JNK inhibitor and ferroptosis modulator as possible therapeutic modalities in Alzheimer disease (AD).


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
07 10 2024
Historique:
received: 12 01 2024
accepted: 19 09 2024
medline: 8 10 2024
pubmed: 8 10 2024
entrez: 7 10 2024
Statut: epublish

Résumé

Alzheimer disease (AD) is among the most prevalent neurodegenerative diseases globally, marked by cognitive and behavioral disruptions. Ferroptosis is a form of controlled cell death characterized by intracellular iron accumulation associated with lipid peroxide formation, which subsequently promotes AD initiation and progression. We hypothesized that targeting the ferroptosis pathway may help in AD management. Therefore, our study aimed to evaluate the potential neuroprotective effect of the antifungal Ciclopirox olamine (CPX-O) that acts through iron chelation. We employed CPX-O separately or in combination with the JNK inhibitor (SP600125) in a mice model of AlCl

Identifiants

pubmed: 39375359
doi: 10.1038/s41598-024-73596-1
pii: 10.1038/s41598-024-73596-1
doi:

Substances chimiques

Ciclopirox 19W019ZDRJ
Anthracenes 0
pyrazolanthrone 1TW30Y2766
Aluminum Chloride 3CYT62D3GA
Neuroprotective Agents 0
Amyloid beta-Peptides 0
JNK Mitogen-Activated Protein Kinases EC 2.7.11.24
Iron E1UOL152H7

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

23293

Informations de copyright

© 2024. The Author(s).

Références

Zhang, G. et al. The potential role of ferroptosis in Alzheimer’s disease. J. Alzheimers Dis. 80, 907–925 (2021).
pubmed: 33646161 doi: 10.3233/JAD-201369
Zhang, X. X. et al. The epidemiology of Alzheimer’s Disease Modifiable Risk factors and Prevention. J. Prev. Alzheimer’s Disease. 8, 313–321. https://doi.org/10.14283/jpad.2021.15 (2021).
doi: 10.14283/jpad.2021.15
Shunan, D., Yu, M., Guan, H. & Zhou, Y. Neuroprotective effect of Betalain against AlCl3-induced Alzheimer’s disease in Sprague Dawley rats via putative modulation of oxidative stress and nuclear factor kappa B (NF-κB) signaling pathway. Biomed. Pharmacother. 137, 111369 (2021).
pubmed: 33582452 doi: 10.1016/j.biopha.2021.111369
Adlimoghaddam, A., Neuendorff, M., Roy, B. & Albensi, B. C. A review of clinical treatment considerations of donepezil in severe Alzheimer’s disease. CNS Neurosci. Ther. 24, 876–888 (2018).
pubmed: 30058285 pmcid: 6489741 doi: 10.1111/cns.13035
Nafea, M., Elharoun, M., Abd-Alhaseeb, M. M. & Helmy, M. W. Leflunomide abrogates neuroinflammatory changes in a rat model of Alzheimer’s disease: the role of TNF-α/NF-κB/IL-1β axis inhibition. Naunyn Schmiedebergs Arch. Pharmacol. 396, 485–498. https://doi.org/10.1007/s00210-022-02322-3 (2023).
doi: 10.1007/s00210-022-02322-3 pubmed: 36385687
Van Bergen, J. M. et al. Simultaneous quantitative susceptibility mapping and Flutemetamol-PET suggests local correlation of iron and β-amyloid as an indicator of cognitive performance at high age. Neuroimage. 174, 308–316 (2018).
pubmed: 29548847 doi: 10.1016/j.neuroimage.2018.03.021
Zhao, D. et al. Mechanisms of ferroptosis in Alzheimer’s disease and therapeutic effects of natural plant products: a review. Biomed. Pharmacother. 164, 114312 (2023).
pubmed: 37210894 doi: 10.1016/j.biopha.2023.114312
Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 149, 1060–1072 (2012).
pubmed: 22632970 pmcid: 3367386 doi: 10.1016/j.cell.2012.03.042
Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171, 273–285 (2017).
pubmed: 28985560 pmcid: 5685180 doi: 10.1016/j.cell.2017.09.021
Liu, M., Zhu, W. & Pei D.-s. System Xc–: a key regulatory target of ferroptosis in cancer. Investig. New Drugs. 39, 1123–1131 (2021).
doi: 10.1007/s10637-021-01070-0
Song, X. et al. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc–activity. Curr. Biol. 28, 2388–2399 (2018).
pubmed: 30057310 pmcid: 6081251 doi: 10.1016/j.cub.2018.05.094
Reichert, C. O. et al. Ferroptosis mechanisms involved in neurodegenerative diseases. Int. J. Mol. Sci. 21, 8765 (2020).
pubmed: 33233496 pmcid: 7699575 doi: 10.3390/ijms21228765
Li, S. & Huang, Y. Ferroptosis: an iron-dependent cell death form linking metabolism, diseases, immune cell and targeted therapy. Clin. Transl. Oncol. 24, 1–12. https://doi.org/10.1007/s12094-021-02669-8 (2022).
doi: 10.1007/s12094-021-02669-8 pubmed: 34160772
Cao, J. Y. & Dixon, S. J. Mechanisms of ferroptosis. Cell. Mol. Life Sci. 73, 2195–2209. https://doi.org/10.1007/s00018-016-2194-1 (2016).
doi: 10.1007/s00018-016-2194-1 pubmed: 27048822 pmcid: 4887533
Shin, D., Kim, E. H., Lee, J. & Roh, J. L. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic. Biol. Med. 129, 454–462 (2018).
pubmed: 30339884 doi: 10.1016/j.freeradbiomed.2018.10.426
Raffaele, I., Silvestro, S. & Mazzon, E. MicroRNAs and MAPKs: evidence of these molecular interactions in Alzheimer’s Disease. Int. J. Mol. Sci. 24, 4736 (2023).
pubmed: 36902178 pmcid: 10003111 doi: 10.3390/ijms24054736
Wu, C. et al. Induction of ferroptosis and mitochondrial dysfunction by oxidative stress in PC12 cells. Sci. Rep. 8, 1–11 (2018).
Kim, E. K. & Choi, E. J. Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta. 1802, 396–405. https://doi.org/10.1016/j.bbadis.2009.12.009 (2010).
doi: 10.1016/j.bbadis.2009.12.009 pubmed: 20079433
Priori, E. C. et al. JNK Activation Correlates with Cognitive Impairment and Alteration of the Post-Synaptic Element in the 5xFAD AD Mouse Model. Cells 12, doi: (2023). https://doi.org/10.3390/cells12060904
Everett, J. et al. Evidence of redox-active iron formation following aggregation of ferrihydrite and the Alzheimer’s disease peptide β-amyloid. Inorg. Chem. 53, 2803–2809 (2014).
pubmed: 24559299 doi: 10.1021/ic402406g
Sonthalia, S., Agrawal, M. & Sehgal, V. Topical ciclopirox olamine 1%: revisiting a unique antifungal. Indian Dermatology Online J. 10, 481 (2019).
doi: 10.4103/idoj.IDOJ_29_19
Subissi, A., Monti, D., Togni, G. & Mailland, F. Ciclopirox: recent nonclinical and clinical data relevant to its use as a topical antimycotic agent. Drugs. 70, 2133–2152 (2010).
pubmed: 20964457 doi: 10.2165/11538110-000000000-00000
Krasovskiĭ, G. N., Vasukovich, L. Y. & Chariev, O. G. Experimental study of biological effects of leads and aluminum following oral administration. Environ. Health Perspect. 30, 47–51. https://doi.org/10.1289/ehp.30-1637724 (1979).
doi: 10.1289/ehp.30-1637724 pubmed: 446457 pmcid: 1637724
Ahmed, H. H., Salem, A. Z. M., Sabry, G. M., Husein, A. A. & Kotob S. E. (2015).
Mohamed, A. B., Mohamed, A. Z. & Aly, S. Effect of Thymoquinone against Aluminum Chloride-Induced Alzheimer-Like Model in rats: a neurophysiological and behavioral study. Med. J. Cairo Univ. 88, 355–365 (2020).
doi: 10.21608/mjcu.2020.93997
Nair, A. B. & Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic. Clin. Pharm. 7, 27–31. https://doi.org/10.4103/0976-0105.177703 (2016).
doi: 10.4103/0976-0105.177703 pubmed: 27057123 pmcid: 4804402
Eberhard, Y. et al. Chelation of intracellular iron with the antifungal agent ciclopirox olamine induces cell death in leukemia and myeloma cells. Blood J. Am. Soc. Hematol. 114, 3064–3073 (2009).
Rahman, M., Zhang, Z., Mody, A. A., Su, D. M. & Das, H. K. Intraperitoneal injection of JNK-specific inhibitor SP600125 inhibits the expression of presenilin-1 and notch signaling in mouse brain without induction of apoptosis. Brain Res. 1448, 117–128 (2012).
pubmed: 22353755 pmcid: 3310381 doi: 10.1016/j.brainres.2012.01.066
Wang, S. et al. Expression and functional profiling of neprilysin, insulin-degrading enzyme, and endothelin‐converting enzyme in prospectively studied elderly and Alzheimer’s brain. J. Neurochem. 115, 47–57 (2010).
pubmed: 20663017 pmcid: 2939954 doi: 10.1111/j.1471-4159.2010.06899.x
Gargiulo, S. et al. Mice Anesthesia, Analgesia, and Care, Part I: anesthetic considerations in Preclinical Research. ILAR J. 53, E55–E69. https://doi.org/10.1093/ilar.53.1.55 (2012).
doi: 10.1093/ilar.53.1.55 pubmed: 23382271
Suvarna, K. S., Layton, C. & Bancroft, J. D. Bancroft’s theory and practice of histological techniques (eighth edn, (Elsevier health sciences, 2018).
Khalil, R. et al. Vildagliptin, a DPP-4 inhibitor, attenuates carbon tetrachloride-induced liver fibrosis by targeting ERK1/2, p38α, and NF-κB signaling. Toxicol. Appl. Pharmcol. 407, 115246 (2020).
doi: 10.1016/j.taap.2020.115246
Chen, L. et al. Autophagy inhibition contributes to the synergistic interaction between EGCG and doxorubicin to kill the hepatoma Hep3B cells. PloS One. 9, e85771 (2014).
pubmed: 24465696 pmcid: 3897495 doi: 10.1371/journal.pone.0085771
Zaher, M. F., Bendary, M. A., El-Aziz, A. & Ali, A. S. G. S. Potential protective role of thymoquinone on experimentally-induced Alzheimer rats Vol. 6 (King Abdulaziz University, Jeddah, Saudi Arabia, 2020).
Sharma, N., Deshmukh, R. & Bedi, K. L. SP600125, a competitive inhibitor of JNK attenuates streptozotocin induced neurocognitive deficit and oxidative stress in rats. Pharmacol. Biochem. Behav. 96, 386–394. https://doi.org/10.1016/j.pbb.2010.06.010 (2010).
doi: 10.1016/j.pbb.2010.06.010 pubmed: 20600246
Zhou, Q. et al. Inhibition of c-Jun N-terminal kinase activation reverses Alzheimer disease phenotypes in APPswe/PS1dE9 mice. Ann. Neurol. 77, 637–654. https://doi.org/10.1002/ana.24361 (2015).
doi: 10.1002/ana.24361 pubmed: 25611954
Wu, C. et al. Induction of ferroptosis and mitochondrial dysfunction by oxidative stress in PC12 cells. Sci. Rep. 8, 574 (2018).
pubmed: 29330409 pmcid: 5766540 doi: 10.1038/s41598-017-18935-1
Cho, H. & Hah, J. M. A perspective on the development of c-jun N-terminal kinase inhibitors as therapeutics for alzheimer’s disease: investigating structure through docking studies. Biomedicines. 9, 1431 (2021).
pubmed: 34680547 pmcid: 8533360 doi: 10.3390/biomedicines9101431
Hampel, H. et al. The Amyloid-β pathway in Alzheimer’s Disease. Mol. Psychiatry. 26, 5481–5503. https://doi.org/10.1038/s41380-021-01249-0 (2021).
doi: 10.1038/s41380-021-01249-0 pubmed: 34456336 pmcid: 8758495
Elshazly, A. M., Sinanian, M. M., Elimam, D. M. & Zakaria, S. Overview of the Molecular modalities and Signaling pathways intersecting with β-Amyloid and Tau Protein in Alzheimer’s Disease. Neuroglia. 4, 191–208 (2023).
doi: 10.3390/neuroglia4030014
Thinakaran, G. & Koo, E. H. Amyloid precursor protein trafficking, processing, and function. J. Biol. Chem. 283, 29615–29619 (2008).
pubmed: 18650430 pmcid: 2573065 doi: 10.1074/jbc.R800019200
Elreedy, H. A., Elfiky, A. M., Mahmoud, A. A., Ibrahim, K. S. & Ghazy, M. A. Neuroprotective effect of quercetin through targeting key genes involved in aluminum chloride induced Alzheimer’s disease in rats. Egypt. J. Basic. Appl. Sci. 10, 174–184 (2023).
Venugopal, C., Demos, C. M., Jagannatha Rao, K., Pappolla, M. A. & Sambamurti, K. Beta-secretase: structure, function, and evolution. CNS Neurol. Disorders-Drug Targets (Formerly Curr. Drug Targets-CNS Neurol. Disorders). 7, 278–294 (2008).
doi: 10.2174/187152708784936626
Selkoe, D. J. Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav. Brain. Res. 192, 106–113 (2008).
pubmed: 18359102 pmcid: 2601528 doi: 10.1016/j.bbr.2008.02.016
Mondragón-Rodríguez, S., Salgado-Burgos, H. & Peña-Ortega, F. Circuitry and synaptic dysfunction in Alzheimer’s disease: a new tau hypothesis. Neural plasticity (2020). (2020).
Yoon, S. O. et al. JNK3 perpetuates metabolic stress induced by Aβ peptides. Neuron. 75, 824–837 (2012).
pubmed: 22958823 pmcid: 3438522 doi: 10.1016/j.neuron.2012.06.024
Kim, E. K. & Choi, E. J. Pathological roles of MAPK signaling pathways in human diseases. Biochim. et Biophys. Acta (BBA)-Molecular Basis Disease. 1802, 396–405 (2010).
doi: 10.1016/j.bbadis.2009.12.009
Solas, M. et al. JNK activation in Alzheimer’s disease is driven by amyloid β and is Associated with Tau Pathology. ACS Chem. Neurosci. 14, 1524–1534. https://doi.org/10.1021/acschemneuro.3c00093 (2023).
doi: 10.1021/acschemneuro.3c00093 pubmed: 36976903
Zhang, X. et al. Endoplasmic reticulum stress mediates JNK-dependent IRS-1 serine phosphorylation and results in tau hyperphosphorylation in amyloid β oligomer-treated PC12 cells and primary neurons. Gene. 587, 183–193 (2016).
pubmed: 27185631 doi: 10.1016/j.gene.2016.05.018
Ma, H., Dong, Y., Chu, Y., Guo, Y. & Li, L. The mechanisms of ferroptosis and its role in alzheimer’s disease. Front. Mol. Biosci. 9, 965064. https://doi.org/10.3389/fmolb.2022.965064 (2022).
doi: 10.3389/fmolb.2022.965064 pubmed: 36090039 pmcid: 9459389
Manoharan, S. et al. The Role of Reactive Oxygen Species in the Pathogenesis of Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease: A Mini Review. Oxid. Med. Cell. Longev. 2016 (8590578). https://doi.org/10.1155/2016/8590578 (2016).
Xie, Y. et al. Ferroptosis: process and function. Cell. Death Differ. 23, 369–379. https://doi.org/10.1038/cdd.2015.158 (2016).
doi: 10.1038/cdd.2015.158 pubmed: 26794443 pmcid: 5072448
Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 156, 317–331 (2014).
pubmed: 24439385 pmcid: 4076414 doi: 10.1016/j.cell.2013.12.010
Zhou, J. et al. CPX targeting DJ-1 triggers ROS-induced cell death and protective autophagy in colorectal cancer. Theranostics. 9, 5577 (2019).
pubmed: 31534504 pmcid: 6735393 doi: 10.7150/thno.34663
Wan, X. et al. Ciclopirox Olamine induces Proliferation Inhibition and Protective Autophagy in Hepatocellular Carcinoma. Pharmaceuticals (Basel). 16 https://doi.org/10.3390/ph16010113 (2023).
Carmo, P. H. F. et al. Reactive oxygen and nitrogen species are crucial for the antifungal activity of amorolfine and ciclopirox olamine against the dermatophyte Trichophyton Interdigitale. Med. Mycol. 60 https://doi.org/10.1093/mmy/myac058 (2022).
Nakashima, T. et al. Inhibitory or scavenging action of ketoconazole and ciclopiroxolamine against reactive oxygen species released by primed inflammatory cells. Br. J. Dermatol. 156, 720–727. https://doi.org/10.1111/j.1365-2133.2006.07655.x (2007).
doi: 10.1111/j.1365-2133.2006.07655.x pubmed: 17493071
Regdon, Z. et al. High-content screening identifies inhibitors of oxidative stress‐induced parthanatos: cytoprotective and anti‐inflammatory effects of ciclopirox. Br. J. Pharmacol. 178, 1095–1113 (2021).
pubmed: 33332573 doi: 10.1111/bph.15344
Sharma, N., Deshmukh, R. & Bedi, K. SP600125, a competitive inhibitor of JNK attenuates streptozotocin induced neurocognitive deficit and oxidative stress in rats. Pharmacol. Biochem. Behav. 96, 386–394 (2010).
pubmed: 20600246 doi: 10.1016/j.pbb.2010.06.010
Tamagno, E., Guglielmotto, M., Vasciaveo, V. & Tabaton, M. Oxidative Stress and Beta Amyloid in Alzheimer’s Disease. Which Comes First: The Chicken or the Egg? Antioxid. (Basel). 10. https://doi.org/10.3390/antiox10091479 (2021).
Lian, H. et al. NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease. Neuron. 85, 101–115 (2015).
pubmed: 25533482 doi: 10.1016/j.neuron.2014.11.018
Von Bernhardi, R., Tichauer, J. E. & Eugenín, J. Aging-dependent changes of microglial cells and their relevance for neurodegenerative disorders. J. Neurochem. 112, 1099–1114 (2010).
doi: 10.1111/j.1471-4159.2009.06537.x
Wilhelmsson, U. et al. Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc. Natl. Acad. Sci. U S A. 103, 17513–17518. https://doi.org/10.1073/pnas.0602841103 (2006).
doi: 10.1073/pnas.0602841103 pubmed: 17090684 pmcid: 1859960
Kim, K. Y., Shin, K. Y. & Chang, K. A. GFAP as a Potential Biomarker for Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Cells 12, doi: (2023). https://doi.org/10.3390/cells12091309
Simpson, J. E. et al. Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiol. Aging. 31, 578–590. https://doi.org/10.1016/j.neurobiolaging.2008.05.015 (2010).
doi: 10.1016/j.neurobiolaging.2008.05.015 pubmed: 18586353
Teunissen, C. E. et al. Blood-based biomarkers for Alzheimer’s disease: towards clinical implementation. Lancet Neurol. 21, 66–77. https://doi.org/10.1016/s1474-4422(21)00361-6 (2022).
doi: 10.1016/s1474-4422(21)00361-6 pubmed: 34838239
Wolfrum, P., Fietz, A., Schnichels, S. & Hurst, J. The function of p53 and its role in Alzheimer’s and Parkinson’s disease compared to age-related macular degeneration. Front. NeuroSci. 16, 1029473 (2022).
pubmed: 36620455 pmcid: 9811148 doi: 10.3389/fnins.2022.1029473
Han, X. J. et al. Amyloid β-42 induces neuronal apoptosis by targeting mitochondria. Mol. Med. Rep. 16, 4521–4528 (2017).
pubmed: 28849115 pmcid: 5647099 doi: 10.3892/mmr.2017.7203
Barrantes, A., Rejas, M. T., Benitez, M. J. & Jiménez, J. S. Interaction between Alzheimer’s Aβ1–42 peptide and DNA detected by surface plasmon resonance. J. Alzheimers Dis. 12, 345–355 (2007).
pubmed: 18198421 doi: 10.3233/JAD-2007-12408
Szybińska, A. & Leśniak, W. P53 dysfunction in neurodegenerative diseases - the cause or Effect of pathological changes? Aging Dis. 8, 506–518. https://doi.org/10.14336/ad.2016.1120 (2017).
doi: 10.14336/ad.2016.1120 pubmed: 28840063 pmcid: 5524811
Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 520, 57–62 (2015).
pubmed: 25799988 pmcid: 4455927 doi: 10.1038/nature14344
Huang, L. et al. Intracellular amyloid toxicity induces oxytosis/ferroptosis regulated cell death. Cell Death Dis. 11, 828 (2020).
pubmed: 33024077 pmcid: 7538552 doi: 10.1038/s41419-020-03020-9
Zhang, Y. et al. Ferredoxin reductase is critical for p53-dependent tumor suppression via iron regulatory protein 2. Genes Dev. 31, 1243–1256 (2017).
pubmed: 28747430 pmcid: 5558926 doi: 10.1101/gad.299388.117
Zhang, Z. et al. The BRD7-P53-SLC25A28 axis regulates ferroptosis in hepatic stellate cells. Redox Biol. 36, 101619 (2020).
pubmed: 32863216 pmcid: 7330619 doi: 10.1016/j.redox.2020.101619
Xu, R., Wang, W. & Zhang, W. Ferroptosis and the bidirectional regulatory factor p53. Cell. Death Discovery. 9, 197. https://doi.org/10.1038/s41420-023-01517-8 (2023).
doi: 10.1038/s41420-023-01517-8 pubmed: 37386007 pmcid: 10310766
Ou, Y., Wang, S-J., Li, D., Chu, B. & Gu, W. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc. Natl. Acad. Sci. 113, E6806–E6812 (2016).
pubmed: 27698118 pmcid: 5098629 doi: 10.1073/pnas.1607152113
Ou, M. et al. Role and mechanism of ferroptosis in neurological diseases. Mol. Metabolism. 61, 101502 (2022).
doi: 10.1016/j.molmet.2022.101502

Auteurs

Sherin Zakaria (S)

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.

Nashwa Ibrahim (N)

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt. nashwaibrahim49@gmail.com.

Walied Abdo (W)

Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.

Alaa E El-Sisi (A)

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31512, Egypt.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH