25-hydroxycholesterol promotes brain cytokine production and leukocyte infiltration in a mouse model of lipopolysaccharide-induced neuroinflammation.


Journal

Journal of neuroinflammation
ISSN: 1742-2094
Titre abrégé: J Neuroinflammation
Pays: England
ID NLM: 101222974

Informations de publication

Date de publication:
05 Oct 2024
Historique:
received: 22 07 2024
accepted: 12 09 2024
medline: 6 10 2024
pubmed: 6 10 2024
entrez: 5 10 2024
Statut: epublish

Résumé

Neuroinflammation has been implicated in the pathogenesis of several neurologic and psychiatric disorders. Microglia are key drivers of neuroinflammation and, in response to different inflammatory stimuli, overexpress a proinflammatory signature of genes. Among these, Ch25h is a gene overexpressed in brain tissue from Alzheimer's disease as well as various mouse models of neuroinflammation. Ch25h encodes cholesterol 25-hydroxylase, an enzyme upregulated in activated microglia under conditions of neuroinflammation, that hydroxylates cholesterol to form 25-hydroxycholesterol (25HC). 25HC can be further metabolized to 7α,25-dihydroxycholesterol, which is a potent chemoattractant of leukocytes. We have previously shown that 25HC increases the production and secretion of the proinflammatory cytokine, IL-1β, by primary mouse microglia treated with lipopolysaccharide (LPS). In the present study, wildtype (WT) and Ch25h-knockout (KO) mice were peripherally administered LPS to induce an inflammatory state in the brain. In LPS-treated WT mice, Ch25h expression and 25HC levels increased in the brain relative to vehicle-treated WT mice. Among LPS-treated WT mice, females produced significantly higher levels of 25HC and showed transcriptomic changes reflecting higher levels of cytokine production and leukocyte migration than WT male mice. However, females were similar to males among LPS-treated KO mice. Ch25h-deficiency coincided with decreased microglial activation in response to systemic LPS. Proinflammatory cytokine production and intra-parenchymal infiltration of leukocytes were significantly lower in KO compared to WT mice. Amounts of IL-1β and IL-6 in the brain strongly correlated with 25HC levels. Our results suggest a proinflammatory role for 25HC in the brain following peripheral administration of LPS.

Identifiants

pubmed: 39369253
doi: 10.1186/s12974-024-03233-1
pii: 10.1186/s12974-024-03233-1
doi:

Substances chimiques

Lipopolysaccharides 0
Hydroxycholesterols 0
Cytokines 0
25-hydroxycholesterol 767JTD2N31
cholesterol 25-hydroxylase EC 1.14.99.38
Steroid Hydroxylases EC 1.14.-

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

251

Subventions

Organisme : NIH HHS
ID : R01AG081419
Pays : United States

Informations de copyright

© 2024. The Author(s).

Références

Chen Y, Dai J, Tang L, et al. Neuroimmune transcriptome changes in patient brains of psychiatric and neurological disorders. Mol Psychiatry. 2023;28(2):710–21. https://doi.org/10.1038/s41380-022-01854-7 .
doi: 10.1038/s41380-022-01854-7
Colonna M, Brioschi S. Neuroinflammation and neurodegeneration in human brain at single-cell resolution. Nat Rev Immunol. 2020;20(2):81–2. https://doi.org/10.1038/s41577-019-0262-0 .
doi: 10.1038/s41577-019-0262-0
Xing C, Huang X, Wang D, Yu D, Hou S, Cui H, et al. Roles of bile acids signaling in neuromodulation under physiological and pathological conditions. Cell Biosci. 2023;13(1):106.
Hannedouche S, Zhang J, Yi T, et al. Oxysterols direct immune cell migration via EBI2. Nature. 2011;475(7357):524–7. https://doi.org/10.1038/nature10280 .
doi: 10.1038/nature10280
Reboldi A, Dang EV, McDonald JG, Liang G, Russell DW, Cyster JG. 25-Hydroxycholesterol suppresses interleukin-1–driven inflammation downstream of type I interferon. Science. 2014;345(6197):679–84. https://doi.org/10.1126/science.1254790 .
doi: 10.1126/science.1254790
Liu SY, Aliyari R, Chikere K, et al. Interferon-Inducible cholesterol-25-Hydroxylase broadly inhibits viral entry by production of 25-Hydroxycholesterol. Immunity. 2013;38(1):92–105. https://doi.org/10.1016/j.immuni.2012.11.005 .
doi: 10.1016/j.immuni.2012.11.005
Zhang Y, Chen K, Sloan SA, et al. An RNA-Sequencing transcriptome and Splicing Database of Glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34(36):11929–47. https://doi.org/10.1523/JNEUROSCI.1860-14.2014 .
doi: 10.1523/JNEUROSCI.1860-14.2014
Zhang Y, Sloan SA, Clarke LE, et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with Mouse. Neuron. 2016;89(1):37–53. https://doi.org/10.1016/j.neuron.2015.11.013 .
doi: 10.1016/j.neuron.2015.11.013
Bauman DR, Bitmansour AD, McDonald JG, Thompson BM, Liang G, Russell DW. 25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production. Proceedings of the National Academy of Sciences. 2009;106(39):16764–16769. https://doi.org/10.1073/pnas.0909142106
Keren-Shaul H, Spinrad A, Weiner A, et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell. 2017;169(7):1276–e129017. https://doi.org/10.1016/j.cell.2017.05.018 .
doi: 10.1016/j.cell.2017.05.018
Krasemann S, Madore C, Cialic R, et al. The TREM2-APOE pathway drives the Transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity. 2017;47(3):566–e5819. https://doi.org/10.1016/j.immuni.2017.08.008 .
doi: 10.1016/j.immuni.2017.08.008
Wong MY, Lewis M, Doherty JJ, et al. 25-Hydroxycholesterol amplifies microglial IL-1β production in an apoE isoform-dependent manner. J Neuroinflammation. 2020;17(1):192. https://doi.org/10.1186/s12974-020-01869-3 .
doi: 10.1186/s12974-020-01869-3
Cyster JG, Dang EV, Reboldi A, Yi T. 25-Hydroxycholesterols in innate and adaptive immunity. Nat Rev Immunol. 2014;14(11):731–43. https://doi.org/10.1038/nri3755 .
doi: 10.1038/nri3755
Cashikar A, Rios D, Timm D, et al. Regulation of astrocyte lipid metabolism and ApoE secretion by the microglial oxysterol, 25-hydroxycholesterol. J Lipid Res Published Online Febr. 2023;25:100350. https://doi.org/10.1016/j.jlr.2023.100350 .
doi: 10.1016/j.jlr.2023.100350
Koarai A, Yanagisawa S, Sugiura H, et al. 25-hydroxycholesterol enhances cytokine release and toll-like receptor 3 response in airway epithelial cells. Respir Res. 2012;13(1):63. https://doi.org/10.1186/1465-9921-13-63 .
doi: 10.1186/1465-9921-13-63
Gold ES, Diercks AH, Podolsky I, et al. 25-Hydroxycholesterol acts as an amplifier of inflammatory signaling. Proc Natl Acad Sci. 2014;111(29):10666–71. https://doi.org/10.1073/pnas.1404271111 .
doi: 10.1073/pnas.1404271111
Guo C, Chi Z, Jiang D, et al. Cholesterol homeostatic Regulator SCAP-SREBP2 integrates NLRP3 inflammasome activation and cholesterol Biosynthetic Signaling in macrophages. Immunity. 2018;49(5):842–e8567. https://doi.org/10.1016/j.immuni.2018.08.021 .
doi: 10.1016/j.immuni.2018.08.021
Diczfalusy U, Olofsson KE, Carlsson AM, et al. Marked upregulation of cholesterol 25-hydroxylase expression by lipopolysaccharide. J Lipid Res. 2009;50(11):2258–64. https://doi.org/10.1194/jlr.M900107-JLR200 .
doi: 10.1194/jlr.M900107-JLR200
Oliveira-Lima OC, Carvalho-Tavares J, Rodrigues MF, et al. Lipid dynamics in LPS-induced neuroinflammation by DESI-MS imaging. Brain Behav Immun. 2019;79:186–94. https://doi.org/10.1016/j.bbi.2019.01.029 .
doi: 10.1016/j.bbi.2019.01.029
Blank M, Enzlein T, Hopf C. LPS-induced lipid alterations in microglia revealed by MALDI mass spectrometry-based cell fingerprinting in neuroinflammation studies. Sci Rep. 2022;12(1):2908. https://doi.org/10.1038/s41598-022-06894-1 .
doi: 10.1038/s41598-022-06894-1
Dawson TM, Golde TE, Lagier-Tourenne C. Animal models of neurodegenerative diseases. Nat Neurosci. 2018;21(10):1370–9. https://doi.org/10.1038/s41593-018-0236-8 .
doi: 10.1038/s41593-018-0236-8
Ransohoff RM. Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat Neurosci. 2012;15(8):1074–7. https://doi.org/10.1038/nn.3168 .
doi: 10.1038/nn.3168
Qin L, Wu X, Block ML, et al. Systemic LPS causes chronic Neuroinflammation and Progressive Neurodegeneration. Glia. 2007;55(5):453–62. https://doi.org/10.1002/glia.20467 .
doi: 10.1002/glia.20467
Thomson CA, McColl A, Graham GJ, Cavanagh J. Sustained exposure to systemic endotoxin triggers chemokine induction in the brain followed by a rapid influx of leukocytes. J Neuroinflamm. 2020;17(1):94. https://doi.org/10.1186/s12974-020-01759-8 .
doi: 10.1186/s12974-020-01759-8
Park K, Scott AL. Cholesterol 25-hydroxylase production by dendritic cells and macrophages is regulated by type I interferons. J Leukoc Biol. 2010;88(6):1081–7. https://doi.org/10.1189/jlb.0610318 .
doi: 10.1189/jlb.0610318
Izumi Y, Cashikar AG, Krishnan K, et al. A proinflammatory stimulus disrupts hippocampal plasticity and learning via Microglial activation and 25-Hydroxycholesterol. J Neurosci. 2021;41(49):10054–64. https://doi.org/10.1523/JNEUROSCI.1502-21.2021 .
doi: 10.1523/JNEUROSCI.1502-21.2021
Srinivasan K, Friedman BA, Etxeberria A, et al. Alzheimer’s patient microglia exhibit enhanced aging and unique transcriptional activation. Cell Rep. 2020;31(13):107843. https://doi.org/10.1016/j.celrep.2020.107843 .
doi: 10.1016/j.celrep.2020.107843
Honda A, Miyazaki T, Ikegami T, et al. Cholesterol 25-hydroxylation activity of CYP3A. J Lipid Res. 2011;52(8):1509–16. https://doi.org/10.1194/jlr.M014084 .
doi: 10.1194/jlr.M014084
Toral-Rios D, Long JM, Ulrich JD, et al. Cholesterol 25-hydroxylase mediates neuroinflammation and neurodegeneration in a mouse model of tauopathy. J Exp Med. 2024;221(4):e20232000. https://doi.org/10.1084/jem.20232000 .
doi: 10.1084/jem.20232000
Monson EA, Crosse KM, Duan M, et al. Intracellular lipid droplet accumulation occurs early following viral infection and is required for an efficient interferon response. Nat Commun. 2021;12(1):4303. https://doi.org/10.1038/s41467-021-24632-5 .
doi: 10.1038/s41467-021-24632-5
Marschallinger J, Iram T, Zardeneta M, et al. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat Neurosci. 2020;23(2):194–208. https://doi.org/10.1038/s41593-019-0566-1 .
doi: 10.1038/s41593-019-0566-1
Chen X, Firulyova M, Manis M, et al. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature. 2023;615(7953):668–77. https://doi.org/10.1038/s41586-023-05788-0 .
doi: 10.1038/s41586-023-05788-0
Eckman PL, King WM, Brunson JG. Studies on the blood brain barrier. I. effects produced by a single injection of gramnegative endotoxin on the permeability of the cerebral vessels. Am J Pathol. 1958;34(4):631–43.
Allen IV, THE EFFECT OF BACTERIAL PYROGEN ON THE BLOOD-BRAIN. BARRIER FOR TRYPAN BLUE. J Pathol Bacteriol. 1965;89:481–94.
doi: 10.1002/path.1700890205
Lawrence JH, Patel A, King MW, Nadarajah CJ, Daneman R, Musiek ES. Microglia drive diurnal variation in susceptibility to inflammatory blood-brain barrier breakdown. bioRxiv. 2024. https://doi.org/10.1101/2024.04.10.588924 .
Wispelwey B, Lesse AJ, Hansen EJ, Scheld WM. Haemophilus influenzae lipopolysaccharide-induced blood brain barrier permeability during experimental meningitis in the rat. J Clin Invest. 1988;82(4):1339–46. https://doi.org/10.1172/JCI113736 .
doi: 10.1172/JCI113736
Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Translational Neurodegeneration. 2020;9(1):42. https://doi.org/10.1186/s40035-020-00221-2 .
doi: 10.1186/s40035-020-00221-2
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157–72. https://doi.org/10.1038/s41582-020-00435-y .
doi: 10.1038/s41582-020-00435-y
Heneka MT, Golenbock DT, Latz E. Innate immunity in Alzheimer’s disease. Nat Immunol. 2015;16(3):229–36. https://doi.org/10.1038/ni.3102 .
doi: 10.1038/ni.3102
Marsh SE, Abud EM, Lakatos A et al. The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function. Proceedings of the National Academy of Sciences. 2016;113(9):E1316-E1325. https://doi.org/10.1073/pnas.1525466113
Chen X, Holtzman DM. Emerging roles of innate and adaptive immunity in Alzheimer’s disease. Immunity. 2022;55(12):2236–54. https://doi.org/10.1016/j.immuni.2022.10.016 .
doi: 10.1016/j.immuni.2022.10.016
Holmes C, Cunningham C, Zotova E, et al. Systemic inflammation and disease progression in Alzheimer disease. Neurology. 2009;73(10):768–74. https://doi.org/10.1212/WNL.0b013e3181b6bb95 .
doi: 10.1212/WNL.0b013e3181b6bb95
Semmler A, Widmann CN, Okulla T, et al. Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. J Neurol Neurosurg Psychiatry. 2013;84(1):62–9. https://doi.org/10.1136/jnnp-2012-302883 .
doi: 10.1136/jnnp-2012-302883
Maheshwari P, Eslick GD. Bacterial infection and Alzheimer’s Disease: a Meta-analysis. J Alzheimer’s Disease. 2015;43(3):957–66. https://doi.org/10.3233/JAD-140621 .
doi: 10.3233/JAD-140621
Itzhaki RF. Overwhelming evidence for a major role for Herpes Simplex Virus Type 1 (HSV1) in Alzheimer’s Disease (AD); underwhelming evidence against. Vaccines (Basel). 2021;9(6):679. https://doi.org/10.3390/vaccines9060679 .
doi: 10.3390/vaccines9060679
Levine KS, Leonard HL, Blauwendraat C, et al. Virus exposure and neurodegenerative disease risk across national biobanks. Neuron. 2023;111(7):1086–e10932. https://doi.org/10.1016/j.neuron.2022.12.029 .
doi: 10.1016/j.neuron.2022.12.029
Seo Doh, O’Donnell D, Jain N, et al. ApoE isoform– and microbiota-dependent progression of neurodegeneration in a mouse model of tauopathy. Science. 2023;379(6628):eadd1236. https://doi.org/10.1126/science.add1236 .
doi: 10.1126/science.add1236
Okun E, Griffioen KJ, Lathia JD, Tang SC, Mattson MP, Arumugam TV. Toll-like receptors in neurodegeneration. Brain Res Rev. 2009;59(2):278–92. https://doi.org/10.1016/j.brainresrev.2008.09.001 .
doi: 10.1016/j.brainresrev.2008.09.001
Song M, Jin J, Lim JE, et al. TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. J Neuroinflammation. 2011;8:92. https://doi.org/10.1186/1742-2094-8-92 .
doi: 10.1186/1742-2094-8-92
Campolo M, Paterniti I, Siracusa R, Filippone A, Esposito E, Cuzzocrea S. TLR4 absence reduces neuroinflammation and inflammasome activation in Parkinson’s diseases in vivo model. Brain Behav Immun. 2019;76:236–47. https://doi.org/10.1016/j.bbi.2018.12.003 .
doi: 10.1016/j.bbi.2018.12.003
Ide M, Harris M, Stevens A, et al. Periodontitis and Cognitive decline in Alzheimer’s Disease. PLoS ONE. 2016;11(3):e0151081. https://doi.org/10.1371/journal.pone.0151081 .
doi: 10.1371/journal.pone.0151081
Shi Q, Zhan T, Bi X, Ye B, ce, Qi N. Cholesterol-autoxidation metabolites in host defense against infectious diseases. Eur J Immunol. 2023;53(9):2350501. https://doi.org/10.1002/eji.202350501 .
doi: 10.1002/eji.202350501
Dang EV, McDonald JG, Russell DW, Cyster JG. Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation. Cell. 2017;171(5):1057–e107111. https://doi.org/10.1016/j.cell.2017.09.029 .
doi: 10.1016/j.cell.2017.09.029
Cazareth J, Guyon A, Heurteaux C, Chabry J, Petit-Paitel A. Molecular and cellular neuroinflammatory status of mouse brain after systemic lipopolysaccharide challenge: importance of CCR2/CCL2 signaling. J Neuroinflamm. 2014;11(1):132. https://doi.org/10.1186/1742-2094-11-132 .
doi: 10.1186/1742-2094-11-132
Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–7. https://doi.org/10.1038/nature21029 .
doi: 10.1038/nature21029
Liddelow SA, Barres BA. Reactive Astrocytes: Production, Function, and, Potential T. Immunity. 2017;46(6):957–967. https://doi.org/10.1016/j.immuni.2017.06.006
Erickson MA, Shulyatnikova T, Banks WA, Hayden MR. Ultrastructural remodeling of the blood–brain barrier and neurovascular unit by Lipopolysaccharide-Induced Neuroinflammation. Int J Mol Sci. 2023;24(2):1640. https://doi.org/10.3390/ijms24021640 .
doi: 10.3390/ijms24021640
Galea I. The blood–brain barrier in systemic infection and inflammation. Cell Mol Immunol. 2021;18(11):2489–501. https://doi.org/10.1038/s41423-021-00757-x .
doi: 10.1038/s41423-021-00757-x
Ruiz F, Peter B, Rebeaud J, et al. Endothelial cell-derived oxysterol ablation attenuates experimental autoimmune encephalomyelitis. EMBO Rep. 2023;24(3):e55328. https://doi.org/10.15252/embr.202255328 .
doi: 10.15252/embr.202255328
Munji RN, Soung AL, Weiner GA, et al. Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood–brain barrier dysfunction module. Nat Neurosci. 2019;22(11):1892–902. https://doi.org/10.1038/s41593-019-0497-x .
doi: 10.1038/s41593-019-0497-x
Kim YR, Kim YM, Lee J, Park J, Lee JE, Hyun YM. Neutrophils return to Bloodstream through the brain blood Vessel after Crosstalk with Microglia during LPS-Induced Neuroinflammation. Front Cell Dev Biol. 2020;8:613733. https://doi.org/10.3389/fcell.2020.613733 .
doi: 10.3389/fcell.2020.613733
Ching S, He L, Lai W, Quan N. IL-1 type I receptor plays a key role in mediating the recruitment of leukocytes into the central nervous system. Brain Behav Immun. 2005;19(2):127–37. https://doi.org/10.1016/j.bbi.2004.06.001 .
doi: 10.1016/j.bbi.2004.06.001
Shau H, Kim A, Golub SH. Modulation of natural killer and lymphokine-activated killer cell cytotoxicity by lactoferrin. J Leukoc Biol. 1992;51(4):343–9. https://doi.org/10.1002/jlb.51.4.343 .
doi: 10.1002/jlb.51.4.343
He H, Geng T, Chen P, et al. NK cells promote neutrophil recruitment in the brain during sepsis-induced neuroinflammation. Sci Rep. 2016;6(1):27711. https://doi.org/10.1038/srep27711 .
doi: 10.1038/srep27711
Ning Z, Liu Y, Guo D, Lin WJ, Tang Y. Natural killer cells in the central nervous system. Cell Commun Signal. 2023;21(1):341. https://doi.org/10.1186/s12964-023-01324-9 .
doi: 10.1186/s12964-023-01324-9
Schwarz M, Lund EG, Lathe R, Björkhem I, Russell DW. Identification and characterization of a mouse oxysterol 7α-Hydroxylase cDNA*. J Biol Chem. 1997;272(38):23995–4001. https://doi.org/10.1074/jbc.272.38.23995 .
doi: 10.1074/jbc.272.38.23995
Wanke F, Moos S, Croxford AL, et al. EBI2 is highly expressed in multiple sclerosis lesions and promotes early CNS Migration of Encephalitogenic CD4 T cells. Cell Rep. 2017;18(5):1270–84. https://doi.org/10.1016/j.celrep.2017.01.020 .
doi: 10.1016/j.celrep.2017.01.020
Yang Y, Kozloski M. Sex differences in Age trajectories of physiological dysregulation: inflammation, metabolic syndrome, and allostatic load. Journals Gerontology: Ser A. 2011;66A(5):493–500. https://doi.org/10.1093/gerona/glr003 .
doi: 10.1093/gerona/glr003
Chêne G, Beiser A, Au R, et al. Gender and incidence of dementia in the Framingham Heart Study from mid-adult life. Alzheimer’s Dement. 2015;11(3):310–20. https://doi.org/10.1016/j.jalz.2013.10.005 .
doi: 10.1016/j.jalz.2013.10.005
Saijo K, Collier JG, Li AC, Katzenellenbogen JA, Glass CK. An ADIOL-ERβ-CtBP transrepression pathway negatively regulates microglia-mediated inflammation. Cell. 2011;145(4):584–95. https://doi.org/10.1016/j.cell.2011.03.050 .
doi: 10.1016/j.cell.2011.03.050
Lappano R, Recchia AG, Francesco EMD, et al. The cholesterol metabolite 25-Hydroxycholesterol activates estrogen receptor α-Mediated signaling in Cancer cells and in Cardiomyocytes. PLoS ONE. 2011;6(1):e16631. https://doi.org/10.1371/journal.pone.0016631 .
doi: 10.1371/journal.pone.0016631
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. https://doi.org/10.1093/bioinformatics/btp616 .
doi: 10.1093/bioinformatics/btp616
Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. https://doi.org/10.1093/nar/gkv007 .
doi: 10.1093/nar/gkv007
Liu R, Holik AZ, Su S, et al. Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses. Nucleic Acids Res. 2015;43(15):e97. https://doi.org/10.1093/nar/gkv412 .
doi: 10.1093/nar/gkv412
Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523. https://doi.org/10.1038/s41467-019-09234-6 .
doi: 10.1038/s41467-019-09234-6
Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://doi.org/10.1101/gr.1239303 .
doi: 10.1101/gr.1239303

Auteurs

Johnathan Romero (J)

Department of Psychiatry, Washington University School of Medicine, St Louis, MO, 63110, USA.

Danira Toral-Rios (D)

Department of Psychiatry, Washington University School of Medicine, St Louis, MO, 63110, USA.

Jinsheng Yu (J)

Department of Genetics & Genome Technology Access Center, Washington University School of Medicine, St Louis, MO, 63110, USA.

Steven M Paul (SM)

Department of Psychiatry, Washington University School of Medicine, St Louis, MO, 63110, USA.
Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, 63110, USA.
Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, 425 S Euclid Ave, Campus Box 8134, St Louis, MO, 63110, USA.

Anil G Cashikar (AG)

Department of Psychiatry, Washington University School of Medicine, St Louis, MO, 63110, USA. cashikar@wustl.edu.
Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, 63110, USA. cashikar@wustl.edu.
Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, 425 S Euclid Ave, Campus Box 8134, St Louis, MO, 63110, USA. cashikar@wustl.edu.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH