1038/sj.onc.1209415 pubmed: 16491124
Farmer, P. et al. Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24, 4660–4671 (2005).
doi: 10.1038/sj.onc.1208561 pubmed: 15897907
Lehmann, B. D. et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 121, 2750–2767 (2011).
doi: 10.1172/JCI45014 pubmed: 21633166 pmcid: 3127435
Opitz, C. A. et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478, 197–203 (2011).
doi: 10.1038/nature10491 pubmed: 21976023
Solvay, M. et al. Tryptophan depletion sensitizes the AHR pathway by increasing AHR expression and GCN2/LAT1-mediated kynurenine uptake, and potentiates induction of regulatory T lymphocytes. J. Immunother. Cancer 11, e006728 (2023).
doi: 10.1136/jitc-2023-006728 pubmed: 37344101 pmcid: 10314700
Greene, L. I. et al. A role for tryptophan-2,3-dioxygenase in CD8 T-cell suppression and evidence of tryptophan catabolism in breast cancer patient plasma. Mol. Cancer Res. 17, 131–139 (2019).
doi: 10.1158/1541-7786.MCR-18-0362 pubmed: 30143553
Stanton, S. E., Adams, S. & Disis, M. L. Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: a systematic review. JAMA Oncol. 2, 1354–1360 (2016).
doi: 10.1001/jamaoncol.2016.1061 pubmed: 27355489
Smyth, G. K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3 (2004).
doi: 10.2202/1544-6115.1027 pubmed: 16646809
Nemkov, T., Hansen, K. C. & D’Alessandro, A. A three-minute method for high-throughput quantitative metabolomics and quantitative tracing experiments of central carbon and nitrogen pathways. Rapid Commun. Mass Spectrom. 31, 663–673 (2017).
doi: 10.1002/rcm.7834 pubmed: 28195377 pmcid: 5364945
Reisz, J. A., Zheng, C., D’Alessandro, A. & Nemkov, T. Untargeted and semi-targeted lipid analysis of biological samples using mass spectrometry-based metabolomics. Methods Mol. Biol. 1978, 121–135 (2019).
doi: 10.1007/978-1-4939-9236-2_8 pubmed: 31119660
Damodar, S. & Mehta, D. S. Effect of scaling and root planing on gingival crevicular fluid level of YKL-40 acute phase protein in chronic periodontitis patients with or without type 2 diabetes mellitus: a clinico-biochemical study. J. Indian Soc. Periodontol. 22, 40–44 (2018).
doi: 10.4103/jisp.jisp_95_17 pubmed: 29568171 pmcid: 5855268
R Core Team. R: a language and environment for statistical computing (R Foundation, 2023).
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
doi: 10.1093/nar/gkv007 pubmed: 25605792 pmcid: 4402510
Cai, J. et al. Increased levels of CHI3L1 and HA are associated with higher occurrence of liver damage in patients with obstructive sleep apnea. Front. Med. 9, 854570 (2022).
doi: 10.3389/fmed.2022.854570
Sergushichev, A. A. An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. Preprint at bioRxiv. https://doi.org/10.1101/060012 (2016).
YKL-40. Arerugi 66, 1016–1017 (2017).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Slowikowski, K. ggrepel: Automatically Position Non-overlapping Text Labels With ‘ggplot2’, Vol. 2024 (Github, 2024).
Kramer, N. E. et al. Plotgardener: cultivating precise multi-panel figures in R. Bioinformatics 38, 2042–2045 (2022).
doi: 10.1093/bioinformatics/btac057 pubmed: 35134826 pmcid: 8963281

Auteurs

Anthony D Elias (AD)

Department of Medicine/Medical Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA.

Alyse W Staley (AW)

Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA.
University of Colorado Cancer Center, Biostatistics and Bioinformatics Shared Resource, Aurora, Colorado, USA.

Monica Fornier (M)

Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.

Gregory A Vidal (GA)

West Cancer Center and Research Institute and Department of Medicine, University of Tennessee Health Sciences Center, Tennessee, USA.

Vida Alami (V)

University of Colorado Cancer Center, Biostatistics and Bioinformatics Shared Resource, Aurora, Colorado, USA.

Sharon Sams (S)

Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA.

Nicole S Spoelstra (NS)

Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA.

Andrew Goodspeed (A)

University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.

Peter Kabos (P)

Department of Medicine/Medical Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA.

Jennifer R Diamond (JR)

Department of Medicine/Medical Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA.

Elena Shagisultanova (E)

Department of Medicine/Medical Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA.

Rosa I Gallagher (RI)

Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA.

Julia D Wulfkuhle (JD)

Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA.

Emanuel F Petricoin (EF)

Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA.

Kathryn L Zolman (KL)

Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA.

Tessa McSpadden (T)

University of Colorado Cancer Center, Oncology Clinical Research Support Team, Aurora, Colorado, USA.

Kimberly R Jordan (KR)

Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA.

Jill E Slansky (JE)

Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA.

Virginia F Borges (VF)

Department of Medicine/Medical Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA.

Dexiang Gao (D)

Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA.
University of Colorado Cancer Center, Biostatistics and Bioinformatics Shared Resource, Aurora, Colorado, USA.

Jennifer K Richer (JK)

Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA. jennifer.richer@cuanschutz.edu.

Classifications MeSH