Advancing against drug-resistant tuberculosis: an extensive review, novel strategies and patent landscape.

AI-Based Approaches DR-TB Management Drug-Resistant Novel Techniques Patent Analysis Tuberculosis

Journal

Naunyn-Schmiedeberg's archives of pharmacology
ISSN: 1432-1912
Titre abrégé: Naunyn Schmiedebergs Arch Pharmacol
Pays: Germany
ID NLM: 0326264

Informations de publication

Date de publication:
08 Oct 2024
Historique:
received: 11 04 2024
accepted: 17 09 2024
medline: 8 10 2024
pubmed: 8 10 2024
entrez: 8 10 2024
Statut: aheadofprint

Résumé

Drug-resistant tuberculosis (DR-TB) represents a pressing global health issue, leading to heightened morbidity and mortality. Despite extensive research efforts, the escalation of DR-TB cases underscores the urgent need for enhanced prevention, diagnosis, and treatment strategies. This review delves deep into the molecular and genetic origins of different types of DR-TB, highlighting recent breakthroughs in detection and diagnosis, including Rapid Diagnostic Tests like Xpert Ultra, Whole Genome Sequencing, and AI-based tools along with latest viewpoints on diagnosis and treatment of DR-TB utilizing newer and repurposed drug molecules. Special emphasis is given to the pivotal role of novel drugs and discusses updated treatment regimens endorsed by governing bodies, alongside innovative personalized drug-delivery systems such as nano-carriers, along with an analysis of relevant patents in this area. All the compiled information highlights the inherent challenges of current DR-TB treatments, discussing their complexity, potential side effects, and the socioeconomic strain they impose, particularly in under-resourced regions, emphasizing the cost-effective and accessible solutions. By offering insights, this review aims to serve as a compass for researchers, healthcare practitioners, and policymakers, emphasizing the critical need for ongoing R&D to improve treatments and broaden access to crucial TB interventions.

Identifiants

pubmed: 39377922
doi: 10.1007/s00210-024-03466-0
pii: 10.1007/s00210-024-03466-0
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Adane AA, Alene KA, Koye DN, Zeleke BM (2013) Non-adherence to anti-tuberculosis treatment and determinant factors among patients with tuberculosis in Northwest Ethiopia. PLoS One 8:1–6. https://doi.org/10.1371/JOURNAL.PONE.0078791
doi: 10.1371/JOURNAL.PONE.0078791
Aggarwal A, Mehta S, Gupta D et al (2012) Clinical & immunological erythematosus patients characteristics in systemic lupus Maryam. J Dent Educ 76:1532–1539. https://doi.org/10.4103/ijmr.IJMR
doi: 10.4103/ijmr.IJMR pubmed: 23144490
Ahmad Khan F, Fox G, Menzies D (2017) Drug-resistant tuberculosis BT - Handbook of Antimicrobial Resistance. In: Berghuis A, Matlashewski G, Wainberg MA et al (eds) Springer. New York, NY, New York, pp 263–286
Ahmed S, Nandi S, Saxena AK (2022) An updated patent review on drugs for the treatment of tuberculosis (2018-present). Expert Opin Ther Pat 32:243–260. https://doi.org/10.1080/13543776.2022.2012151
doi: 10.1080/13543776.2022.2012151 pubmed: 34846976
Alejandra Isabel J-G, Miroslava F-P, Rafael L-L (2019) Second-line injectable drugs for the treatment of multidrug-resistant tuberculosis. Why do we keep using them? Rev Am Med Respir 19:175–178
Alejandra Isabel J-G, Miroslava F-P, Rafael L-L (2019) Second-line injectable drugs for the treatment of multidrug-resistant tuberculosis. Why do we keep using them? Rev Am Med Respir 3:175–178
Alemu A, Bitew ZW, Diriba G et al (2023) Incidence and predictors of acquired resistance to second-line antituberculosis drugs during the course of multi-drug resistant tuberculosis treatment: protocol for a systematic review and meta-analysis. BMJ Open 13:e070143. https://doi.org/10.1136/bmjopen-2022-070143
doi: 10.1136/bmjopen-2022-070143 pubmed: 37019479 pmcid: 10083796
Ali MZ, Dutt TS, MacNeill A et al (2024) A modified BPaL regimen for tuberculosis treatment replaces linezolid with inhaled spectinamides. bioRxiv. https://doi.org/10.1101/2023.11.16.567434
doi: 10.1101/2023.11.16.567434 pubmed: 39345633 pmcid: 11429939
Alliance Global (2008) Handbook of Anti Tuberculosis Agents, New York, NY. Global Alliance for TB Drug Development 88(2):85–170
Allue-Guardia A, García JI, Torrelles JB (2021) Evolution of drug-resistant mycobacterium tuberculosis strains and their adaptation to the human lung environment. Front Microbiol 12:1–21. https://doi.org/10.3389/FMICB.2021.612675/BIBTEX
doi: 10.3389/FMICB.2021.612675/BIBTEX
Alzahabi KH, Usmani O, Georgiou TK et al (2020) Approaches to treating tuberculosis by encapsulating metal ions and anti-mycobacterial drugs utilizing nano- and microparticle technologies. Emerg Top Life Sci 4:581–600. https://doi.org/10.1042/ETLS20190154
doi: 10.1042/ETLS20190154 pubmed: 33315067 pmcid: 7752053
American Diabetes Association Professional Practice Committee (2021) Comprehensive medical evaluation and assessment of comorbidities: standards of medical care in diabetes—2022. In: Diabetes Care. American Diabetes Association Professional Practice Committee, pp 46–59
Aubry A, Veziris N, Cambau E et al (2006) Novel gyrase mutations in quinolone-resistant and -hypersusceptible clinical isolates of mycobacterium tuberculosis: functional analysis of mutant enzymes. Antimicrob Agents Chemother 50:104–112. https://doi.org/10.1128/AAC.50.1.104-112.2006
doi: 10.1128/AAC.50.1.104-112.2006 pubmed: 16377674 pmcid: 1346799
Aung KJM, Van Deun A, Declercq E et al (2014) Successful “9-month Bangladesh regimen” for multidrug-resistant tuberculosis among over 500 consecutive patients. Int J Tuberc lung Dis 18:1180–1187. https://doi.org/10.5588/IJTLD.14.0100
doi: 10.5588/IJTLD.14.0100 pubmed: 25216831
Ayukekbong JA, Ntemgwa M, Atabe AN (2017) The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob Resist Infect Control 6:1–8. https://doi.org/10.1186/S13756-017-0208-X/TABLES/2
doi: 10.1186/S13756-017-0208-X/TABLES/2
Bakhtiyariniya P, Khosravi AD, Hashemzadeh M, Savari M (2022) Detection and characterization of mutations in genes related to isoniazid resistance in Mycobacterium tuberculosis clinical isolates from Iran. Mol Biol Rep 49:6135–6143. https://doi.org/10.1007/S11033-022-07404-2/TABLES/4
doi: 10.1007/S11033-022-07404-2/TABLES/4 pubmed: 35366177 pmcid: 8976162
Bakuba Z, Napiórkowska A, Bielecki J et al (2013) Mutations in the embB gene and their association with ethambutol resistance in multidrug-resistant mycobacterium tuberculosis clinical isolates from Poland. Biomed Res Int 2013:1–5. https://doi.org/10.1155/2013/167954
doi: 10.1155/2013/167954
Baranyai Z, Soria-Carrera H, Alleva M et al (2021) Nanotechnology-based targeted drug delivery: an emerging tool to overcome tuberculosis. Adv Ther 4:1–22. https://doi.org/10.1002/ADTP.202000113
doi: 10.1002/ADTP.202000113
Beviere M, Reissier S, Penven M et al (2023) The role of next-generation sequencing (NGS) in the management of tuberculosis: practical review for implementation in routine. Pathogens 12:978. https://doi.org/10.3390/PATHOGENS12080978
doi: 10.3390/PATHOGENS12080978 pubmed: 37623938 pmcid: 10459500
Bollela VR, Namburete EI, Feliciano CS et al (2017) Detection of katG and inhA mutations to guide isoniazid and ethionamide use for drug-resistant tuberculosis. Int J Tuberc Lung Dis 20:1099–1104. https://doi.org/10.5588/ijtld.15.0864
doi: 10.5588/ijtld.15.0864
Borah Slater K, Kim D, Chand P et al (2023) A current perspective on the potential of nanomedicine for anti-tuberculosis therapy. Trop Med Infect Dis 8:100–112. https://doi.org/10.3390/TROPICALMED8020100
doi: 10.3390/TROPICALMED8020100 pubmed: 36828516 pmcid: 9965948
Bourguignon T, Godinez-Leon JA, Gref R (2023) Nanosized drug delivery systems to fight tuberculosis. Pharmaceutics 15:1–42. https://doi.org/10.3390/pharmaceutics15020393
doi: 10.3390/pharmaceutics15020393
Brossier F, Pham A, Bernard C et al (2017) Molecular investigation of resistance to second-line injectable drugs in multidrug-resistant clinical isolates of Mycobacterium tuberculosis in France. Antimicrob Agents Chemother 61:1–9. https://doi.org/10.1128/AAC.01299-16
doi: 10.1128/AAC.01299-16
Bu Q, Qiang R, Fang L et al (2023) Global trends in the incidence rates of MDR and XDR tuberculosis: findings from the global burden of disease study 2019. Front Pharmacol 14:1–9. https://doi.org/10.3389/fphar.2023.1156249
doi: 10.3389/fphar.2023.1156249
Calligaro GL, Moodley L, Symons G, Dheda K (2014) The medical and surgical treatment of drug-resistant tuberculosis. J Thorac Dis 6:186–195. https://doi.org/10.3978/J.ISSN.2072-1439.2013.11.11
doi: 10.3978/J.ISSN.2072-1439.2013.11.11 pubmed: 24624282 pmcid: 3949182
Campbell PJ, Morlock GP, Sikes RD et al (2011) Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis. Antimicrob Agents Chemother 55:2032–2041. https://doi.org/10.1128/AAC.01550-10
doi: 10.1128/AAC.01550-10 pubmed: 21300839 pmcid: 3088277
CDC (2016a) Fact sheets | drug-resistant TB | extensively drug-resistant tuberculosis (XDR TB) | TB | CDC. In: Cent. Dis. Control Prev. https://www.cdc.gov/tb/publications/factsheets/drtb/xdrtb.htm . Accessed 5 Jun 2023
CDC (2016b) Fact sheets | drug-resistant tb | extensively drug-resistant tuberculosis (XDR TB) | TB | CDC. In: Cent. Dis. Control Prev. https://www.cdc.gov/tb/publications/factsheets/drtb/xdrtb.htm . Accessed 26 May 2023
CDC (2016c) TB diagnostic tool: Xpert MTB/RIF assay fact sheet | TB | CDC. In: Cell. Mol. Neurobiol. https://www.cdc.gov/tb/publications/factsheets/testing/xpert_mtb-rif.htm . Accessed 22 Mar 2024
CDC (2016d) General Considerations for treatment of TB fact sheet | TB | CDC. https://www.cdc.gov/tb/publications/factsheets/treatment/treatmenthivnegative.htm#:~:text=Regimens for treating TB disease,after 2 months of treatment. Accessed 7 Jun 2023
CDC (2021) Diagnosis of tuberculosis disease. in: core curriculum on tuberculosis: what the clinician should know. Centers for Disease Control and Prevention, pp 75–107
CDC (2022) Drug-resistant TB | TB |CDC. In: Centers Dis. Control Prev. https://www.cdc.gov/tb/topic/drtb/default.htm . Accessed 7 Jun 2023
CDC (2023) About drug-resistant tuberculosis disease | tuberculosis (TB) | CDC. https://www.cdc.gov/tb/about/drug-resistant.html . Accessed 7 Aug 2024
CDC (2024a) Clinical overview of drug-resistant tuberculosis disease | tuberculosis (TB) | CDC. https://www.cdc.gov/tb/hcp/clinical-overview/drug-resistant-tuberculosis-disease.html . Accessed 7 Aug 2024
CDC (2024b) Bedaquiline, pretomanid, and linezolid (BPaL) | TB |CDC. In: Cent. Dis. Control Prev. https://www.cdc.gov/tb/topic/drtb/bpal/default.htm . Accessed 22 Mar 2024
Chiang CY, Centis R, Migliori GB (2010) Drug-resistant tuberculosis: past, present, future. Respirology 15:413–432. https://doi.org/10.1111/J.1440-1843.2010.01738.X
doi: 10.1111/J.1440-1843.2010.01738.X pubmed: 20337989
Chopra H, Mohanta YK, Rauta PR et al (2023) An insight into advances in developing nanotechnology based therapeutics, drug delivery, diagnostics and vaccines: multidimensional applications in tuberculosis disease management. Pharmaceuticals 16:581–617. https://doi.org/10.3390/PH16040581
doi: 10.3390/PH16040581 pubmed: 37111338 pmcid: 10145450
Chung-Delgado K, Guillen-Bravo S, Revilla-Montag A, Bernabe-Ortiz A (2015) Mortality among MDR-TB cases: comparison with drug-susceptible tuberculosis and associated factors. PLoS One 10:1–10. https://doi.org/10.1371/journal.pone.0119332
doi: 10.1371/journal.pone.0119332
Conkle-Gutierrez D, Kim C, Ramirez-Busby SM et al (2022) Distribution of common and rare genetic markers of second-line-injectable-drug resistance in Mycobacterium tuberculosis revealed by a genome-wide association study. Antimicrob Agents Chemother 66:1–12. https://doi.org/10.1128/AAC.02075-21
doi: 10.1128/AAC.02075-21
Cuevas-Córdoba B, Cuellar-Sánchez A, Pasissi-Crivelli A et al (2013) rrs and rpsL mutations in streptomycin-resistant isolates of Mycobacterium tuberculosis from Mexico. J Microbiol Immunol Infect 46:30–34. https://doi.org/10.1016/J.JMII.2012.08.020
doi: 10.1016/J.JMII.2012.08.020 pubmed: 23040237
Dahanayake MH, Jayasundera ACA (2021) Nano-based drug delivery optimization for tuberculosis treatment: a review. J Microbiol Methods 181:106–127. https://doi.org/10.1016/J.MIMET.2020.106127
doi: 10.1016/J.MIMET.2020.106127
Dartois VA, Rubin EJ (2022) Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat Rev Microbiol 20:685–701. https://doi.org/10.1038/s41579-022-00731-y
doi: 10.1038/s41579-022-00731-y pubmed: 35478222 pmcid: 9045034
Das M, Mathur T, Ravi S et al (2021) Challenging drug-resistant TB treatment journey for children, adolescents and their care-givers: a qualitative study. PLoS One 16:1–15. https://doi.org/10.1371/JOURNAL.PONE.0248408
doi: 10.1371/JOURNAL.PONE.0248408
da Silva DA, Ferreira NV, Rego AM et al (2018) Integrated analysis of ethionamide resistance loci in Mycobacterium tuberculosis clinical isolates. Tuberculosis 113:163–174. https://doi.org/10.1016/J.TUBE.2018.08.010
doi: 10.1016/J.TUBE.2018.08.010 pubmed: 30514498
Deelder W, Christakoudi S, Phelan J et al (2019) Machine learning predicts accurately mycobacterium tuberculosis drug resistance from whole genome sequencing data. Front Genet 10:421–474. https://doi.org/10.3389/FGENE.2019.00922/BIBTEX
doi: 10.3389/FGENE.2019.00922/BIBTEX
Devasia R, Blackman A, Eden S et al (2012) High proportion of fluoroquinolone-resistant Mycobacterium tuberculosis isolates with novel gyrase polymorphisms and a gyrA region associated with fluoroquinolone susceptibility. J Clin Microbiol 50:1390–1396. https://doi.org/10.1128/JCM.05286-11
doi: 10.1128/JCM.05286-11 pubmed: 22189117 pmcid: 3318526
Dheda K, Gumbo T, Gandhi NR et al (2014) Global control of tuberculosis: from extensively drug-resistant to untreatable tuberculosis. Lancet Respir Med 2:321–338. https://doi.org/10.1016/S2213-2600(14)70031-1
doi: 10.1016/S2213-2600(14)70031-1 pubmed: 24717628 pmcid: 5526327
Dohál M, Porvazník I, Solovič I, Mokrý J (2023) Advancing tuberculosis management: the role of predictive, preventive, and personalized medicine. Front Microbiol 14:1225438. https://doi.org/10.3389/FMICB.2023.1225438/BIBTEX
doi: 10.3389/FMICB.2023.1225438/BIBTEX pubmed: 37860132 pmcid: 10582268
Doi Y, Wachino JI, Arakawa Y (2016) Aminoglycoside resistance: the emergence of acquired 16S ribosomal RNA methyltransferases. Infect Dis Clin North Am 30:523–537. https://doi.org/10.1016/J.IDC.2016.02.011
doi: 10.1016/J.IDC.2016.02.011 pubmed: 27208771 pmcid: 4878400
Donnellan S, Giardiello M (2019) Nanomedicines towards targeting intracellular Mtb for the treatment of tuberculosis. J Interdiscip Nanomedicine 4:76–85. https://doi.org/10.1002/JIN2.61
doi: 10.1002/JIN2.61
Dookie N, Rambaran S, Padayatchi N et al (2018) Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. J Antimicrob Chemother 73:1138–1151. https://doi.org/10.1093/JAC/DKX506
doi: 10.1093/JAC/DKX506 pubmed: 29360989 pmcid: 5909630
Dookie N, Padayatchi N, Lessells RJ et al (2020) Individualized treatment of multidrug-resistant tuberculosis using whole-genome sequencing and expanded drug-susceptibility testing. Clin Infect Dis 71:2981–2985. https://doi.org/10.1093/CID/CIAA526
doi: 10.1093/CID/CIAA526 pubmed: 32384148 pmcid: 7778351
Dookie N, Ngema SL, Perumal R et al (2022) The changing paradigm of drug-resistant tuberculosis treatment: successes, pitfalls, and future perspectives. Clin Microbiol Rev 35:180–219. https://doi.org/10.1128/CMR.00180-19
doi: 10.1128/CMR.00180-19
Dorman SE, Schumacher SG, Alland D et al (2018) Xpert MTB/RIF ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. Lancet Infect Dis 18:76–84. https://doi.org/10.1016/S1473-3099(17)30691-6
doi: 10.1016/S1473-3099(17)30691-6 pubmed: 29198911 pmcid: 6168783
Dorman SE, Nahid P, Kurbatova EV et al (2020) High-dose rifapentine with or without moxifloxacin for shortening treatment of pulmonary tuberculosis: study protocol for TBTC Study 31/ACTG A5349 phase 3 clinical trial. Contemp Clin Trials 90:105938. https://doi.org/10.1016/J.CCT.2020.105938
doi: 10.1016/J.CCT.2020.105938 pubmed: 31981713 pmcid: 7307310
Eddabra R, Neffa M (2020) Mutations associated with rifampicin resistance in Mycobacterium tuberculosis isolates from Moroccan patients: systematic review. Interdiscip Perspect Infect Dis 2020:5185896. https://doi.org/10.1155/2020/5185896
doi: 10.1155/2020/5185896 pubmed: 33133185 pmcid: 7568785
Ejalonibu MA, Ogundare SA, Elrashedy AA et al (2021) Drug discovery for Mycobacterium tuberculosis using structure-based computer-aided drug design approach. Int J Mol Sci 22:13259. https://doi.org/10.3390/IJMS222413259
doi: 10.3390/IJMS222413259 pubmed: 34948055 pmcid: 8703488
Ernest JP, Sarathy J, Wang N et al (2021) Lesion penetration and activity limit the utility of second-line injectable agents in pulmonary tuberculosis. Antimicrob Agents Chemother 65:1–17. https://doi.org/10.1128/AAC.00506-21
doi: 10.1128/AAC.00506-21
Espinal MA, Kim SJ, Suarez PG et al (2000) Standard short-course chemotherapy for drug-resistant tuberculosis: treatment outcomes in 6 countries. JAMA 283:2537–2545. https://doi.org/10.1001/JAMA.283.19.2537
doi: 10.1001/JAMA.283.19.2537 pubmed: 10815117
Falzon D, Jaramillo E, Schünemann HJ et al (2011) WHO guidelines for the programmatic management of drug-resistant tuberculosis: 2011 update. Eur Respir J 38:516–528. https://doi.org/10.1183/09031936.00073611
doi: 10.1183/09031936.00073611 pubmed: 21828024
Freimane L, Barkāne L, Kivrane A et al (2023) Assessment of amikacin- and capreomycin-related adverse drug reactions in patients with multidrug-resistant tuberculosis and exploring the role of genetic factors. J Pers Med 13:1–12. https://doi.org/10.3390/JPM13040599/S1
doi: 10.3390/JPM13040599/S1
Gairola A, Benjamin A, Weatherston JD, et al (2022) Recent developments in drug delivery for treatment of tuberculosis by targeting macrophages. Adv Ther 5:1–49. https://doi.org/10.1002/ADTP.202100193
Gandhi NR, Brust JCM, Shah NS (2018) A new era for treatment of drug-resistant tuberculosis. Eur Respir Rev 52:1–4. https://doi.org/10.1183/13993003.01350-2018
doi: 10.1183/13993003.01350-2018
GE2P2 Global Foundation (2024) The sentinel health, human rights, humanitarian action, hertiage-education, climate-environment, development, peace
Georghiou SB, Magana M, Garfein RS et al (2012) Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: a systematic review. PLoS One 7:1–12. https://doi.org/10.1371/JOURNAL.PONE.0033275
doi: 10.1371/JOURNAL.PONE.0033275
Geric C, Qin ZZ, Denkinger CM et al (2023) The rise of artificial intelligence reading of chest X-rays for enhanced TB diagnosis and elimination. Int J Tuberc Lung Dis 27:367–372. https://doi.org/10.5588/IJTLD.22.0687
doi: 10.5588/IJTLD.22.0687 pubmed: 37143227 pmcid: 10171486
Gill CM, Dolan L, Piggott LM, McLaughlin AM (2022) New developments in tuberculosis diagnosis and treatment. Breathe 18:210149. https://doi.org/10.1183/20734735.0149-2021
doi: 10.1183/20734735.0149-2021 pubmed: 35284018 pmcid: 8908854
Grover GS, Takkar J (2008) Recent advances in multi-drug-resistant tuberculosis and RNTCP. Indian J Community Med 33:219–223. https://doi.org/10.4103/0970-0218.43238
doi: 10.4103/0970-0218.43238 pubmed: 19876493 pmcid: 2763697
Guglielmetti L, Huerga H, Khan U, Varaine F (2020) WHO 2019 guidelines on drug-resistant tuberculosis treatment: based on evidence or expert opinion? Eur Respir J 55:1–4. https://doi.org/10.1183/13993003.01935-2019
doi: 10.1183/13993003.01935-2019
Hameed HMA, Tan Y, Islam MM et al (2020) Detection of novel gene mutations associated with pyrazinamide resistance in multidrug-resistant Mycobacterium tuberculosis clinical isolates in Southern China. Infect Drug Resist 13:217–227. https://doi.org/10.2147/IDR.S230774
doi: 10.2147/IDR.S230774 pubmed: 32158237 pmcid: 6986415
He S, Gui J, Xiong K et al (2022) A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. J Nanobiotechnology 20:1–22. https://doi.org/10.1186/s12951-022-01307-x
doi: 10.1186/s12951-022-01307-x
Heidary M, Shirani M, Moradi M et al (2022) Tuberculosis challenges: resistance, co-infection, diagnosis, and treatment. Eur J Microbiol Immunol 12:1–17. https://doi.org/10.1556/1886.2021.00021
doi: 10.1556/1886.2021.00021
Huynh J, Marais BJ (2019) Multidrug-resistant tuberculosis infection and disease in children: a review of new and repurposed drugs. Ther Adv Infect Dis 6:1–16. https://doi.org/10.1177/2049936119864737
doi: 10.1177/2049936119864737
Institute of Medicine (US) (2013) Developing and strengthening the global supply chain for second-line drugs for multidrug-resistant tuberculosis. National Academies Press, US
Jabeen K, Shakoor S, Hasan R (2015) Fluoroquinolone-resistant tuberculosis: implications in settings with weak healthcare systems. Int J Infect Dis 32:118–123. https://doi.org/10.1016/J.IJID.2015.01.006
doi: 10.1016/J.IJID.2015.01.006 pubmed: 25809767
Jain A, Dixit P (2008) Multidrug-resistant to extensively drug resistant tuberculosis: what is next? J Biosci 33:605–616. https://doi.org/10.1007/S12038-008-0078-8
doi: 10.1007/S12038-008-0078-8 pubmed: 19208985
Jamal S, Khubaib M, Gangwar R et al (2020) Artificial intelligence and machine learning based prediction of resistant and susceptible mutations in Mycobacterium tuberculosis. Sci Rep 10:1–16. https://doi.org/10.1038/S41598-020-62368-2
doi: 10.1038/S41598-020-62368-2
Jang JG, Chung JH (2020) Diagnosis and treatment of multidrug-resistant tuberculosis. Yeungnam Univ J Med 37:277–285
doi: 10.12701/yujm.2020.00626 pubmed: 32883054 pmcid: 7606956
Jeon D (2017) WHO treatment guidelines for drug-resistant tuberculosis, 2016 update: applicability in South Korea. Tuberc Respir Dis (Seoul) 80:336–343. https://doi.org/10.4046/TRD.2017.0049
doi: 10.4046/TRD.2017.0049 pubmed: 28905529
Jo KW, Ji W, Hong Y et al (2013) The efficacy of rifabutin for rifabutin-susceptible, multidrug-resistant tuberculosis. Respir Med 107:292–297. https://doi.org/10.1016/J.RMED.2012.10.021
doi: 10.1016/J.RMED.2012.10.021 pubmed: 23199704
K SP, Mani AP, Geethalakshmi S, Yadav S (2024) Advancements in artificial intelligence for the diagnosis of multidrug resistance and extensively drug-resistant tuberculosis: a comprehensive review. Cureus 16:e60280. https://doi.org/10.7759/CUREUS.60280
doi: 10.7759/CUREUS.60280
Kabir S, Tahir Z, Mukhtar N et al (2020) Fluoroquinolone resistance and mutational profile of gyrA in pulmonary MDR tuberculosis patients. BMC Pulm Med 20:1–6. https://doi.org/10.1186/S12890-020-1172-4/FIGURES/2
doi: 10.1186/S12890-020-1172-4/FIGURES/2
Kempker RR, Kipiani M, Mirtskhulava V et al (2015) Acquired drug resistance in Mycobacterium tuberculosis and poor outcomes among patients with multidrug-resistant tuberculosis. Emerg Infect Dis 21:992–1001. https://doi.org/10.3201/EID2106.141873
doi: 10.3201/EID2106.141873 pubmed: 25993036 pmcid: 4451915
Kendall EA, Sahu S, Pai M et al (2019) What will it take to eliminate drug-resistant tuberculosis? Int J Tuberc Lung Dis 23:535–546. https://doi.org/10.5588/IJTLD.18.0217
doi: 10.5588/IJTLD.18.0217 pubmed: 31097060
Khan FA, Salim MAH, du Cros P et al (2017) Effectiveness and safety of standardised shorter regimens for multidrug-resistant tuberculosis: individual patient data and aggregate data meta-analyses. Eur Respir J 50:1700061. https://doi.org/10.1183/13993003.00061-2017
doi: 10.1183/13993003.00061-2017
Khawbung JL, Nath D, Chakraborty S (2021) Drug resistant tuberculosis: a review. Comp Immunol Microbiol Infect Dis 74:1–9. https://doi.org/10.1016/J.CIMID.2020.101574
doi: 10.1016/J.CIMID.2020.101574
Kumwenda GP, Chipungu G, Sloan DJ et al (2018) The occurrence and frequency of genomic mutations that mediate isoniazid and rifampicin resistance in Mycobacterium tuberculosis isolates from untreated pulmonary tuberculosis cases in urban Blantyre, Malawi. Malawi Med J 30:1–5. https://doi.org/10.4314/MMJ.V30I1.1
doi: 10.4314/MMJ.V30I1.1 pubmed: 29868151 pmcid: 5974378
Kundu S, Basu R, Sarkar S et al (2021) Psychological profile of multi drug resistance TB patients: a qualitative study from a Tertiary care Centre of Kolkata. J Fam Med Prim Care 10:392–397. https://doi.org/10.4103/JFMPC.JFMPC_1787_20
doi: 10.4103/JFMPC.JFMPC_1787_20
Labuda SM, Seaworth B, Dasgupta S, Goswami ND (2024) Bedaquiline, pretomanid, and linezolid with or without moxifloxacin for tuberculosis. Lancet Respir Med 12:e5–e6. https://doi.org/10.1016/S2213-2600(23)00426-5
doi: 10.1016/S2213-2600(23)00426-5 pubmed: 38043563
Laghari M, Darwis Y, Memon AH et al (2016) Nanoformulations and clinical trial candidates as probably effective and safe therapy for tuberculosis. Trop J Pharm Res 15:201–211. https://doi.org/10.4314/tjpr.v15i1.28
doi: 10.4314/tjpr.v15i1.28
Lai J (2023) Developing a predictive information system for determining the prognosis of HIV and tuberculosis co-infection in incarcerated individuals. Int J Appl Inf Manag 3:101–110. https://doi.org/10.47738/IJAIM.V3I2.55
doi: 10.47738/IJAIM.V3I2.55
Lange C, Aarnoutse RE, Alffenaar JWC et al (2019) Management of patients with multidrug-resistant tuberculosis. Int J Tuberc Lung Dis 23:645–662. https://doi.org/10.5588/IJTLD.18.0622
doi: 10.5588/IJTLD.18.0622 pubmed: 31315696
Le H, Karakasyan C, Jouenne T et al (2021) Application of polymeric nanocarriers for enhancing the bioavailability of antibiotics at the target site and overcoming antimicrobial resistance. Appl Sci 11:10695–10728. https://doi.org/10.3390/APP112210695
doi: 10.3390/APP112210695
Lee ASG, Othman SNK, Ho YM, Wong SY (2004) Novel mutations within the embB gene in ethambutol-susceptible clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 48:4447–4449. https://doi.org/10.1128/AAC.48.11.4447-4449.2004/FORMAT/EPUB
doi: 10.1128/AAC.48.11.4447-4449.2004/FORMAT/EPUB pubmed: 15504879 pmcid: 525425
Letang E, Ellis J, Naidoo K et al (2020) Tuberculosis-HIV co-infection: progress and challenges after two decades of global antiretroviral treatment roll-out. Arch Bronconeumol 56:446–454. https://doi.org/10.1016/J.ARBRES.2019.11.015
doi: 10.1016/J.ARBRES.2019.11.015 pubmed: 35373756
Li C, Wang J, Wang Y et al (2019) Recent progress in drug delivery. Acta Pharm Sin B 9:1145–1162. https://doi.org/10.1016/j.apsb.2019.08.003
doi: 10.1016/j.apsb.2019.08.003 pubmed: 31867161 pmcid: 6900554
Li Y, Sun F, Zhang W (2019) Bedaquiline and delamanid in the treatment of multidrug-resistant tuberculosis: promising but challenging. Drug Dev Res 80:98–105. https://doi.org/10.1002/DDR.21498
doi: 10.1002/DDR.21498 pubmed: 30548290
Liang S, Ma J, Wang G et al (2022) The application of artificial intelligence in the diagnosis and drug resistance prediction of pulmonary tuberculosis. Front Med 9:1–14. https://doi.org/10.3389/FMED.2022.935080/BIBTEX
doi: 10.3389/FMED.2022.935080/BIBTEX
Liebenberg D, Gordhan BG, Kana BD (2022) Drug resistant tuberculosis: implications for transmission, diagnosis, and disease management. Front Cell Infect Microbiol 12:943545. https://doi.org/10.3389/FCIMB.2022.943545
doi: 10.3389/FCIMB.2022.943545 pubmed: 36211964 pmcid: 9538507
Lin M, Chen YW, Li YR et al (2022) Systematic evaluation of line probe assays for the diagnosis of tuberculosis and drug-resistant tuberculosis. Clin Chim Acta 533:183–218. https://doi.org/10.1016/J.CCA.2022.06.020
doi: 10.1016/J.CCA.2022.06.020 pubmed: 35792161
Loddenkemper R, Sotgiu G, Mitnick CD (2012) Cost of tuberculosis in the era of multidrug resistance: will it become unaffordable? Eur Respir J 40:9–11. https://doi.org/10.1183/09031936.00027612
doi: 10.1183/09031936.00027612 pubmed: 22753833
Lu P, Liu Q, Martinez L et al (2017) Time to sputum culture conversion and treatment outcome of patients with multidrug-resistant tuberculosis: a prospective cohort study from urban China. Eur Respir J 49:1–4. https://doi.org/10.1183/13993003.01558-2016
doi: 10.1183/13993003.01558-2016
Luo M, Li K, Zhang H et al (2019) Molecular characterization of para-aminosalicylic acid resistant Mycobacterium tuberculosis clinical isolates in southwestern China. Infect Drug Resist 12:2269–2275. https://doi.org/10.2147/IDR.S207259
doi: 10.2147/IDR.S207259 pubmed: 31440065 pmcid: 6664864
MacGregor-Fairlie M, Wilkinson S, Besra GS, Oppenheimer PG (2020) Tuberculosis diagnostics: overcoming ancient challenges with modern solutions. Emerg Top Life Sci 4:435–448. https://doi.org/10.1042/ETLS20200335
doi: 10.1042/ETLS20200335 pmcid: 7733669
Malinga LA, Stoltz A, Van Der Walt M (2016) Efflux pump mediated second-line tuberculosis drug resistance. Mycobact Dis 6:1–9. https://doi.org/10.4172/2161-1068.1000222
doi: 10.4172/2161-1068.1000222
Marrone MT, Venkataramanan V, Goodman M et al (2013) Surgical interventions for drug-resistant tuberculosis: a systematic review and meta-analysis. Int J Tuberc Lung Dis 17:6–16. https://doi.org/10.5588/IJTLD.12.0198
doi: 10.5588/IJTLD.12.0198 pubmed: 23232000
Mase SR, Chorba T (2019) Treatment of drug-resistant tuberculosis. Clin Chest Med 40:775–795. https://doi.org/10.1016/j.ccm.2019.08.002
doi: 10.1016/j.ccm.2019.08.002 pubmed: 31731984 pmcid: 7000172
Maus CE, Plikaytis BB, Shinnick TM (2005) Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 49:571–577. https://doi.org/10.1128/AAC.49.2.571-577.2005
doi: 10.1128/AAC.49.2.571-577.2005 pubmed: 15673735 pmcid: 547314
Mennella C, Maniscalco U, De Pietro G, Esposito M (2024) Ethical and regulatory challenges of AI technologies in healthcare: a narrative review. Heliyon 10:e26297. https://doi.org/10.1016/J.HELIYON.2024.E26297
doi: 10.1016/J.HELIYON.2024.E26297 pubmed: 38384518 pmcid: 10879008
Minias A, Zukowska L, Lechowicz E et al (2021) Early drug development and evaluation of putative antitubercular compounds in the -omics era. Front Microbiol 11:3640–3656. https://doi.org/10.3389/FMICB.2020.618168/BIBTEX
doi: 10.3389/FMICB.2020.618168/BIBTEX
Ministry of Health and Family Welfare (2021) Guidelines for programmatic management of drug resistant tuberculosis in India
Miotto P, Zhang Y, Cirillo DM, Yam WC (2018) Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Respirology 23:1098–1113. https://doi.org/10.1111/RESP.13393
doi: 10.1111/RESP.13393 pubmed: 30189463
Mitchell MJ, Billingsley MM, Haley RM et al (2020) (2020) Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 202(20):101–124. https://doi.org/10.1038/s41573-020-0090-8
doi: 10.1038/s41573-020-0090-8
Mohammadi B, Ramazanzadeh R, Nouri B, Rouhi S (2020) Frequency of codon 306 mutations in embB gene of Mycobacterium tuberculosis resistant to ethambutol: a systematic review and meta-analysis. Int J Prev Med 11:112–122. https://doi.org/10.4103/IJPVM.IJPVM_114_19
doi: 10.4103/IJPVM.IJPVM_114_19 pubmed: 33088440 pmcid: 7554598
Moodley R, Godec TR (2016) Short-course treatment for multidrug-resistant tuberculosis: the STREAM trials. Eur Respir Rev 25:29–35. https://doi.org/10.1183/16000617.0080-2015
doi: 10.1183/16000617.0080-2015 pubmed: 26929418 pmcid: 9487666
Moonan PK, Quitugua TN, Pogoda JM et al (2011) Does directly observed therapy (DOT) reduce drug resistant tuberculosis? BMC Public Health 11:1–8. https://doi.org/10.1186/1471-2458-11-19/TABLES/3
doi: 10.1186/1471-2458-11-19/TABLES/3
Moran CA, Aaina M, Venkatesh K et al (2021) Risk factors and treatment outcome analysis associated with second-line drug-resistant tuberculosis. J Respir 2:1–12. https://doi.org/10.3390/JOR2010001
doi: 10.3390/JOR2010001
Mulu W, Mekonnen D, Yimer M et al (2015) Risk factors for multidrug resistant tuberculosis patients in Amhara National Regional State. Afr Health Sci 15:368–377. https://doi.org/10.4314/AHS.V15I2.9
doi: 10.4314/AHS.V15I2.9 pubmed: 26124781 pmcid: 4480497
Murray JF, Schraufnagel DE, Hopewell PC (2015) Treatment of tuberculosis. a historical perspective. Ann Am Thorac Soc 12:1749–1759. https://doi.org/10.1513/ANNALSATS.201509-632PS
doi: 10.1513/ANNALSATS.201509-632PS pubmed: 26653188
Nabi B, Rehman S, Aggarwal S et al (2020) Nano-based anti-tubercular drug delivery: an emerging paradigm for improved therapeutic intervention. Drug Deliv Transl Res 10:1111–1121. https://doi.org/10.1007/S13346-020-00786-5/TABLES/6
doi: 10.1007/S13346-020-00786-5/TABLES/6 pubmed: 32418158 pmcid: 7229880
Nahid P, Mase SR, Migliori GB et al (2024) Treatment of drug-resistant tuberculosis an official ATS/CDC/ERS/IDSA clinical practice guideline. Am J Respir Crit Care Med 200:E93–E142. https://doi.org/10.1164/RCCM.201909-1874ST
doi: 10.1164/RCCM.201909-1874ST
Naidoo K, Perumal R, Ngema SL et al (2023) Rapid diagnosis of drug-resistant tuberculosis–opportunities and challenges. Pathogens 13:27. https://doi.org/10.3390/PATHOGENS13010027
doi: 10.3390/PATHOGENS13010027 pubmed: 38251335 pmcid: 10819693
Nandlal L, Perumal R, Naidoo K (2022) Rapid molecular assays for the diagnosis of drug-resistant tuberculosis. Infect Drug Resist 15:4971–4984. https://doi.org/10.2147/IDR.S381643
doi: 10.2147/IDR.S381643 pubmed: 36060232 pmcid: 9438776
Nasiruddin M, Neyaz MK, Das S (2017) Nanotechnology-based approach in tuberculosis treatment. Tuberc Res Treat 2017:1–12. https://doi.org/10.1155/2017/4920209
doi: 10.1155/2017/4920209
Nathavitharana RR, Garcia-Basteiro AL, Ruhwald M et al (2022) Reimagining the status quo: how close are we to rapid sputum-free tuberculosis diagnostics for all? eBioMedicine 78:103939. https://doi.org/10.1016/J.EBIOM.2022.103939
doi: 10.1016/J.EBIOM.2022.103939 pubmed: 35339423 pmcid: 9043971
Ndjeka N, Campbell JR, Meintjes G et al (2022) Treatment outcomes 24 months after initiating short, all-oral bedaquiline-containing or injectable-containing rifampicin-resistant tuberculosis treatment regimens in South Africa: a retrospective cohort study. Lancet Infect Dis 22:1042–1051. https://doi.org/10.1016/S1473-3099(21)00811-2
doi: 10.1016/S1473-3099(21)00811-2 pubmed: 35512718 pmcid: 9217754
Ness TE, DiNardo A, Farhat MR (2022) High throughput sequencing for clinical tuberculosis: an overview. Pathogens 11:1343. https://doi.org/10.3390/PATHOGENS11111343
doi: 10.3390/PATHOGENS11111343 pubmed: 36422596 pmcid: 9695813
NITI Ayog (2018) National strategy for artificial intelligence, India, 1–114
Ngoc NB, Dinh HV, Thuy NT et al (2021) Active surveillance for adverse events in patients on longer treatment regimens for multidrug-resistant tuberculosis in Viet Nam. PLoS One 16:1–13. https://doi.org/10.1371/JOURNAL.PONE.0255357
doi: 10.1371/JOURNAL.PONE.0255357
Nguyen TNA, Le Berre VA, Bañuls AL, Nguyen TVA (2019) Molecular diagnosis of drug-resistant tuberculosis; a literature review. Front Microbiol 10:1–12. https://doi.org/10.3389/FMICB.2019.00794/FULL
doi: 10.3389/FMICB.2019.00794/FULL
Nogueira BMF, Krishnan S, Barreto‐Duarte B, et al (2022) Diagnostic biomarkers for active tuberculosis: progress and challenges. EMBO Mol Med 14:14088. https://doi.org/10.15252/EMMM.202114088
Oehadian A, Santoso P, Menzies D, Ruslami R (2022) Concise clinical review of hematologic toxicity of linezolid in multidrug-resistant and extensively drug-resistant tuberculosis: role of mitochondria. Tuberc Respir Dis (Seoul) 85:111. https://doi.org/10.4046/TRD.2021.0122
doi: 10.4046/TRD.2021.0122 pubmed: 35045688
Olaru ID, Lange C, Heyckendorf J (2016) Personalized medicine for patients with MDR-TB. J Antimicrob Chemother 71:852–855. https://doi.org/10.1093/JAC/DKV354
doi: 10.1093/JAC/DKV354 pubmed: 26507429
Oliveira O, Gaio R, Correia-Neves M et al (2021) Evaluation of drug-resistant tuberculosis treatment outcome in Portugal, 2000–2016. PLoS One 16:1–13. https://doi.org/10.1371/JOURNAL.PONE.0250028
doi: 10.1371/JOURNAL.PONE.0250028
Olson S, English R, Claiborne A (2011) Transmission and infection control of drug-resistant TB. In: The new profile of drug-resistant tuberculosis in Russia: a global and local perspective: summary of a joint workshop. National Academies Press (US), Washington (DC), pp 37–47
Padmapriyadarsini C, Vohra V, Bhatnagar A et al (2023) Bedaquiline, delamanid, linezolid, and clofazimine for treatment of pre-extensively drug-resistant tuberculosis. Clin Infect Dis An Off Publ Infect Dis Soc Am 76:e938. https://doi.org/10.1093/CID/CIAC528
doi: 10.1093/CID/CIAC528
Paikray E, Das P, Pattnaik M, Mishra V (2022) Adverse drug reaction monitoring in multidrug-resistant tuberculosis patients receiving bedaquiline and delamanid-based regimen. Cureus 14:1–8. https://doi.org/10.7759/CUREUS.30764
doi: 10.7759/CUREUS.30764
Palomino JC, Martin A (2014) Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics 3:317. https://doi.org/10.3390/ANTIBIOTICS3030317
doi: 10.3390/ANTIBIOTICS3030317 pubmed: 27025748 pmcid: 4790366
Pang Y, Zhou Y, Zhao B et al (2012) Spoligotyping and drug resistance analysis of Mycobacterium Tuberculosis strains from national survey in China. PLoS One 7:e32976. https://doi.org/10.1371/journal.pone.0032976
doi: 10.1371/journal.pone.0032976 pubmed: 22412962 pmcid: 3296750
Partnership ST (2015) Out of step 2015 TB policies in 24 countries A survey of diagnostic and treatment practices. Switzerland, Geneva
PatSeer (2023) Patent Search. https://patseer.com/category/patent-search/ . Accessed 11 Jun 2023
Pontali E, Visca D, Centis R et al (2018) Multi and extensively drug-resistant pulmonary tuberculosis: advances in diagnosis and management. Curr Opin Pulm Med 24:244–252. https://doi.org/10.1097/MCP.0000000000000477
doi: 10.1097/MCP.0000000000000477 pubmed: 29470252
Pontali E, Raviglione MC, Migliori GB et al (2019) Regimens to treat multidrug-resistant tuberculosis: past, present and future perspectives. Eur Respir Rev 28:1–7. https://doi.org/10.1183/16000617.0035-2019
doi: 10.1183/16000617.0035-2019
Poole K (2000) Efflux-mediated resistance to fluoroquinolones in gram-negative bacteria. Antimicrob Agents Chemother 44:2233–2241. https://doi.org/10.1128/AAC.44.9.2233-2241.2000
doi: 10.1128/AAC.44.9.2233-2241.2000 pubmed: 10952561 pmcid: 90051
Prommi A, Wongjarit K, Petsong S et al (2024) Co-resistance to isoniazid and second-line anti-tuberculosis drugs in isoniazid-resistant tuberculosis at a tertiary care hospital in Thailand. Microbiol Spectr 12:e03462-23. https://doi.org/10.1128/SPECTRUM.03462-23
doi: 10.1128/SPECTRUM.03462-23 pubmed: 38323824 pmcid: 10913473
Rajendra Prasad NG (2018) Multidrug-resistant tuberculosis/rifampicin-resistant tuberculosis: principles and management. Lung India 35:78–81. https://doi.org/10.4103/lungindia.lungindia
doi: 10.4103/lungindia.lungindia pubmed: 29319042
Rajput A, Mandlik S, Pokharkar V (2021) Nanocarrier-based approaches for the efficient delivery of anti-tubercular drugs and vaccines for management of tuberculosis. Front Pharmacol 12:1–9. https://doi.org/10.3389/FPHAR.2021.749945/BIBTEX
doi: 10.3389/FPHAR.2021.749945/BIBTEX
Reeves AZ, Campbell PJ, Sultana R et al (2013) Aminoglycoside cross-resistance in Mycobacterium tuberculosis due to mutations in the 5′ untranslated region of whiB7. Antimicrob Agents Chemother 57:1857–1865. https://doi.org/10.1128/AAC.02191-12
doi: 10.1128/AAC.02191-12 pubmed: 23380727 pmcid: 3623337
Reid MJA, Goosby E (2020) Improving quality is necessary to building a TB-free world: Lancet Commission on Tuberculosis. J Clin Tuberc Other Mycobact Dis 19:100156. https://doi.org/10.1016/j.jctube.2020.100156
doi: 10.1016/j.jctube.2020.100156 pubmed: 32181371 pmcid: 7063261
Remm S, Earp JC, Dick T et al (2022) Critical discussion on drug efflux in Mycobacterium tuberculosis. FEMS Microbiol Rev 46:1–15. https://doi.org/10.1093/FEMSRE/FUAB050
doi: 10.1093/FEMSRE/FUAB050
Revised National Tuberculosis Control Programme (2012) Guidelines on programmatic management of drug resistant TB (PMDT) in India control programme guidelines on programmatic management of drug resistant TB ( PMDT ) in India. New Delhi
Revised National Tuberculosis Control Programme (2017) National Strategic Plan For Tuberculosis: 2017-25 Elimination By 2025. New Delhi, India, 1–144
Rigouts L, Keysers J, Rabab R et al (2023) GeneXpert MTB/RIF Ultra performance to detect uncommon rpoB mutations in Mycobacterium tuberculosis. BMC Res Notes 16:1–5. https://doi.org/10.1186/S13104-023-06394-Z/TABLES/1
doi: 10.1186/S13104-023-06394-Z/TABLES/1
Saha M, Sarkar A (2021) Review on multiple facets of drug resistance: a rising challenge in the 21st century. J Xenobiotics 11:197–214. https://doi.org/10.3390/JOX11040013
doi: 10.3390/JOX11040013
Sahra S (2024a) Tuberculosis (TB) Differential diagnoses. In: MedScape. https://emedicine.medscape.com/article/230802-differential . Accessed 7 Aug 2024
Sahra S (2024b) Tuberculosis (TB) treatment & management: approach considerations, treatment during pregnancy, treatment in children. In: MedScape. https://emedicine.medscape.com/article/230802-treatment . Accessed 7 Aug 2024
Salehitali S, Noorian K, Hafizi M, Dehkordi AH (2019) Quality of life and its effective factors in tuberculosis patients receiving directly observed treatment short-course (DOTS). J Clin Tuberc Other Mycobact Dis 15:1–4. https://doi.org/10.1016/J.JCTUBE.2019.100093
doi: 10.1016/J.JCTUBE.2019.100093
Sava C, Sava M, Drăgan AM et al (2023) The use of Xpert MTB/RIF ultra testing for early diagnosis of tuberculosis: a retrospective study from a single-center database. Genes 14:1231. https://doi.org/10.3390/GENES14061231
doi: 10.3390/GENES14061231 pubmed: 37372411 pmcid: 10298219
Seung KJ, Keshavjee S, Rich ML (2015a) Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb Perspect Med 5:1–20. https://doi.org/10.1101/cshperspect.a017863
doi: 10.1101/cshperspect.a017863
Seung KJ, Keshavjee S, Rich ML (2015b) Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb Lab Press 5:1–21
Sharma SK, Dheda K (2019) What is new in the WHO consolidated guidelines on drug-resistant tuberculosis treatment? Indian J Med Res 149:309–312. https://doi.org/10.4103/IJMR.IJMR_579_19
doi: 10.4103/IJMR.IJMR_579_19 pubmed: 31249191 pmcid: 6607808
Sharma K, Ahmed F, Sharma T et al (2023) Potential repurposed drug candidates for tuberculosis treatment: progress and update of drugs identified in over a decade. ACS Omega 8:17362–17380. https://doi.org/10.1021/ACSOMEGA.2C05511/SUPPL_FILE/AO2C05511_SI_001.PDF
doi: 10.1021/ACSOMEGA.2C05511/SUPPL_FILE/AO2C05511_SI_001.PDF pubmed: 37251185 pmcid: 10210030
Shi J, Su R, Zheng D et al (2020) Pyrazinamide resistance and mutation patterns among multidrug-resistant Mycobacterium tuberculosis from Henan province. Infect Drug Resist 13:2929–2941. https://doi.org/10.2147/IDR.S260161
doi: 10.2147/IDR.S260161 pubmed: 32903869 pmcid: 7445508
Shibabaw A, Gelaw B, Gebreyes W et al (2020) The burden of pre-extensively and extensively drug-resistant tuberculosis among MDR-TB patients in the Amhara region, Ethiopia. PLoS One 15:1–13. https://doi.org/10.1371/JOURNAL.PONE.0229040
doi: 10.1371/JOURNAL.PONE.0229040
Singh AP, Biswas A, Shukla A, Maiti P (2019) Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther 4:1–21. https://doi.org/10.1038/s41392-019-0068-3
doi: 10.1038/s41392-019-0068-3
Singh M, Pujar GV, Kumar SA et al (2022) Evolution of machine learning in tuberculosis diagnosis: a review of deep learning-based medical applications. Electron 2634(11):2634. https://doi.org/10.3390/ELECTRONICS11172634
doi: 10.3390/ELECTRONICS11172634
Singh M, Pujar GV, Kumar SA et al (2022) Evolution of machine learning in tuberculosis diagnosis: a review of deep learning-based medical applications. Electron 11:2634–2657. https://doi.org/10.3390/ELECTRONICS11172634
doi: 10.3390/ELECTRONICS11172634
Sinha P, Jacobson KR, Robert HorsburghJr C, Acuña-Villaorduña C (2023) At long last: short, all-oral regimens for multidrug-resistant tuberculosis in the United States. Open Forum Infect Dis 10:1–8. https://doi.org/10.1093/OFID/OFAD177
doi: 10.1093/OFID/OFAD177
Skrahina A, Hurevich H, Zalutskaya A et al (2012) Alarming levels of drug-resistant tuberculosis in Belarus: results of a survey in Minsk. Eur Respir J 39:1425–1431. https://doi.org/10.1183/09031936.00145411
doi: 10.1183/09031936.00145411 pubmed: 22005924
Smith T, Wolff KA, Nguyen L (2013) Molecular biology of drug resistance in Mycobacterium tuberculosis. Curr Top Microbiol Immunol 374:53–80. https://doi.org/10.1007/82_2012_279
doi: 10.1007/82_2012_279 pubmed: 23179675 pmcid: 3982203
Sotgiu G, Tiberi S, Centis R et al (2017) Applicability of the shorter “Bangladesh regimen” in high multidrug-resistant tuberculosis settings. Int J Infect Dis 56:190–193. https://doi.org/10.1016/J.IJID.2016.10.021
doi: 10.1016/J.IJID.2016.10.021 pubmed: 27816662
Sowajassatakul A, Prammananan T, Chaiprasert A, Phunpruch S (2014) Molecular characterization of amikacin, kanamycin and capreomycin resistance in M/XDR-TB strains isolated in Thailand. BMC Microbiol 14:1–7. https://doi.org/10.1186/1471-2180-14-165
doi: 10.1186/1471-2180-14-165
Spies FS, Ribeiro AW, Ramos DF et al (2011) Streptomycin resistance and lineage-specific polymorphisms in Mycobacterium tuberculosis gidB gene. J Clin Microbiol 49:2625–2630. https://doi.org/10.1128/JCM.00168-11
doi: 10.1128/JCM.00168-11 pubmed: 21593257 pmcid: 3147840
Stadler JAM, Maartens G, Meintjes G, Wasserman S (2023) Clofazimine for the treatment of tuberculosis. Front Pharmacol 14:1100488. https://doi.org/10.3389/FPHAR.2023.1100488
doi: 10.3389/FPHAR.2023.1100488 pubmed: 36817137 pmcid: 9932205
Stephanie F, Saragih M, Tambunan USF (2021) Recent progress and challenges for drug-resistant tuberculosis treatment. Pharmaceutics 13:592–613. https://doi.org/10.3390/PHARMACEUTICS13050592
doi: 10.3390/PHARMACEUTICS13050592 pubmed: 33919204 pmcid: 8143172
Su W, Ruan YZ, Li T et al (2021) Characteristics of rifampicin-resistant tuberculosis detection in China, 2015–2019. Infect Dis Poverty 10:1–8. https://doi.org/10.1186/s40249-021-00883-8
doi: 10.1186/s40249-021-00883-8
Suárez PG, Floyd K, Portocarrero J et al (2002) Feasibility and cost-effectiveness of standardised second-line drug treatment for chronic tuberculosis patients: a national cohort study in Peru. Lancet 359:1980–1989. https://doi.org/10.1016/s0140-6736(02)08830-x
doi: 10.1016/s0140-6736(02)08830-x pubmed: 12076553
Sultana ZZ, Hoque FU, Beyene J et al (2021) HIV infection and multidrug resistant tuberculosis: a systematic review and meta-analysis. BMC Infect Dis 21:1–13. https://doi.org/10.1186/S12879-020-05749-2/TABLES/3
doi: 10.1186/S12879-020-05749-2/TABLES/3
Tasnim T, Alam FM, Ahmed SMA et al (2018) gyrA gene mutation conferring phenotypic cross-resistance among fluoroquinolones (ofloxacin, levofloxacin and gatifloxacin) in multidrug resistant Mycobacterium tuberculosis strains isolated from pulmonary MDR-TB patients in Bangladesh. J Tuberc Res 6:227–237. https://doi.org/10.4236/JTR.2018.63021
doi: 10.4236/JTR.2018.63021
Tavanaee Sani A, Ashna H, Kaffash A et al (2018) Mutations of rpob gene associated with rifampin resistance among Mycobacterium tuberculosis isolated in tuberculosis regional reference laboratory in Northeast of Iran during 2015–2016. Ethiop J Health Sci 28:299–304. https://doi.org/10.4314/EJHS.V28I3.7
doi: 10.4314/EJHS.V28I3.7 pubmed: 29983529 pmcid: 6016358
Tewabe A, Abate A, Tamrie M et al (2021) Targeted drug delivery — from magic bullet to nanomedicine: principles, challenges, and future perspectives. J Multidiscip Healthc 14:1711–1724. https://doi.org/10.2147/JMDH.S313968
doi: 10.2147/JMDH.S313968 pubmed: 34267523 pmcid: 8275483
Thomas E Herchline JKA (2020) Tuberculosis (TB). In: MedScape. https://emedicine.medscape.com/article/230802-overview . Accessed 6 Jun 2023
Tiberi S, Muñoz-Torrico M, Duarte R et al (2018) New drugs and perspectives for new anti-tuberculosis regimens. Pulmonology 24:86–98. https://doi.org/10.1016/J.RPPNEN.2017.10.009
doi: 10.1016/J.RPPNEN.2017.10.009 pubmed: 29487031
Tiberi S, Utjesanovic N, Galvin J et al (2022) Drug resistant TB – latest developments in epidemiology, diagnostics and management. Int J Infect Dis 124:S20–S25. https://doi.org/10.1016/J.IJID.2022.03.026
doi: 10.1016/J.IJID.2022.03.026 pubmed: 35342000
Trisakul K, Nonghanphithak D, Chaiyachat P et al (2022) High clustering rate and genotypic drug-susceptibility screening for the newly recommended anti-tuberculosis drugs among global extensively drug-resistant Mycobacterium tuberculosis isolates. Emerg Microbes Infect 11:1857–1866. https://doi.org/10.1080/22221751.2022.2099304
doi: 10.1080/22221751.2022.2099304 pubmed: 35792049 pmcid: 9336503
Tseng ST, Tai CH, Li CR et al (2015) The mutations of katG and inhA genes of isoniazid-resistant Mycobacterium tuberculosis isolates in Taiwan. J Microbiol Immunol Infect 48:249–255. https://doi.org/10.1016/J.JMII.2013.08.018
doi: 10.1016/J.JMII.2013.08.018 pubmed: 24184004
Tudó G, Rey E, Borrell S et al (2010) Characterization of mutations in streptomycin-resistant Mycobacterium tuberculosis clinical isolates in the area of Barcelona. J Antimicrob Chemother 65:2341–2346. https://doi.org/10.1093/JAC/DKQ322
doi: 10.1093/JAC/DKQ322 pubmed: 20802233
Tulyaprawat O, Chaiprasert A, Chongtrakool P et al (2019) Association of ubiA mutations and high-level of ethambutol resistance among Mycobacterium tuberculosis Thai clinical isolates. Tuberculosis 114:42–46. https://doi.org/10.1016/J.TUBE.2018.11.006
doi: 10.1016/J.TUBE.2018.11.006 pubmed: 30711156
Udwadia ZF, Pinto LM, Uplekar MW (2014) Managerial aspects of the programmatic management of drug-resistant TB. In: Companion Handbook to the WHO Guidelines for the Programmatic Management of Drug-Resistant Tuberculosis. World Health Organization, Geneva
USAID (2016) National action plan for combating multidrug-resistant tuberculosis
Ushtanit A, Kulagina E, Mikhailova Y et al (2022) Molecular determinants of ethionamide resistance in clinical isolates of Mycobacterium tuberculosis. Antibiotics 11:1–10. https://doi.org/10.3390/ANTIBIOTICS11020133/S1
doi: 10.3390/ANTIBIOTICS11020133/S1
Vandenesch F, Lemoine J, Becker K, et al (2020) Modern tools for rapid diagnostics of antimicrobial resistance. Front Cell Infect Microbiol | www.frontiersin.org 1:308–330. https://doi.org/10.3389/fcimb.2020.00308
Vashisht V, Vashisht A, Mondal AK et al (2023) Genomics for emerging pathogen identification and monitoring: prospects and obstacles. BioMedInformatics 3:1145–1177. https://doi.org/10.3390/BIOMEDINFORMATICS3040069/S1
doi: 10.3390/BIOMEDINFORMATICS3040069/S1
Vilchèze C, Jr WRJ, Author MS (2019) Resistance to isoniazid and ethionamide in Mycobacterium tuberculosis: genes, mutations, and causalities HHS public access author manuscript. Microbiol Spectr 2:1–21. https://doi.org/10.1128/microbiolspec.MGM2-0014-2013
Vilchèze C, Jacobs JRWR (2014) Resistance to isoniazid and ethionamide in Mycobacterium tuberculosis: genes, mutations, and causalities. Microbiol Spectr 2:1–21. https://doi.org/10.1128/MICROBIOLSPEC.MGM2-0014-2013
doi: 10.1128/MICROBIOLSPEC.MGM2-0014-2013
Wang L, Yang J, Chen L et al (2022) Whole-genome sequencing of Mycobacterium tuberculosis for prediction of drug resistance. Epidemiol Infect 150:e22. https://doi.org/10.1017/S095026882100279X
doi: 10.1017/S095026882100279X pubmed: 35086603 pmcid: 8851352
WHO, The Global Fund To Fight AIDS, Tuberculosis and Malaria STP (2019) Frequently asked questions on the WHO Rapid Communication: key changes to the treatment of multidrug-and rifampicin-resistant TB Prepared by the WHO Task Force to support country transition towards new recommendations for the treatment of MDR-TB
WHO (2011) Guidelines for the programmatic management of drug-resistance tuberculosis. World Heal Organ 1–44
WHO (2014a) Mono- and poly-resistant strains (drug-resistant TB other than MDR-TB). Companion Handbook to the WHO Guidelines for the Programmatic Management of Drug-Resistant Tuberculosis. World Health Organization, Geneva, pp 1–27
WHO (2014b) Treatment strategies for MDR-TB and XDR-TB. In: Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis. Geneva, pp 75–99
WHO (2014c) Drug-resistant TB and HIV. In: Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis. World Health Organization, Geneva
WHO (2018) Rapid communication: key changes to treatment of multidrug- and rifampicin-resistant tuberculosis (MDR/RR-TB). In: World Heal. Organ. https://iris.who.int/handle/10665/275383 . Accessed 22 Mar 2024
WHO (2019) WHO consolidated guidelines on drug-resistant tuberculosis treatment
WHO (2020) Consolidated operational guidelines on handbook tuberculosis
WHO (2021a) WHO announces updated definitions of extensively drug-resistant tuberculosis. In: WHO. https://www.who.int/news/item/27-01-2021-who-announces-updated-definitions-of-extensively-drug-resistant-tuberculosis . Accessed 5 Jun 2023
WHO (2021b) WHO announces updated definitions of extensively drug-resistant tuberculosis. In: WHO. https://www.who.int/news/item/27-01-2021-who-announces-updated-definitions-of-extensively-drug-resistant-tuberculosis . Accessed 26 May 2023
WHO (2021c) Meeting report of the WHO expert consultation on the definition of extensively drug-resistant tuberculosis. In: World Heal. Organ. https://www.who.int/publications/i/item/9789240018662 . Accessed 22 Mar 2024
WHO (2022a) WHO consolidated guidelines on tuberculosis. Module 4: treatment - drug-resistant tuberculosis treatment, 2022 update. In: World Heal. Organ. https://www.who.int/publications/i/item/9789240063129 . Accessed 22 Mar 2024
WHO (2022b) WHO consolidated guidelines on tuberculosis: Module 4: treatment - drug-resistant tuberculosis treatment, 2022 update [Internet]. Geneva: World Health Organization. Recommendations. Available from: https://ncbi.nlm.nih.gov/books/NBK588557/
WHO (2023a) Global tuberculosis report 2023
WHO (2023b) Xpert MTB/RIF and Xpert MTB/RIF ultra assays | TB knowledge sharing. In: WHO TB Knowl. Shar. Platf. https://tbksp.org/en/node/1649 . Accessed 22 Mar 2024
WHO (2023c) 5. The 9-month all-oral regimen. In: WHO TB Knowl. Shar. Platf. https://tbksp.org/en/node/582 . Accessed 6 Jun 2023
WHO (2024a) Tuberculosis: extensively drug-resistant tuberculosis (XDR-TB). https://www.who.int/news-room/questions-and-answers/item/tuberculosis-extensively-drug-resistant-tuberculosis-(XDR-TB ). Accessed 7 Aug 2024
WHO (2024b) New treatment for TB. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023/featured-topics/new-treatment-tb . Accessed 7 Aug 2024
WHO (2024c) Roadmap towards ending TB in children and adolescents- Third edition
WHO (2024d) Tuberculosis: multidrug-resistant (MDR-TB) or rifampicin-resistant TB (RR-TB). https://www.who.int/news-room/questions-and-answers/item/tuberculosis-multidrug-resistant-tuberculosis-(mdr-tb ). Accessed 7 Aug 2024
Witney AA, Cosgrove CA, Arnold A et al (2016) Clinical use of whole genome sequencing for Mycobacterium tuberculosis. BMC Med 14:1–7. https://doi.org/10.1186/S12916-016-0598-2/PEER-REVIEW
doi: 10.1186/S12916-016-0598-2/PEER-REVIEW
World Health Organization (2008) Guidelines for the programmatic management of drug-resistant tuberculosis Guidelines for the programmatic management of drug-resistant tuberculosis. World Heal Organ 12–185
World Health Organization (2011) Guidelines for the programmatic management of drug-resistant tuberculosis
World Health Organization (2016a) WHO treatment guidelines for drug-resistant tuberculosis : 2016 update.
World Health Organization (2016b) The shorter MDR-TB regimen
World Health Organization (2018a) WHO treatment guidelines for isoniazid-resistant tuberculosis: supplement to the WHO treatment guidelines for drug-resistant tuberculosis. 1–45
World Health Organization (2018b) Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis 2018
World Health Organization (2018c) Technical report on critical concentrations for drug susceptibility testing of medicines used in the treatment of drug-resistant tuberculosis
World Health Organization (2018d) Rapid communication : key changes to treatment of multidrug- and rifampicin-resistant tuberculosis. World Heal Organ 1–7
World Health Organization (2020a) Global tuberculosis report 2020
World Health Organization (2020b) Consolidated guidelines on tuberculosis treatment
World Health Organization (2022) Global tuberculosis report 2022
Xi Y, Zhang W, Qiao RJ, Tang J (2022) Risk factors for multidrug-resistant tuberculosis: a worldwide systematic review and meta-analysis. PLoS One 17:1–15. https://doi.org/10.1371/JOURNAL.PONE.0270003
doi: 10.1371/JOURNAL.PONE.0270003
Yadav P (2023) Challenges & solutions for recent advancements in multi-drugs resistance tuberculosis: a review. Microbiol Insights 16:1–9. https://doi.org/10.1177/11786361231152438
doi: 10.1177/11786361231152438
Yadav S, Jeyaraman N, Jeyaraman M, Rawal G (2024) Artificial intelligence in tuberculosis diagnosis: revolutionizing detection and treatment. IP Indian J Immunol Respir Med 9:85–87. https://doi.org/10.18231/j.ijirm.2024.017
Yu Y, Jiang XX, Li JC (2023) Biomarker discovery for tuberculosis using metabolomics. Front Mol Biosci 10:1–23. https://doi.org/10.3389/FMOLB.2023.1099654/BIBTEX
doi: 10.3389/FMOLB.2023.1099654/BIBTEX
Zaporojan N, Negrean RA, Hodișan R et al (2024) Evolution of laboratory diagnosis of tuberculosis. Clin Pract 14:388–416. https://doi.org/10.3390/CLINPRACT14020030
doi: 10.3390/CLINPRACT14020030 pubmed: 38525709 pmcid: 10961697
Zaw MT, Emran NA, Lin Z (2018) Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis. J Infect Public Health 11:605–610. https://doi.org/10.1016/J.JIPH.2018.04.005
doi: 10.1016/J.JIPH.2018.04.005 pubmed: 29706316
Zeng MC, Jia QJ, Tang LM (2021) rpoB gene mutations in rifampin-resistant Mycobacterium tuberculosis isolates from rural areas of Zhejiang, China. J Int Med Res 49:1–9. https://doi.org/10.1177/0300060521997596
doi: 10.1177/0300060521997596
Zhang X, Liu L, Zhang Y et al (2015) Genetic determinants involved in p-aminosalicylic acid resistance in clinical isolates from tuberculosis patients in Northern China from 2006 to 2012. Antimicrob Agents Chemother 59:1320–1324. https://doi.org/10.1128/AAC.03695-14
doi: 10.1128/AAC.03695-14 pubmed: 25421465 pmcid: 4335845
Zhang Y, Liu X, Yang L et al (2020) Barriers and strategies: a review of access to affordable multi-drug resistant tuberculosis medication in China. Infect Drug Resist 13:3679–3687. https://doi.org/10.2147/IDR.S256128
doi: 10.2147/IDR.S256128 pubmed: 33116687 pmcid: 7585516
Zhang M, Lu Y, Zhu Y et al (2023) Whole-genome sequencing to predict Mycobacterium tuberculosis drug resistance: a retrospective observational study in Eastern China. Antibiotics 12:1257. https://doi.org/10.3390/ANTIBIOTICS12081257/S1
doi: 10.3390/ANTIBIOTICS12081257/S1 pubmed: 37627677 pmcid: 10451829
Zhang F, Zhang F, Li L, Pang Y (2024) Clinical utilization of artificial intelligence in predicting therapeutic efficacy in pulmonary tuberculosis. J Infect Public Health 17:632–641. https://doi.org/10.1016/J.JIPH.2024.02.012
doi: 10.1016/J.JIPH.2024.02.012 pubmed: 38428275
Zhdanova E, Goncharova O, Davtyan H et al (2021) 9–12 months short treatment for patients with MDR-TB increases treatment success in Kyrgyzstan. J Infect Dev Ctries 15:66S-74S. https://doi.org/10.3855/jidc.13757
doi: 10.3855/jidc.13757 pubmed: 34609962
Zhu H, Zhou X, Zhuang Z et al (2023) Advances of new drugs bedaquiline and delamanid in the treatment of multi-drug resistant tuberculosis in children. Front Cell Infect Microbiol 13:1183597. https://doi.org/10.3389/FCIMB.2023.1183597
doi: 10.3389/FCIMB.2023.1183597 pubmed: 37384221 pmcid: 10293792
Zignol M, van Gemert W, Falzon D et al (2012) Surveillance of anti-tuberculosis drug resistance in the world: an updated analysis, 2007–2010. Bull World Health Organ 90:111. https://doi.org/10.2471/BLT.11.092585
doi: 10.2471/BLT.11.092585 pubmed: 22423162

Auteurs

Meghana N Patel (MN)

Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India.

Archita J Patel (AJ)

Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India.

Manish N Nandpal (MN)

Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India.

Manan A Raval (MA)

Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India.

Ravish J Patel (RJ)

Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India.

Amit A Patel (AA)

Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India.

Keshav Raj Paudel (KR)

Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia.

Philip M Hansbro (PM)

Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia.

Sachin Kumar Singh (SK)

School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.

Gaurav Gupta (G)

Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.

Kamal Dua (K)

Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia.

Samir G Patel (SG)

Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At. & Post:-Changa, Tal.:- Petlad, Dist.:- Anand, Gujarat, 388421, India. samirpatel.ph@charusat.ac.in.

Classifications MeSH