Growth hormone - releasing hormone in the immune system.

Endothelium GHRH GHRH antagonist Immune system Inflammation

Journal

Reviews in endocrine & metabolic disorders
ISSN: 1573-2606
Titre abrégé: Rev Endocr Metab Disord
Pays: Germany
ID NLM: 100940588

Informations de publication

Date de publication:
07 Oct 2024
Historique:
accepted: 27 09 2024
medline: 7 10 2024
pubmed: 7 10 2024
entrez: 6 10 2024
Statut: aheadofprint

Résumé

GHRH is a neuropeptide associated with a diverse variety of activities in human physiology and immune responses. The present study reviews the latest information on the involvement of GHRH in the immune system and inflammation, suggesting that GHRH antagonists may deliver a new therapeutic possibility in disorders related to immune system dysfunction and inflammation.

Identifiants

pubmed: 39370499
doi: 10.1007/s11154-024-09913-w
pii: 10.1007/s11154-024-09913-w
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Uniwersytet Medyczny w Lodzi
ID : 503/1-153-06/503-11-001
Organisme : The National Institute Of Allergy And Infectious Diseases of the National Institutes of Health
ID : R03AI176433

Informations de copyright

© 2024. The Author(s).

Références

Guillemin R, Brazeau P, Bohlen P, Esch F, Ling N, Wehrenberg WB. Growth hormone-releasing factor from a human pancreatic tumor that caused acromegaly. Science. 1982;218(4572):585–7.
pubmed: 6812220 doi: 10.1126/science.6812220
Barabutis N, Schally AV. Growth hormone-releasing hormone: extrapituitary effects in physiology and pathology. Cell Cycle. 2010;9(20):4110–6.
pubmed: 20962577 doi: 10.4161/cc.9.20.13787
Barabutis N, Schally AV, Siejka A. P53, GHRH, inflammation and cancer. EBioMed. 2018;37:557–62.
doi: 10.1016/j.ebiom.2018.10.034
Schally AV, Varga JL, Engel JB. Antagonists of growth-hormone-releasing hormone: an emerging new therapy for cancer. Nat Clin Pract Endocrinol Metab. 2008;4(1):33–43.
pubmed: 18084344 doi: 10.1038/ncpendmet0677
Barabutis N, Akhter MS, Kubra KT, Jackson K. Growth Hormone-Releasing Hormone in Endothelial Inflammation. Endocrinology. 2022;164(2):bqac209.
pubmed: 36503995 pmcid: 9923806 doi: 10.1210/endocr/bqac209
Smith PJ, Pringle PJ, Brook CG, Schulster D, Rafferty B. Plasma immunoreactive GHRH and serum GH concentrations following pulsatile GHRH 1–40 administration in GH deficient children. Clin Endocrinol. 1987;27(4):501–7.
doi: 10.1111/j.1365-2265.1987.tb01179.x
Yang D, Zhou Q, Labroska V, Qin S, Darbalaei S, Wu Y, Yuliantie E, Xie L, Tao H, Cheng J, Liu Q, Zhao S, Shui W, Jiang Y, Wang MW. G protein-coupled receptors: structure- and function-based drug discovery. Signal Transduct Target Ther. 2021;6(1):7.
pubmed: 33414387 pmcid: 7790836 doi: 10.1038/s41392-020-00435-w
Fridlyand LE, Tamarina NA, Schally AV, Philipson LH. Growth hormone-releasing hormone in diabetes. Front Endocrinol. 2016;7:129.
doi: 10.3389/fendo.2016.00129
Rekasi Z, Czompoly T, Schally AV, Halmos G. Isolation and sequencing of cDNAs for splice variants of growth hormone-releasing hormone receptors from human cancers. Proc Natl Acad Sci U S A. 2000;97(19):10561–6.
pubmed: 10962031 pmcid: 27064 doi: 10.1073/pnas.180313297
Kiaris H, Chatzistamou I, Schally AV, Halmos G, Varga JL, Koutselini H, Kalofoutis A. Ligand-dependent and -independent effects of splice variant 1 of growth hormone-releasing hormone receptor. Proc Natl Acad Sci U S A. 2003;100(16):9512–7.
pubmed: 12867592 pmcid: 170949 doi: 10.1073/pnas.1533185100
Barabutis N, Siejka A, Schally AV, Block NL, Cai R, Varga JL. Activation of mitogen-activated protein kinases by a splice variant of GHRH receptor. J Mol Endocrinol. 2010;44(2):127–34.
pubmed: 19897610 doi: 10.1677/JME-09-0121
Reichlin S. Neuroendocrine-immune interactions. N Engl J Med. 1993;329(17):1246–53.
pubmed: 8105378 doi: 10.1056/NEJM199310213291708
O’Connor JC, McCusker RH, Strle K, Johnson RW, Dantzer R, Kelley KW. Regulation of IGF-I function by proinflammatory cytokines: at the interface of immunology and endocrinology. Cell Immunol. 2008;252(1–2):91–110.
pubmed: 18325486 pmcid: 2615236 doi: 10.1016/j.cellimm.2007.09.010
Taub DD. Neuroendocrine interactions in the immune system. Cell Immunol. 2008;252(1–2):1–6.
pubmed: 18619587 pmcid: 2562609 doi: 10.1016/j.cellimm.2008.05.006
McCann SM, Kimura M, Karanth S, Yu WH, Mastronardi CA, Rettori V. The mechanism of action of cytokines to control the release of hypothalamic and pituitary hormones in infection. Ann N Y Acad Sci. 2000;917:4–18.
pubmed: 11268367 doi: 10.1111/j.1749-6632.2000.tb05368.x
Croce L, Gangemi D, Ancona G, Liboa F, Bendotti G, Minelli L, Chiovato L. The cytokine storm and thyroid hormone changes in COVID-19. J Endocrinol Invest. 2021;44(5):891–904.
pubmed: 33559848 pmcid: 7871522 doi: 10.1007/s40618-021-01506-7
Weigent DA, Blalock JE. Immunoreactive growth hormone-releasing hormone in rat leukocytes. J Neuroimmunol. 1990;29(1–3):1–13.
pubmed: 2211982 doi: 10.1016/0165-5728(90)90142-A
Stephanou A, Knight RA, Lightman SL. Production of a growth hormone-releasing hormone-like peptide and its mRNA by human lymphocytes. Neuroendocrinology. 1991;53(6):628–33.
pubmed: 1876239
Chen HF, Jeung EB, Stephenson M, Leung PC. Human peripheral blood mononuclear cells express gonadotropin-releasing hormone (GnRH), GnRH receptor, and interleukin-2 receptor gamma-chain messenger ribonucleic acids that are regulated by GnRH in vitro. J Clin Endocrinol Metab. 1999;84(2):743–50.
pubmed: 10022447
Khorram O, Garthwaite M, Golos T. The influence of aging and sex hormones on expression of growth hormone-releasing hormone in the human immune system. J Clin Endocrinol Metab. 2001;86(7):3157–61.
pubmed: 11443181
Granato G, Gesmundo I, Pedrolli F, Kasarla R, Begani L, Banfi D, Bruno S, Lopatina T, Brizzi MF, Cai R, Sha W, Ghigo E, Schally AV, Granata R. Growth hormone-releasing hormone antagonist MIA-602 inhibits inflammation induced by SARS-CoV-2 spike protein and bacterial lipopolysaccharide synergism in macrophages and human peripheral blood mononuclear cells. Front Immunol. 2023;14:1231363.
pubmed: 37649486 pmcid: 10462983 doi: 10.3389/fimmu.2023.1231363
Siejka A, Stepien T, Lawnicka H, Krupinski R, Komorowski J, Stepien H. Evaluation of the effect of GHRH(1–44)NH2 on the secretion of interleukin-2 (IL-2) and soluble IL-2 receptor alpha (sIL-2Ralpha) from human peripheral blood mononuclear cells in vitro. Endokrynol Pol. 2005;56(5):773–8.
pubmed: 16817143
Stepien T, Lawnicka H, Komorowski J, Stepien H, Siejka A. Growth hormone-releasing hormone stimulates the secretion of interleukin 17 from human peripheral blood mononuclear cells in vitro. Neuro Endocrinol Lett. 2010;31(6):852–6.
pubmed: 21196925
Siejka A, Lawnicka H, Komorowski J, Stepien T, Krupinski R, Stepien H. Effect of growth hormone-releasing hormone (GHRH) and GHRH antagonist (MZ-4-71) on interferon-gamma secretion from human peripheral blood mononuclear cells in vitro. Neuropeptides. 2004;38(1):35–9.
pubmed: 15003714 doi: 10.1016/j.npep.2003.12.001
Du L, Ho BM, Zhou L, Yip YWY, He JN, Wei Y, Tham CC, Chan SO, Schally AV, Pang CP, Li J, Chu WK. Growth hormone releasing hormone signaling promotes Th17 cell differentiation and autoimmune inflammation. Nat Commun. 2023;14(1):3298.
pubmed: 37280225 pmcid: 10244428 doi: 10.1038/s41467-023-39023-1
Siejka A, Schally AV, Barabutis N. Activation of Janus kinase/signal transducer and activator of transcription 3 pathway by growth hormone-releasing hormone. Cell Mol Life Sci. 2010;67(6):959–64.
pubmed: 20012909 doi: 10.1007/s00018-009-0224-y
Barabutis N, Siejka A, Schally AV. Growth hormone releasing hormone induces the expression of nitric oxide synthase. J Cell Mol Med. 2011;15(5):1148–55.
pubmed: 20518847 doi: 10.1111/j.1582-4934.2010.01096.x
Liang WC, Ren JL, Yu QX, Li J, Ng TK, Chu WK, Qin YJ, Chu KO, Schally AV, Pang CP, Chan SO. Signaling mechanisms of growth hormone-releasing hormone receptor in LPS-induced acute ocular inflammation. Proc Natl Acad Sci U S A. 2020;117(11):6067–74.
pubmed: 32123064 pmcid: 7084074 doi: 10.1073/pnas.1904532117
Recinella L, Chiavaroli A, Orlando G, Ferrante C, Marconi GD, Gesmundo I, Granata R, Cai R, Sha W, Schally AV, Brunetti L, Leone S. Antinflammatory, antioxidant, and behavioral effects induced by administration of growth hormone-releasing hormone analogs in mice. Sci Rep. 2020;10(1):732.
pubmed: 31959947 pmcid: 6971229 doi: 10.1038/s41598-019-57292-z
Brown PA, Davis WC, Draghia-Akli R. Immune-enhancing effects of growth hormone-releasing hormone delivered by plasmid injection and electroporation. Mol Ther. 2004;10(4):644–51.
pubmed: 15451448 doi: 10.1016/j.ymthe.2004.06.1015
Khorram O, Yeung M, Vu L, Yen SS. Effects of [norleucine27]growth hormone-releasing hormone (GHRH) (1–29)-NH2 administration on the immune system of aging men and women. J Clin Endocrinol Metab. 1997;82(11):3590–6.
pubmed: 9360512
Ma Q, Xia X, Tao Q, Lu K, Shen J, Xu Q, Hu X, Tang Y, Block NL, Webster KA, Schally AV, Wang J, Yu H. Profound Actions of an Agonist of Growth Hormone-Releasing Hormone on Angiogenic Therapy by Mesenchymal Stem Cells. Arterioscler Thromb Vasc Biol. 2016;36(4):663–72.
pubmed: 26868211 pmcid: 4808467 doi: 10.1161/ATVBAHA.116.307126
Barrios MR, Campos VC, Peres NTA, de Oliveira LL, Cazzaniga RA, Santos MB, Aires MB, Silva RLL, Barreto A, Goto H, Almeida RP, Salvatori R, Aguiar-Oliveira MH, Jesus AMR. Macrophages from subjects with isolated GH/IGF-I deficiency due to a GHRH receptor gene mutation are less prone to infection by Leishmania amazonensis. Front Cell Infect Microbiol. 2019;9:311.
pubmed: 31544067 pmcid: 6730494 doi: 10.3389/fcimb.2019.00311
Siejka A, Barabutis N. Growth hormone - releasing hormone in the context of inflammation and redox biology. Front Immunol. 2024;15:1403124.
pubmed: 38957466 pmcid: 11217323 doi: 10.3389/fimmu.2024.1403124
Russell-Aulet M, Jaffe CA, Demott-Friberg R, Barkan AL. In vivo semiquantification of hypothalamic growth hormone-releasing hormone (GHRH) output in humans: evidence for relative GHRH deficiency in aging. J Clin Endocrinol Metab. 1999;84(10):3490–7.
pubmed: 10522985
Kuwahara S, Kesuma Sari D, Tsukamoto Y, Tanaka S, Sasaki F. Age-related changes in growth hormone (GH)-releasing hormone and somatostatin neurons in the hypothalamus and in GH cells in the anterior pituitary of female mice. Brain Res. 2004;1025(1–2):113–22.
pubmed: 15464751 doi: 10.1016/j.brainres.2004.08.012
Spadaro O, Goldberg EL, Camell CD, Youm YH, Kopchick JJ, Nguyen KY, Bartke A, Sun LY, Dixit VD. Growth Hormone Receptor Deficiency Protects against Age-Related NLRP3 Inflammasome Activation and Immune Senescence. Cell Rep. 2016;14(7):1571–80.
pubmed: 26876170 pmcid: 5992590 doi: 10.1016/j.celrep.2016.01.044
Jimenez JJ, DelCanto GM, Popovics P, Perez A, Vila Granda A, Vidaurre I, Cai RZ, Rick FG, Swords RT, Schally AV. A new approach to the treatment of acute myeloid leukaemia targeting the receptor for growth hormone-releasing hormone. Br J Haematol. 2018;181(4):476–85.
pubmed: 29663325 doi: 10.1111/bjh.15207
Chale RS, Almeida SM, Rodriguez M, Jozic I, Gaumond SI, Schally AV, Jimenez JJ. The Application of GHRH Antagonist as a Treatment for Resistant APL. Cancers. 2023;15(12):3104.
pubmed: 37370714 pmcid: 10296252 doi: 10.3390/cancers15123104
Ikushima H, Kanaoka M, Kojima S. Cutting edge: Requirement for growth hormone-releasing hormone in the development of experimental autoimmune encephalomyelitis. J Immunol. 2003;171(6):2769–72.
pubmed: 12960295 doi: 10.4049/jimmunol.171.6.2769
Shohreh R, Pardo CA, Guaraldi F, Schally AV, Salvatori R. GH, but not GHRH, plays a role in the development of experimental autoimmune encephalomyelitis. Endocrinology. 2011;152(10):3803–10.
pubmed: 21846799 doi: 10.1210/en.2011-1317
DiToro D, Harbour SN, Bando JK, Benavides G, Witte S, Laufer VA, Moseley C, Singer JR, Frey B, Turner H, Bruning J, Darley-Usmar V, Gao M, Conover C, Hatton RD, Frank S, Colonna M, Weaver CT. Insulin-Like Growth Factors Are Key Regulators of T Helper 17 Regulatory T Cell Balance in Autoimmunity. Immunity. 2020;52(4):650-667 e10.
pubmed: 32294406 pmcid: 8078727 doi: 10.1016/j.immuni.2020.03.013
Qin YJ, Chan SO, Chong KK, Li BF, Ng TK, Yip YW, Chen H, Zhang M, Block NL, Cheung HS, Schally AV, Pang CP. Antagonist of GH-releasing hormone receptors alleviates experimental ocular inflammation. Proc Natl Acad Sci U S A. 2014;111(51):18303–8.
pubmed: 25489106 pmcid: 4280596 doi: 10.1073/pnas.1421815112
Popovics P, Schally AV, Salgueiro L, Kovacs K, Rick FG. Antagonists of growth hormone-releasing hormone inhibit proliferation induced by inflammation in prostatic epithelial cells. Proc Natl Acad Sci U S A. 2017;114(6):1359–64.
pubmed: 28123062 pmcid: 5307470 doi: 10.1073/pnas.1620884114
Recinella L, Chiavaroli A, Di Valerio V, Veschi S, Orlando G, Ferrante C, Gesmundo I, Granata R, Cai R, Sha W, Schally AV, Lattanzio R, Brunetti L, Leone S. Protective effects of growth hormone-releasing hormone analogs in DSS-induced colitis in mice. Sci Rep. 2021;11(1):2530.
pubmed: 33510215 pmcid: 7844299 doi: 10.1038/s41598-021-81778-4
Zhang C, Cai R, Lazerson A, Delcroix G, Wangpaichitr M, Mirsaeidi M, Griswold AJ, Schally AV, Jackson RM. Growth hormone-releasing hormone receptor antagonist modulates lung inflammation and fibrosis due to bleomycin. Lung. 2019;197(5):541–9.
pubmed: 31392398 pmcid: 6778540 doi: 10.1007/s00408-019-00257-w
Zhang C, Tian R, Dreifus EM, Hashemi Shahraki A, Holt G, Cai R, Griswold A, Bejarano P, Jackson R, V.S. A, M. Mirsaeidi,. Activity of the growth hormone-releasing hormone antagonist MIA602 and its underlying mechanisms of action in sarcoidosis-like granuloma. Clin Transl Immunol. 2021;10(7):e1310.
doi: 10.1002/cti2.1310
Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, Li Y. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther. 2021;6(1):263.
pubmed: 34248142 pmcid: 8273155 doi: 10.1038/s41392-021-00658-5
Murciano-Goroff YR, Warner AB, Wolchok JD. The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Res. 2020;30(6):507–19.
pubmed: 32467593 pmcid: 7264181 doi: 10.1038/s41422-020-0337-2
Yu W, Tu Y, Long Z, Liu J, Kong D, Peng J, Wu H, Zheng G, Zhao J, Chen Y, Liu R, Li W, Hai C. Reactive oxygen species bridge the gap between chronic inflammation and tumor development. Oxid Med Cell Longev. 2022;2022:2606928.
pubmed: 35799889 pmcid: 9256443 doi: 10.1155/2022/2606928
Morris G, Gevezova M, Sarafian V, Maes M. Redox regulation of the immune response. Cell Mol Immunol. 2022;19(10):1079–101.
pubmed: 36056148 pmcid: 9508259 doi: 10.1038/s41423-022-00902-0
Barabutis N, Schally AV. Antioxidant activity of growth hormone-releasing hormone antagonists in LNCaP human prostate cancer line. Proc Natl Acad Sci U S A. 2008;105(51):20470–5.
pubmed: 19075233 pmcid: 2629286 doi: 10.1073/pnas.0811209106
Fakir S, Kubra KT, Akhter MS, Uddin MA, Barabutis N. Protective effects of growth hormone - releasing hormone antagonists in the lungs of septic mice. Cell Signal. 2024;121:111260.
pubmed: 38871041 doi: 10.1016/j.cellsig.2024.111260
Akhter MS, Barabutis N. Suppression of reactive oxygen species in endothelial cells by an antagonist of growth hormone-releasing hormone. J Biochem Mol Toxicol. 2021;35(10):e22879.
pubmed: 34369038 pmcid: 8526391 doi: 10.1002/jbt.22879
Bodart G, Farhat K, Renard-Charlet C, Becker G, Plenevaux A, Salvatori R, Geenen V, Martens H. The severe deficiency of the somatotrope GH-releasing hormone/growth hormone/insulin-like growth factor 1 axis of Ghrh(-/-) mice is associated with an important splenic atrophy and relative B lymphopenia. Front Endocrinol. 2018;9:296.
doi: 10.3389/fendo.2018.00296
Farhat K, Bodart G, Charlet-Renard C, Desmet CJ, Moutschen M, Beguin Y, Baron F, Melin P, Quatresooz P, Parent AS, Desmecht D, Sirard JC, Salvatori R, Martens H, Geenen VG. Growth hormone (GH) deficient mice with GHRH gene ablation are severely deficient in vaccine and immune responses against streptococcus pneumoniae. Front Immunol. 2018;9:2175.
pubmed: 30333823 pmcid: 6176084 doi: 10.3389/fimmu.2018.02175
B.G.R.C. Farhat K., Desmet C., Moutschen M., Baron F., Beguin Y., Salvatori R., Matens H., Geenen V. A surprising and dramatic neuroendocrine-immune phenotype of mice deficient in Growth Hormone-Releasing Hormone (GHRH)., ECE2017, Endocrine Abstracts, Lisbon, Portugal, 2017, p. EP883.
Sukriti S, Tauseef M, Yazbeck P, Mehta D. Mechanisms regulating endothelial permeability. Pulm Circ. 2014;4(4):535–51.
pubmed: 25610592 pmcid: 4278616 doi: 10.1086/677356
Barabutis N. Insights on supporting the aging brain microvascular endothelium. Aging Brain. 2021;1:100009.
pubmed: 33681752 pmcid: 7932454 doi: 10.1016/j.nbas.2021.100009
Jiang J, Huang K, Xu S, Garcia JGN, Wang C, Cai H. Targeting NOX4 alleviates sepsis-induced acute lung injury via attenuation of redox-sensitive activation of CaMKII/ERK1/2/MLCK and endothelial cell barrier dysfunction. Redox Biol. 2020;36:101638.
pubmed: 32863203 pmcid: 7381685 doi: 10.1016/j.redox.2020.101638
Barabutis N, Schally AV. Knocking down gene expression for growth hormone-releasing hormone inhibits proliferation of human cancer cell lines. Br J Cancer. 2008;98(11):1790–6.
pubmed: 18506184 pmcid: 2410108 doi: 10.1038/sj.bjc.6604386
Schally AV, Perez R, Block NL, Rick FG. Potentiating effects of GHRH analogs on the response to chemotherapy. Cell Cycle. 2015;14(5):699–704.
pubmed: 25648497 pmcid: 4418275 doi: 10.1080/15384101.2015.1010893
Akhter MS, Kubra KT, Barabutis N. Protective effects of GHRH antagonists against hydrogen peroxide-induced lung endothelial barrier disruption. Endocrine. 2023;79(3):587–92.
pubmed: 36261700 doi: 10.1007/s12020-022-03226-1
Barabutis N, Akhter MS. Involvement of NEK2 and NEK9 in LPS - induced endothelial barrier dysfunction. Microvasc Res. 2024;152:104651.
pubmed: 38176677 doi: 10.1016/j.mvr.2023.104651
Barabutis N, Fakir S. Growth hormone-releasing hormone beyond cancer. Clin Exp Pharmacol Physiol. 2024;51(1):40–1.
pubmed: 37750473 doi: 10.1111/1440-1681.13829
Barabutis N, Kubra KT, Akhter MS. Growth hormone-releasing hormone antagonists protect against hydrochloric acid-induced endothelial injury in vitro. Environ Toxicol Pharmacol. 2023;99:104113.
pubmed: 36940786 pmcid: 10111240 doi: 10.1016/j.etap.2023.104113
Barabutis N, Siejka A, Akhter MS. Growth hormone-releasing hormone antagonists counteract hydrogen peroxide - induced paracellular hyperpermeability in endothelial cells. Growth Horm IGF Res. 2023;69–70:101534.
pubmed: 37210756 pmcid: 10247445 doi: 10.1016/j.ghir.2023.101534
Fakir S, Barabutis N. Growth hormone-releasing hormone antagonists counteract interferon-gamma - induced barrier dysfunction in bovine and human endothelial cells. Cytokine. 2024;173:156416.
pubmed: 37952313 doi: 10.1016/j.cyto.2023.156416
Akhter MS, Kubra KT, Uddin MA, Jois S, Barabutis N. An antagonist of growth hormone-releasing hormone protects against LPS-induced increase of bronchoalveolar lavage fluid protein concentration. Inflamm Res. 2022;71(2):183–5.
pubmed: 34993559 pmcid: 8736306 doi: 10.1007/s00011-021-01531-5
Kubra KT, Akhter MS, Apperley K, Barabutis N. Growth Hormone-Releasing hormone antagonist JV-1-36 suppresses reactive oxygen species generation in A549 lung cancer cells. Endocrines. 2022;3(4):813–20.
pubmed: 36540765 pmcid: 9762825 doi: 10.3390/endocrines3040067
Barabutis N, Akhter MS, Uddin MA, Kubra KT, Schally AV. GHRH Antagonists protect against hydrogen peroxide-induced breakdown of brain microvascular endothelium integrity. Horm Metab Res. 2020;52(5):336–9.
pubmed: 32403147 doi: 10.1055/a-1149-9347
Uddin MA, Akhter MS, Singh SS, Kubra KT, Schally AV, Jois S, Barabutis N. GHRH antagonists support lung endothelial barrier function. Tissue Barriers. 2019;7(4):1669989.
pubmed: 31578921 pmcid: 6866681 doi: 10.1080/21688370.2019.1669989
Fakir S, Barabutis N. Protective Activities of Growth Hormone-Releasing Hormone Antagonists against Toxin-Induced Endothelial Injury. Endocrines. 2024;5(1):116–23.
pubmed: 38895505 pmcid: 11185841 doi: 10.3390/endocrines5010008
Uddin MA, Akhter MS, Kubra KT, Barabutis N. Hsp90 inhibition protects brain endothelial cells against LPS-induced injury. BioFactors. 2022;48(4):926–33.
pubmed: 35266593 pmcid: 10131175 doi: 10.1002/biof.1833
Akhter MS, Uddin MA, Kubra KT, Barabutis N. Elucidation of the molecular pathways involved in the protective effects of AUY-922 in LPS-induced inflammation in mouse lungs. Pharmaceuticals. 2021;14(6):522.
pubmed: 34072430 pmcid: 8226636 doi: 10.3390/ph14060522
Uddin MA, Akhter MS, Kubra KT, Whitaker KE, Shipley SL, Smith LM, Barabutis N. Hsp90 inhibition protects the brain microvascular endothelium against oxidative stress. Brain Disord. 2021;1:100001.
pubmed: 33569547 pmcid: 7869856 doi: 10.1016/j.dscb.2020.100001
Kubra KT, Uddin MA, Akhter MS, Barabutis N. Hsp90 inhibitors induce the unfolded protein response in bovine and mice lung cells. Cell Sig. 2020;67:109500.
doi: 10.1016/j.cellsig.2019.109500
Barabutis N, Uddin MA, Catravas JD. Hsp90 inhibitors suppress P53 phosphorylation in LPS - induced endothelial inflammation. Cytokine. 2019;113:427–32.
pubmed: 30420201 doi: 10.1016/j.cyto.2018.10.020
Thangjam GS, Birmpas C, Barabutis N, Gregory BW, Clemens MA, Newton JR, Fulton D, Catravas JD. Hsp90 inhibition suppresses NF-kappaB transcriptional activation via Sirt-2 in human lung microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2016;310(10):L964–74.
pubmed: 27036868 pmcid: 4896096 doi: 10.1152/ajplung.00054.2016
Barabutis N, Dimitropoulou C, Birmpas C, Joshi A, Thangjam G, Catravas JD. p53 protects against LPS-induced lung endothelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol. 2015;308(8):L776–87.
pubmed: 25713322 pmcid: 4398875 doi: 10.1152/ajplung.00334.2014
Colunga Biancatelli RML, Solopov P, Gregory B, Catravas JD. The HSP90 inhibitor, AUY-922 protects and repairs human lung microvascular endothelial cells from hydrochloric acid-induced endothelial barrier dysfunction. Cells. 2021;10(6):1489.
pubmed: 34199261 pmcid: 8232030 doi: 10.3390/cells10061489
Antonov A, Snead C, Gorshkov B, Antonova GN, Verin AD, Catravas JD. Heat shock protein 90 inhibitors protect and restore pulmonary endothelial barrier function. Am J Respir Cell Mol Biol. 2008;39(5):551–9.
pubmed: 18474672 pmcid: 2574526 doi: 10.1165/rcmb.2007-0324OC
Kubra KT, Akhter MS, Uddin MA, Barabutis N. P53 versus inflammation: an update. Cell Cycle. 2020;19(2):160–2.
pubmed: 31880200 doi: 10.1080/15384101.2019.1708575
Guo W, Yan L, Yang L, Liu X, E Q, Gao P, Ye X, Liu W, Zuo J. Targeting GRP75 improves HSP90 inhibitor efficacy by enhancing p53-mediated apoptosis in hepatocellular carcinoma. PLoS One. (2014);9(1):e85766.
Recinella L, Chiavaroli A, Veschi S, Di Valerio V, Lattanzio R, Orlando G, Ferrante C, Gesmundo I, Granata R, Cai R, Sha W, Schally AV, Brunetti L, Leone S. Antagonist of growth hormone-releasing hormone MIA-690 attenuates the progression and inhibits growth of colorectal cancer in mice. Biomed Pharmacother. 2022;146:112554.
pubmed: 34923341 doi: 10.1016/j.biopha.2021.112554
Akhter MS, Uddin MA, Barabutis N. P53 regulates the redox status of lung endothelial cells. Inflammation. 2020;43(2):686–91.
pubmed: 31838664 doi: 10.1007/s10753-019-01150-7
Barabutis N, Dimitropoulou C, Gregory B, Catravas JD. Wild-type p53 enhances endothelial barrier function by mediating RAC1 signalling and RhoA inhibition. J Cell Mol Med. 2018;22(3):1792–804.
pubmed: 29363851 pmcid: 5824363 doi: 10.1111/jcmm.13460
Kubra KT, Uddin MA, Akhter MS, Barabutis N. P53 is subjected to lipoteichoic acid-induced phosphorylation in the lungs. TH Open. 2020;4(3):e173–4.
pubmed: 32844143 pmcid: 7440968 doi: 10.1055/s-0040-1714695
Kubra KT, Uddin MA, Akhter MS, Leo AJ, Siejka A, Barabutis N. P53 mediates the protective effects of metformin in inflamed lung endothelial cells. Int Immunopharmacol. 2021;101(Pt B):108367.
pubmed: 34794886 pmcid: 8678340 doi: 10.1016/j.intimp.2021.108367
Uddin MA, Akhter MS, Kubra KT, Barabutis N. P53 deficiency potentiates LPS-Induced acute lung injury in vivo. Curr Res Physiol. 2020;3:30–3.
pubmed: 32724900 pmcid: 7386399 doi: 10.1016/j.crphys.2020.07.001
Uddin MA, Akhter MS, Siejka A, Catravas JD, Barabutis N. P53 supports endothelial barrier function via APE1/Ref1 suppression. Immunobiology. 2019;224(4):532–8.
pubmed: 31023490 pmcid: 6682453 doi: 10.1016/j.imbio.2019.04.008
Biriken D, Yazihan N. Modulation of proliferation, apoptosis and inflammation of Caco-2 epithelial cells and THP-1 macrophage-like monocytes in LPS stimulated co-culture model. Bratisl Lek Listy. 2021;122(2):138–44.
pubmed: 33502883
Sagiv A, Bar-Shai A, Levi N, Hatzav M, Zada L, Ovadya Y, Roitman L, Manella G, Regev O, Majewska J, Vadai E, Eilam R, Feigelson SW, Tsoory M, Tauc M, Alon R, Krizhanovsky V. p53 in bronchial club cells facilitates chronic lung inflammation by promoting senescence. Cell Rep. 2018;22(13):3468–79.
pubmed: 29590616 doi: 10.1016/j.celrep.2018.03.009
Kim H, Kokkotou E, Na X, Rhee SH, Moyer MP, Pothoulakis C, Lamont JT. Clostridium difficile toxin A-induced colonocyte apoptosis involves p53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Gastroenterology. 2005;129(6):1875–88.
pubmed: 16344056 doi: 10.1053/j.gastro.2005.09.011
Kubra KT, Barabutis N. P53 in endothelial function and unfolded protein response regulation. Cell Biol Int. 2022;46(12):2257–61.
pubmed: 35998257 pmcid: 9669132 doi: 10.1002/cbin.11891
Fusee LTS, Marin M, Fahraeus R, Lopez I. Alternative mechanisms of p53 action during the unfolded protein response. Cancers. 2020;12(2):401.
pubmed: 32050651 pmcid: 7072472 doi: 10.3390/cancers12020401
Barabutis N, Verin A, Catravas JD. Regulation of pulmonary endothelial barrier function by kinases. Am J Physiol Lung Cell Mol Physiol. 2016;311(5):L832–45.
pubmed: 27663990 pmcid: 5130537 doi: 10.1152/ajplung.00233.2016
Barabutis N. Regulation of lung endothelial permeability by NEK kinases. IUBMB Life. 2020;72(4):801–4.
pubmed: 32045095 doi: 10.1002/iub.2251
Uddin MA, Akhter MS, Kubra KT, Barabutis N. Induction of the NEK family of kinases in the lungs of mice subjected to cecal ligation and puncture model of sepsis. Tissue Barriers. 2021;9(4):1929787.
pubmed: 34151722 pmcid: 8794518 doi: 10.1080/21688370.2021.1929787
Liu C, Cai B, Li D, Yao Y. Wolf-Hirschhorn syndrome candidate 1 facilitates alveolar macrophage pyroptosis in sepsis-induced acute lung injury through NEK7-mediated NLRP3 inflammasome activation. Innate Immun. 2021;27(6):437–47.
pubmed: 34428935 pmcid: 8504266 doi: 10.1177/17534259211035426
Akhter MS, Uddin MA, Schally AV, Kubra KT, Barabutis N. Involvement of the unfolded protein response in the protective effects of growth hormone releasing hormone antagonists in the lungs. J Cell Commun Signal. 2021;15(1):125–9.
pubmed: 33185812 doi: 10.1007/s12079-020-00593-0
Kubra KT, Uddin MA, Akhter MS, Barabutis N. Luminespib counteracts the Kifunensine-induced lung endothelial barrier dysfunction. Curr Res Toxicol. 2020;1:111–5.
pubmed: 33094291 pmcid: 7575137 doi: 10.1016/j.crtox.2020.09.003
Akhter MS, Kubra KT, Uddin MA, Barabutis N. Kifunensine compromises lung endothelial barrier function. Microvasc Res. 2020;132:104051.
pubmed: 32730762 doi: 10.1016/j.mvr.2020.104051
Elfrink HL, Zwart R, Baas F, Scheper W. Inhibition of endoplasmic reticulum associated degradation reduces endoplasmic reticulum stress and alters lysosomal morphology and distribution. Mol Cells. 2013;35(4):291–7.
pubmed: 23515578 pmcid: 3887885 doi: 10.1007/s10059-013-2286-9
Kubra KT, Barabutis N. Brefeldin A and kifunensine modulate LPS-induced lung endothelial hyperpermeability in human and bovine cells. Am J Physiol Cell Physiol. 2021;321(2):C214–20.
pubmed: 34161151 pmcid: 8424681 doi: 10.1152/ajpcell.00142.2021
Barabutis N, Akhter MS. Unfolded protein response suppression potentiates LPS-induced barrier dysfunction and inflammation in bovine pulmonary artery endothelial cells. Tissue Barriers. 2023;12:2232245.
pubmed: 37436424 pmcid: 11042058 doi: 10.1080/21688370.2023.2232245
Mai CT, Le QG, Ishiwata-Kimata Y, Takagi H, Kohno K, Kimata Y. 4-Phenylbutyrate suppresses the unfolded protein response without restoring protein folding in Saccharomyces cerevisiae. FEMS Yeast Res. 2018;18(2):foy016.
doi: 10.1093/femsyr/foy016
Kubra KT, Uddin MA, Barabutis N. Tunicamycin Protects against LPS-Induced Lung Injury. Pharmaceuticals. 2022;15(2):134.
pubmed: 35215247 pmcid: 8876572 doi: 10.3390/ph15020134
Sokolowska P, Siatkowska M, Jozwiak-Bebenista M, Komorowski P, Koptas M, Kowalczyk E, Wiktorowska-Owczarek A. Diclofenac diminished the unfolded protein response (UPR) induced by tunicamycin in human endothelial cells. Molecules. 2022;27(11):3449.
pubmed: 35684385 pmcid: 9182461 doi: 10.3390/molecules27113449
Barabutis N. Activating transcription factor 6 in the endothelial context. Pulm Pharmacol Ther. 2023;80:102216.
pubmed: 37121466 pmcid: 10155510 doi: 10.1016/j.pupt.2023.102216
Glembotski CC, Rosarda JD, Wiseman RL. Proteostasis and Beyond: ATF6 in Ischemic Disease. Trends Mol Med. 2019;25(6):538–50.
pubmed: 31078432 pmcid: 6592750 doi: 10.1016/j.molmed.2019.03.005
Tam AB, Roberts LS, Chandra V, Rivera IG, Nomura DK, Forbes DJ, Niwa M. The UPR activator ATF6 responds to proteotoxic and lipotoxic stress by distinct mechanisms. Dev Cell. 2018;46(3):327-343 e7.
pubmed: 30086303 pmcid: 6467773 doi: 10.1016/j.devcel.2018.04.023
Kubra KT, Akhter MS, Saini Y, Kousoulas KG, Barabutis N. Activating transcription factor 6 protects against endothelial barrier dysfunction. Cell Signal. 2022;99:110432.
pubmed: 35933031 pmcid: 10413362 doi: 10.1016/j.cellsig.2022.110432
Kline GM, Paxman RJ, Lin CY, Madrazo N, Grandjean JM, Lee K, Nugroho K, Powers ET, Wiseman RL, Kelly JW. Divergent proteome reactivity influences arm-selective activation of pharmacological endoplasmic reticulum Proteostasis Regulators. ACS Chem Bio. 2023;18(8):1719–29.
Yuan Z, Lu L, Lian Y, Zhao Y, Tang T, Xu S, Yao Z, Yu Z. AA147 ameliorates post-cardiac arrest cerebral ischemia/reperfusion injury through the co-regulation of the ATF6 and Nrf2 signaling pathways. Front Pharmacol. 2022;13:1028002.
pubmed: 36506549 pmcid: 9727236 doi: 10.3389/fphar.2022.1028002
Kubra KT, Barabutis N. Ceapin-A7 potentiates lipopolysaccharide-induced endothelial injury. J Biochem Mol Toxicol. 2023;37(11):e23460.
pubmed: 37431958 doi: 10.1002/jbt.23460
Ge L, Wang T, Shi D, Geng Y, Fan H, Zhang R, Zhang Y, Zhao J, Li S, Li Y, Shi H, Song G, Pan J, Wang L, Han J. ATF6alpha contributes to rheumatoid arthritis by inducing inflammatory cytokine production and apoptosis resistance. Front Immunol. 2022;13:965708.
pubmed: 36300114 pmcid: 9590309 doi: 10.3389/fimmu.2022.965708
Barabutis N, Akhter MS, Kubra KT, Uddin MA. Restoring the endothelial barrier function in the elderly. Mech Ageing Dev. 2021;196:111479.
pubmed: 33819492 pmcid: 8017911 doi: 10.1016/j.mad.2021.111479
Akhter MS, Uddin MA, Barabutis N. Unfolded protein response regulates P53 expression in the pulmonary endothelium. J Biochem Mol Toxicol. 2019;33(10):e22380.
pubmed: 31339623 pmcid: 6787927 doi: 10.1002/jbt.22380
Barabutis N. NEK-mediated barrier regulation. Pulm Pharmacol Ther. 2024;86:102313.
pubmed: 38909830 doi: 10.1016/j.pupt.2024.102313
Condor Capcha JM, Kamiar A, Robleto E, Saad AG, Cui T, Wong A, Villano J, Zhong W, Pekosz A, Medina E, Cai R, Sha W, Ranek MJ, Webster KA, Schally AV, Jackson RM, Shehadeh LA. Growth hormone-releasing hormone receptor antagonist MIA-602 attenuates cardiopulmonary injury induced by BSL-2 rVSV-SARS-CoV-2 in hACE2 mice. Proc Natl Acad Sci U S A. 2023;120(48):e2308342120.
pubmed: 37983492 pmcid: 10691341 doi: 10.1073/pnas.2308342120
Nekoua MP, Debuysschere C, Vergez I, Morvan C, Mbani CJ, Sane F, Alidjinou EK, Hober D. Viruses and endocrine diseases. Microorganisms. 2023;11(2):361.
pubmed: 36838326 pmcid: 9967810 doi: 10.3390/microorganisms11020361
Siejka A, Barabutis N. Adrenal insufficiency in the COVID-19 era. Am J Physiol Endocrinol Metab. 2021;320(4):E784–5.
pubmed: 33825496 pmcid: 8057305 doi: 10.1152/ajpendo.00061.2021
Kanczkowski W, Evert K, Stadtmuller M, Haberecker M, Laks L, Chen LS, Frontzek K, Pablik J, Hantel C, Beuschlein F, Kurth T, Gruber S, Aguzzi A, Varga Z, Bornstein SR. COVID-19 targets human adrenal glands. Lancet Diabetes Endocrinol. 2022;10(1):13–6.
pubmed: 34801110 doi: 10.1016/S2213-8587(21)00291-6
Rossetti CL, Cazarin J, Hecht F, Beltrao FEL, Ferreira ACF, Fortunato RS, Ramos HE, de Carvalho DP. COVID-19 and thyroid function: What do we know so far? Front Endocrinol. 2022;13:1041676.
doi: 10.3389/fendo.2022.1041676
Capatina C, Poiana C, Fleseriu M. Pituitary and SARS CoV-2: An unremitting conundrum. Best Pract Res Clin Endocrinol Metab. 2023;37(4):101752.
pubmed: 36878774 doi: 10.1016/j.beem.2023.101752
Clarke SA, Abbara A, Dhillo WS. Impact of COVID-19 on the endocrine system: A Mini-review. Endocrinology. 2022;163(1):bqab203.
pubmed: 34543404 doi: 10.1210/endocr/bqab203
Tay MZ, Poh CM, Renia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363–74.
pubmed: 32346093 pmcid: 7187672 doi: 10.1038/s41577-020-0311-8
Melo MA, Borges LP, Salvatori R, Souza DRV, Santos-Junior HT, de Campos RNJMVC, Santos AA, Oliveira CRP, da Invencao GB, Batista VO, Matos ILS, Barros-Oliveira CS, Dos Santos KA, Santos EG, Souza NAA, Melo EV, Borges PC, Santos S, de Oliveira BM, Oliveira-Santos AA, de Jesus AR, Aguiar-Oliveira MH. Individuals with isolated congenital GH deficiency due to a GHRH receptor gene mutation appear to cope better with SARS-CoV-2 infection than controls. Endocrine. 2021;72(2):349–355.

Auteurs

Agnieszka Siejka (A)

Department of Clinical Endocrinology, Medical University of Lodz, Lodz, Poland. agnieszka.siejka@umed.lodz.pl.

Hanna Lawnicka (H)

Department of Immunoendocrinology, Medical University of Lodz, Lodz, Poland.

Saikat Fakir (S)

School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA.

Nektarios Barabutis (N)

School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA.

Classifications MeSH