Deciphering mouse brain spatial diversity via glyco-lipidomic mapping.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
07 Oct 2024
Historique:
received: 07 04 2024
accepted: 30 09 2024
medline: 8 10 2024
pubmed: 8 10 2024
entrez: 7 10 2024
Statut: epublish

Résumé

Gangliosides in the brain play a crucial role in modulating the integrity of vertebrate central nervous system in a region-specific manner. However, to date, a comprehensive structural elucidation of complex intact ganglioside isomers has not been achieved, resulting in the elusiveness into related molecular mechanism. Here, we present a glycolipidomic approach for isomer-specific and brain region-specific profiling of the mouse brain. Considerable region-specificity and commonality in specific group of regions are highlighted. Notably, we observe a similarity in the abundance of major isomers, GD1a and GD1b, within certain regions, which provides significant biological implications with interpretation through the lens of a theoretical retrosynthetic state-transition network. Furthermore, A glycocentric-omics approaches using gangliosides and N-glycans reveal a remarkable convergence in spatial dynamics, providing valuable insight into molecular interaction network. Collectively, this study uncovers the spatial dynamics of intact glyco-conjugates in the brain, which are relevant to regional function and accelerates the discovery of potential therapeutic targets for brain diseases.

Identifiants

pubmed: 39375371
doi: 10.1038/s41467-024-53032-8
pii: 10.1038/s41467-024-53032-8
doi:

Substances chimiques

Gangliosides 0
Polysaccharides 0
ganglioside, GD1a 12707-58-3

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8689

Informations de copyright

© 2024. The Author(s).

Références

Mlinac, K. et al. Structural analysis of brain ganglioside acetylation patterns in mice with altered ganglioside biosynthesis. Carbohydr. Res. 382, 1–8 (2013).
doi: 10.1016/j.carres.2013.09.007
Ariga, T. & McDonald, M. P. Robert KY. Thematic review series: sphingolipids. Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease—a review. J. Lipid Res. 49, 1157–1175 (2008).
doi: 10.1194/jlr.R800007-JLR200
Svennerholm L. Gangliosides and synaptic transmission. In: Structure and function of gangliosides. Springer (1980).
Mocchetti, I. Exogenous gangliosides, neuronal plasticity and repair, and the neurotrophins. Cell Mol. Life Sci. 62, 2283–2294 (2005).
doi: 10.1007/s00018-005-5188-y
She, J. Q., Wang, M., Zhu, D. M., Sun, L. G. & Ruan, D. Y. Effect of ganglioside on synaptic plasticity of hippocampus in lead-exposed rats in vivo. Brain Res. 1060, 162–169 (2005).
doi: 10.1016/j.brainres.2005.08.044
Palmano, K., Rowan, A., Guillermo, R., Guan, J. & McJarrow, P. The role of gangliosides in neurodevelopment. Nutrients 7, 3891–3913 (2015).
doi: 10.3390/nu7053891
Sugiura, Y. et al. Sensory nerve-dominant nerve degeneration and remodeling in the mutant mice lacking complex gangliosides. Neuroscience 135, 1167–1178 (2005).
doi: 10.1016/j.neuroscience.2005.07.035
Sántha, P., Dobos, I., Kis, G. & Jancsó, G. Role of gangliosides in peripheral pain mechanisms. Int. J. Mol. Sci. 21, 1005 (2020).
doi: 10.3390/ijms21031005
Ariga, T. The pathogenic role of ganglioside metabolism in Alzheimer’s disease-cholinergic neuron-specific gangliosides and neurogenesis. Mol. Neurobiol. 54, 623–638 (2017).
doi: 10.1007/s12035-015-9641-0
Rahmann, H. Brain gangliosides and memory formation. Behav. Brain Res. 66, 105–116 (1995).
doi: 10.1016/0166-4328(94)00131-X
Yoon, J. H. et al. Brain lipidomics: from functional landscape to clinical significance. Sci. Adv. 8, eadc9317 (2022).
doi: 10.1126/sciadv.adc9317
Schneider J. Gangliosides and glycolipids in neurodegenerative disorders. In: Glycobiology of the Nervous System. Springer (2014).
Ariga, T. Pathogenic role of ganglioside metabolism in neurodegenerative diseases. J. Neurosci. Res. 92, 1227–1242 (2014).
doi: 10.1002/jnr.23411
Han, X., MH, D., McKeel, D. W. Jr., Kelley, J. & Morris, J. C. Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J. Neurochem. 82, 809–818 (2002).
doi: 10.1046/j.1471-4159.2002.00997.x
Mabe, N. W. et al. Transition to a mesenchymal state in neuroblastoma confers resistance to anti-GD2 antibody via reduced expression of ST8SIA1. Nat. Cancer 3, 976–993 (2022).
doi: 10.1038/s43018-022-00405-x
Huebecker, M. et al. Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson’s disease. Mol. Neurodegener. 14, 40 (2019).
doi: 10.1186/s13024-019-0339-z
Kracun, I., Kalanj, S., Talan-Hranilovic, J. & Cosovic, C. Cortical distribution of gangliosides in Alzheimer’s disease. Neurochem. Int. 20, 433–438 (1992).
doi: 10.1016/0197-0186(92)90058-Y
Svennerholm, L. & Gottfries, C. G. Membrane-lipids, selectively diminished in Alzheimer brains, suggest synapse loss as a primary event in early-onset form (type-I) and demyelination in late-onset form (type-Ii). J. Neurochem. 62, 1039–1047 (1994).
doi: 10.1046/j.1471-4159.1994.62031039.x
Kalanj, S., Kracun, I., Rosner, H. & Cosovic, C. Regional distribution of brain gangliosides in Alzheimer’s disease. Neurol. Croat. 40, 269–281 (1991).
Jana, A. & Pahan, K. Sphingolipids in multiple sclerosis. Neuromol. Med. 12, 351–361 (2010).
doi: 10.1007/s12017-010-8128-4
Lee, J. et al. Spatial and temporal diversity of glycome expression in mammalian brain. Proc. Natl. Acad. Sci. USA 117, 28743–28753 (2020).
doi: 10.1073/pnas.2014207117
Sharma, K. et al. Cell type- and brain region-resolved mouse brain proteome. Nat. Neurosci. 18, 1819–1831 (2015).
doi: 10.1038/nn.4160
Ivanisevic, J. et al. Brain region mapping using global metabolomics. Chem. Biol. 21, 1575–1584 (2014).
doi: 10.1016/j.chembiol.2014.09.016
Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).
doi: 10.1038/nature11405
Ng, L. et al. An anatomic gene expression atlas of the adult mouse brain. Nat. Neurosci. 12, 356–362 (2009).
doi: 10.1038/nn.2281
Lee, B. & An, H. J. Small but big leaps towards neuroglycomics: exploring N-glycome in the brain to advance the understanding of brain development and function. Neural Regen. Res. 19, 489–490 (2023).
De Baecque, C., Johnson, A. B., Naiki, M., Schwarting, G. & Marcus, D. M. Ganglioside localization in cerebellar cortex: an immunoperoxidase study with antibody to GM1 ganglioside. Brain Res. 114, 117–122 (1976).
doi: 10.1016/0006-8993(76)91011-8
Byers, D. M., Irwin, L. N. & Cabeza, R. Ganglioside patterns mature at different rates in functionally related subregions of the rat pons. Dev. Neurosci. 24, 478–484 (2002).
doi: 10.1159/000069358
Laev, H., Rapport, M. M., Mahadik, S. P. & Silverman, A.-J. Immunohistological localization of ganglioside in rat cerebellum. Brain Res. 157, 136–141 (1978).
doi: 10.1016/0006-8993(78)91002-8
Molander, M., Berthold, C. H., Persson, H. & Fredman, P. Immunostaining of ganglioside GD1b, GD3 and GM1 in rat cerebellum: cellular layer and cell type specific associations. J. Neurosci. Res. 60, 531–542 (2000).
doi: 10.1002/(SICI)1097-4547(20000515)60:4<531::AID-JNR12>3.0.CO;2-6
Goto-Inoue, N. et al. The detection of glycosphingolipids in brain tissue sections by imaging mass spectrometry using gold nanoparticles. J. Am. Soc. Mass Spectrom. 21, 1940–1943 (2010).
doi: 10.1016/j.jasms.2010.08.002
Colsch, B. & Woods, A. S. Localization and imaging of sialylated glycosphingolipids in brain tissue sections by MALDI mass spectrometry. Glycobiology 20, 661–667 (2010).
doi: 10.1093/glycob/cwq031
Li, Z. & Zhang, Q. Ganglioside isomer analysis using ion polarity switching liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 413, 3269–3279 (2021).
doi: 10.1007/s00216-021-03262-2
Wojcik, R. et al. Lipid and glycolipid isomer analyses using ultra-high resolution ion mobility spectrometry separations. Int. J. Mol. Sci. 18, 183 (2017).
doi: 10.3390/ijms18010183
Hu, T., Jia, Z. X. & Zhang, J. L. Strategy for comprehensive profiling and identification of acidic glycosphingolipids using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Anal. Chem. 89, 7808–7816 (2017).
doi: 10.1021/acs.analchem.7b02023
Kirschbaum, C. et al. Unravelling the structural complexity of glycolipids with cryogenic infrared spectroscopy. Nat. Commun. 12, 1–7 (2021).
doi: 10.1038/s41467-021-21480-1
Lee, J. et al. Comprehensive profiling of surface gangliosides extracted from various cell lines by LC-MS/MS. Cells 8, 1323 (2019).
doi: 10.3390/cells8111323
Sturgill, E. R. et al. Biosynthesis of the major brain gangliosides GD1a and GT1b. Glycobiology 22, 1289–1301 (2012).
doi: 10.1093/glycob/cws103
Vajn, K., Viljetic, B., Degmecic, I. V., Schnaar, R. L. & Heffer, M. Differential distribution of major brain gangliosides in the adult mouse central nervous system. Plos One 8, e75720 (2013).
doi: 10.1371/journal.pone.0075720
Kohla, G., Stockfleth, E. & Schauer, R. Gangliosides with O-acetylated sialic acids in tumors of neuroectodermal origin. Neurochem. Res. 27, 583–592 (2002).
doi: 10.1023/A:1020211714104
Mandal, C., Schwartz-Albiez, R. & Vlasak, R. Functions and biosynthesis of O-acetylated sialic acids. Top. Curr. Chem. 366, 1–30 (2012).
doi: 10.1007/128_2011_310
Siebert, H.-C. et al. Molecular dynamics-derived conformation and intramolecular interaction analysis of the N-acetyl-9-O-acetylneuraminic acid-containing ganglioside GD1a and NMR-based analysis of its binding to a human polyclonal inununoglobulin G fraction with selectivity for O-acetylated sialic acids. Glycobiology 6, 561–571 (1996).
doi: 10.1093/glycob/6.6.561-b
Varki, N. M. & Varki, A. Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab. Invest. 87, 851–857 (2007).
doi: 10.1038/labinvest.3700656
Hájek, R., Jirásko, R., Lísa, M., Cifková, E. & Holcapek, M. Hydrophilic interaction liquid chromatography-mass spectrometry characterization of gangliosides in biological samples. Anal. Chem. 89, 12425–12432 (2017).
doi: 10.1021/acs.analchem.7b03523
Todeschini, A. R. & Hakomori, S. I. Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochem. Biophys. Acta 1780, 421–433 (2008).
doi: 10.1016/j.bbagen.2007.10.008
Itokazu, Y., Wang, J. & Yu, R. K. Gangliosides in nerve cell specification. Prog. Mol. Biol. Transl. 156, 241–263 (2018).
doi: 10.1016/bs.pmbts.2017.12.008
Ngamukote, S., Yanagisawa, M., Ariga, T., Ando, S. & Yu, R. K. Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. J. Neurochem. 103, 2327–2341 (2007).
doi: 10.1111/j.1471-4159.2007.04910.x
Kronewitter, S. R. et al. The development of retrosynthetic glycan libraries to profile and classify the human serum N‐linked glycome. Proteomics 9, 2986–2994 (2009).
doi: 10.1002/pmic.200800760
Kolter, T. Ganglioside biochemistry. ISRN Biochem. 2012, 506160 (2012).
doi: 10.5402/2012/506160
Bieberich, E. et al. Regulation of ganglioside biosynthesis by enzyme complex formation of glycosyltransferases. Biochemistry 41, 11479–11487 (2002).
doi: 10.1021/bi0259958
Giraudo, C. G., Daniotti, J. L. & Maccioni, H. J. F. Physical and functional association of glycolipid -acetyl-galactosaminyl and galactosyl transferases in the Golgi apparatus. Proc. Natl. Acad. Sci. USA 98, 1625–1630 (2001).
doi: 10.1073/pnas.98.4.1625
Giraudo, C. G. & Maccioni, H. J. Ganglioside glycosyltransferases organize in distinct multienzyme complexes in CHO-K1 cells. J. Biol. Chem. 278, 40262–40271 (2003).
doi: 10.1074/jbc.M305455200
Bieberich E. Synthesis, processing, and function of N-glycans in N-glycoproteins. In: Glycobiology of the nervous system. Springer (2014).
Bieberich, E., Freischutz, B., Liour, S. S. & Yu, R. K. Regulation of ganglioside metabolism by phosphorylation and dephosphorylation. J. Neurochem. 71, 972–979 (1998).
doi: 10.1046/j.1471-4159.1998.71030972.x
Katoh, T. et al. Deficiency of α-glucosidase I alters glycoprotein glycosylation and lifespan in Caenorhabditis elegans. Glycobiology 23, 1142–1151 (2013).
doi: 10.1093/glycob/cwt051
Barone, R. et al. CSF N‐glycan profile reveals sialylation deficiency in a patient with GM2 gangliosidosis presenting as childhood disintegrative disorder. Autism Res. 9, 423–428 (2016).
doi: 10.1002/aur.1541
Lawrence, R. et al. Characterization of glycan substrates accumulating in GM1 Gangliosidosis. Mol. Genet. Metab. Rep. 21, 100524 (2019).
doi: 10.1016/j.ymgmr.2019.100524
Cavender, C. et al. Natural history study of glycan accumulation in large animal models of GM2 gangliosidoses. Plos One 15, e0243006 (2020).
doi: 10.1371/journal.pone.0243006
Hakomori, S. I. Structure and function of glycosphingolipids and sphingolipids: recollections and future trends. Biochim. Biophys. Acta 1780, 325–346 (2008).
doi: 10.1016/j.bbagen.2007.08.015
Veillon, L. et al. Characterization of isomeric glycan structures by LC-MS/MS. Electrophoresis 38, 2100–2114 (2017).
doi: 10.1002/elps.201700042
Ikeda, K. & Taguchi, R. Highly sensitive localization analysis of gangliosides and sulfatides including structural isomers in mouse cerebellum sections by combination of laser microdissection and hydrophilic interaction liquid chromatography/electrospray ionization mass spectrometry with theoretically expanded multiple reaction monitoring. Rapid Commun. Mass Spectrom 24, 2957–2965 (2010).
doi: 10.1002/rcm.4716
Albrecht, S. et al. Comprehensive profiling of glycosphingolipid glycans using a novel broad specificity endoglycoceramidase in a high-throughput workflow. Anal. Chem. 88, 4795–4802 (2016).
doi: 10.1021/acs.analchem.6b00259
Tettamanti G., Ledeen R., Sandhoff K., Nagai Y., Toffano G. Gangliosides and neuronal plasticity. In: Springer Science & Business Media (2013).
Maglione, V. et al. Impaired ganglioside metabolism in Huntington’s disease and neuroprotective role of GM1. J. Neurosci. 30, 4072–4080 (2010).
doi: 10.1523/JNEUROSCI.6348-09.2010
Barrier, L. et al. Genotype-related changes of ganglioside composition in brain regions of transgenic mouse models of Alzheimer’s disease. Neurobiol. Aging 28, 1863–1872 (2007).
doi: 10.1016/j.neurobiolaging.2006.08.002
Schnaar, R. L. & Lopez, P. H. Myelin‐associated glycoprotein and its axonal receptors. J. Neurosci. Res. 87, 3267–3276 (2009).
doi: 10.1002/jnr.21992
Vasques, J. F. et al. Gangliosides in nervous system development, regeneration, and pathologies. Neural Regen. Res. 18, 81–86 (2023).
doi: 10.4103/1673-5374.343890
Thomas, P. D. & Brewer, G. J. Gangliosides and synaptic transmission. Biochim. Biophys. Acta 1031, 277–289 (1990).
doi: 10.1016/0304-4157(90)90013-3
Fujii, S. et al. Effects of the mono-and tetrasialogangliosides GM1 and GQ1b on ATP-induced long-term potentiation in hippocampal CA1 neurons. Glycobiology 12, 339–344 (2002).
doi: 10.1093/glycob/12.5.339
Zhang, Z. et al. Ganglioside GQ1b induces dopamine release through the activation of Pyk2. Mol. Cell. Neurosci. 71, 102–113 (2016).
doi: 10.1016/j.mcn.2015.12.009
Manan H. A., Yahya N., Han P., Hummel T. A systematic review of olfactory-related brain structural changes in patients with congenital or acquired anosmia. Brain Struct. Funct. 227, 177–202 (2022).
Seyfried, T. N., el-Abbadi, M. & Roy, M. L. Ganglioside distribution in murine neural tumors. Mol. Chem. Neuropathol. 17, 147–167 (1992).
doi: 10.1007/BF03159989
Tena, J. et al. Regio-specific N-glycome and N-glycoproteome map of the elderly human brain with and without Alzheimer’s disease. Mol. Cell Proteom. 21, 100427 (2022).
doi: 10.1016/j.mcpro.2022.100427
Frenkel-Pinter, M. et al. Interplay between protein glycosylation pathways in Alzheimer’s disease. Sci. Adv. 3, e1601576 (2017).
doi: 10.1126/sciadv.1601576
Rebelo A. L., Drake R., Marchetti-Deschmann M., Saldova R., Pandit A. Changes in tissue protein N-glycosylation and associated molecular signature occur in the human parkinsonian brain in a region-specific manner. PNAS nexus 3, pgad439 (2022).
Spijker S. Dissection of rodent brain regions. In: Neuroproteomics (ed. Li K. W.). Humana Press (2011).
Folch, J., Lees, M. & Stanley, G. S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957).
doi: 10.1016/S0021-9258(18)64849-5
Li Q., Xie Y., Wong M., Barboza M., Lebrilla C. B. Comprehensive structural glycomic characterization of the glycocalyxes of cells and tissues. Nat. Protoc. 15, 2668–2704 (2020).

Auteurs

Jua Lee (J)

Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.

Dongtan Yin (D)

Graduate School of Analytical Science & Technology, Chungnam National University, 34134, Daejeon, South Korea.
Asia-Pacific Glycomics Reference Site, 34134, Daejeon, South Korea.

Jaekyung Yun (J)

Graduate School of Analytical Science & Technology, Chungnam National University, 34134, Daejeon, South Korea.
Asia-Pacific Glycomics Reference Site, 34134, Daejeon, South Korea.

Minsoo Kim (M)

Center for Cognition and Sociality, Institute for Basic Science, 34051, Daejeon, South Korea.

Seong-Wook Kim (SW)

Center for Cognition and Sociality, Institute for Basic Science, 34051, Daejeon, South Korea.

Heeyoun Hwang (H)

Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 28119, Cheongju, South Korea.

Ji Eun Park (JE)

Graduate School of Analytical Science & Technology, Chungnam National University, 34134, Daejeon, South Korea.
Asia-Pacific Glycomics Reference Site, 34134, Daejeon, South Korea.

Boyoung Lee (B)

Center for Cognition and Sociality, Institute for Basic Science, 34051, Daejeon, South Korea.

C Justin Lee (CJ)

Center for Cognition and Sociality, Institute for Basic Science, 34051, Daejeon, South Korea.

Hee-Sup Shin (HS)

Center for Cognition and Sociality, Institute for Basic Science, 34051, Daejeon, South Korea.

Hyun Joo An (HJ)

Graduate School of Analytical Science & Technology, Chungnam National University, 34134, Daejeon, South Korea. hjan@cnu.ac.kr.
Asia-Pacific Glycomics Reference Site, 34134, Daejeon, South Korea. hjan@cnu.ac.kr.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH