Inflammation in Chemotherapy-Induced Cardiotoxicity.
Anthracyclines
Cancer treatment related cardiac dysfunction
Cardio-oncology
Cardioprotection
Doxorubicin
Inflammation
Journal
Current cardiology reports
ISSN: 1534-3170
Titre abrégé: Curr Cardiol Rep
Pays: United States
ID NLM: 100888969
Informations de publication
Date de publication:
08 Oct 2024
08 Oct 2024
Historique:
accepted:
04
09
2024
medline:
8
10
2024
pubmed:
8
10
2024
entrez:
8
10
2024
Statut:
aheadofprint
Résumé
In this review we describe the role of inflammation in chemotherapy-induced cardiotoxicity with a particular focus on anthracycline-induced cardiomyopathy (AIC). First, we discuss inflammation associated with anthracyclines at a cellular level. Next, we discuss the clinical implications of these inflammatory mechanisms for early detection and cardioprotective strategies in patients undergoing anthracycline treatment. Key inflammatory pathways identified in AIC include cytokine release, upregulation of the innate immune system via toll-like receptors, and activation of the inflammasome. Emerging evidence suggests a role for inflammatory biomarkers in detecting subclinical AIC. Advanced imaging techniques, such as cardiac PET with novel tracers targeting inflammation, may enhance early detection. Both traditional cardioprotective strategies and novel anti-inflammatory therapies show potential in preventing and treating AIC. Understanding the inflammatory mechanisms involved in AIC provides new opportunities for early detection and targeted cardioprotective strategies in patients undergoing anthracycline treatment and informs our understanding of other forms of chemotherapy-induced cardiotoxicity.
Identifiants
pubmed: 39377963
doi: 10.1007/s11886-024-02131-5
pii: 10.1007/s11886-024-02131-5
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIH HHS
ID : 5T32HL007895
Pays : United States
Organisme : NIH HHS
ID : 5KL2TR001882-08
Pays : United States
Informations de copyright
© 2024. The Author(s).
Références
Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, Civelli M, Lamantia G, Colombo N, Curigliano G, Fiorentini C, Cipolla CM. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131:1981–8.
pubmed: 25948538
Swain S, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97:2869–79.
pubmed: 12767102
Lyon AR, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS): Developed by the task force on cardio-oncology of the European Society of Cardiology (ESC). Eur Heart J. 2022;43(41):4229–361.
pubmed: 36017568
Cova D, De Angelis L, Monti E, Piccinini F. Subcellular distribution of two spin trapping agents in rat heart: possible explanation for their different protective effects against doxorubicin-induced cardiotoxicity. Free Radic Res Commun. 1992;15:353–60.
pubmed: 1568642
Zhang S, Liu X, Bawa-Khalfe T, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18:1639–42.
pubmed: 23104132
Yang F, Teves SS, Kemp CJ, Henikoff S. Doxorubicin, DNA torsion, and chromatin dynamics. Biochim Biophys Acta. 2014;1845:84–9.
pubmed: 24361676
Sardão VA, Oliveira PJ, Holy J, Oliveira CR, Wallace KB. Doxorubicin-induced mitochondrial dysfunction is secondary to nuclear p53 activation in H9c2 cardiomyoblasts. Cancer Chemother Pharmacol. 2009;64:811–2.
pubmed: 19184017
Davies KJ, Doroshow JH. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem. 1986;261(7):3060–7.
Doroshow JH, Davies KJ. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J Biol Chem. 1986;261(7):3068–74.
Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV, Mutharasan RK, Naik TJ, Ardehali H. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest. 2014;124:617–30.
pubmed: 24382354
pmcid: 3904631
Lebrecht D, Setzer B, Ketelsen UP, Haberstroh J, Walker UA. Time-dependent and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic doxorubicin cardiomyopathy. Circulation. 2003;108(19):2423–9.
Wallace KB, Sardão VA, Oliveira PJ. Mitochondrial Determinants of Doxorubicin-Induced Cardiomyopathy. Circ Res. 2020;126(7):926–41.
pubmed: 32213135
pmcid: 7121924
Varricchi G, Ameri P, Cadeddu C, Ghigo A, Madonna R, Marone G, Mercurio V, Monte I, Novo G, Parrella P, Pirozzi F, Pecoraro A, Spallarossa P, Zito C, Mercuro G, Pagliaro P, Tocchetti CG. Antineoplastic drug-induced cardiotoxicity: a redox perspective. Front Physiol. 2018;9:167.
Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13:1050–9.
pubmed: 17704786
Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med. 2005;202:1691–701.
pubmed: 16365148
pmcid: 2212968
Dhalla NS, Elmoselhi AB, Hata T, Makino N. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res. 2000;47:446–56.
pubmed: 10963718
Bhagat A, et al. Doxorubicin-induced cardiotoxicity is mediated by neutrophils through release of neutrophil elastase. Front Oncol. 2022;12:947604.
pubmed: 36033503
pmcid: 9400062
Zitvogel L, Kepp O, Kroemer G. Decoding cell death signals in inflammation and immunity. Cell. 2010;140:798–804.
pubmed: 20303871
Kaczmarek A, Krysko O, Heyndrickx L, et al. TNF/TNF-R1 pathway is involved in doxorubicin-induced acute sterile inflammation. Cell Death Dis. 2013;4:e961.
pubmed: 24336081
pmcid: 3877566
Ma Y, Zhang X, Bao H, Mi S, Cai W, Yan H, Wang Q, Wang Z, Yan J, Fan G, Lindsey ML, Hu Z. Toll-like receptor (TLR) 2 and TLR4 differentially regulate doxorubicin induced cardiomyopathy in mice. PLoS One. 2012;7:e40763.
pubmed: 22808256
pmcid: 3396603
Krysko DV, Kaczmarek A, Krysko O, Heyndrickx L, Woznicki J, Bogaert P, Cauwels A, Takahashi N, Magez S, Bachert C, Vandenabeele P. TLR-2 and TLR-9 are sensors of apoptosis in a mouse model of doxorubicin-induced acute inflammation. Cell Death Differ. 2011;18:1316–25.
pubmed: 21311566
pmcid: 3172099
Wang L, Chen Q, Qi H, Wang C, Wang C, Zhang J, Dong L. Doxorubicin-induced systemic inflammation is driven by upregulation of toll-like mediators of inflammation receptor TLR4 and endotoxin leakage. Cancer Res. 2016;76:6631–42.
pubmed: 27680684
Nozaki N, Shishido T, Takeishi Y, Kubota I. Modulation of doxorubicin induced cardiac dysfunction in toll-like receptor-2-knockout mice. Circulation. 2004;110:2869–74.
pubmed: 15505089
Yu L. Feng Z (2018) The role of toll-like receptor signaling in the progression of heart failure. Mediators Inflamm. 2018;1:9874109.
Medzhitov R, Preston-Hurlburt P, Janeway C. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;399:394–7.
Aggarwal B. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003;3:745–56.
pubmed: 12949498
Maayah ZH, et al. Resveratrol reduces cardiac NLRP3-inflammasome activation and systemic inflammation to lessen doxorubicin-induced cardiotoxicity in juvenile mice. FEBS Lett. 2021;595(12):1681–95.
pubmed: 33876420
pmcid: 8608383
Swanson KV, Deng M, Ting JPY. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477–89.
pubmed: 31036962
pmcid: 7807242
Sauter KA, Wood LJ, Wong J, Iordanov M, Magun BE. Doxorubicin and daunorubicin induce processing and release of interleukin-1β through activation of the NLRP3 inflammasome. Cancer Biol Ther. 2011;11(12):1008–16.
pubmed: 21464611
pmcid: 3142364
Yang F, et al. Pyroptosis and pyroptosis-inducing cancer drugs. Acta Pharmacol Sin. 2022;43(10):2462–73.
pubmed: 35288674
pmcid: 9525650
Sun Z, Lu W, Lin N, Lin H, Zhang J, Ni T, Meng L, Zhang C, Guo H. Dihydromyricetin alleviates doxorubicin-induced cardiotoxicity by inhibiting NLRP3 inflammasome through activation of SIRT1. Biochem Pharmacol. 2020;175:113888.
pubmed: 32112883
Jadapalli JK, Wright GW, Kain V, Sherwani MA, Sonkar R, Yusuf N, et al. Doxorubicin triggers splenic contraction and irreversible dysregulation of COX and LOX that alters the inflammation-resolution program in the myocardium. Am J Physiol Heart Circ. 2018;315(5):H1091–100.
Buoncervello M, et al. Inflammatory cytokines associated with cancer growth induce mitochondria and cytoskeleton alterations in cardiomyocytes. J Cell Physiol. 2019;234(11):20453–68.
pubmed: 30982981
pmcid: 6767566
Stein-Merlob AF, Ganatra S, Yang EH. T-cell Immunotherapy and Cardiovascular Disease. Heart Fail Clin. 2022;18(3):443–54.
pubmed: 35718418
Kitayama H, et al. High-sensitive troponin T assay can predict anthracycline- and trastuzumab-induced cardiotoxicity in breast cancer patients. Breast Cancer. 2017;24(6):774–82.
pubmed: 28434150
Lakhani HV, et al. Detecting early onset of anthracyclines-induced cardiotoxicity using a novel panel of biomarkers in West-Virginian population with breast cancer. Sci Rep. 2021;11(1):7954.
pubmed: 33846495
pmcid: 8041906
Grover S, et al. Left and right ventricular effects of anthracycline and trastuzumab chemotherapy: A prospective study using novel cardiac imaging and biochemical markers. Int J Cardiol. 2013;168(6):5465–7.
pubmed: 24090744
Ky B, et al. Early Increases in Multiple Biomarkers Predict Subsequent Cardiotoxicity in Patients With Breast Cancer Treated With Doxorubicin, Taxanes, and Trastuzumab. J Am Coll Cardiol. 2014;63(8):809–16.
pubmed: 24291281
Dean M, et al. Cardiac and noncardiac biomarkers in patients undergoing anthracycline chemotherapy – a prospective analysis. Cardio-Oncology. 2023;9(1):23.
pubmed: 37106424
pmcid: 10133897
Dessì M, et al. Long-term, up to 18 months, protective effects of the angiotensin II receptor blocker telmisartan on Epirubin-induced inflammation and oxidative stress assessed by serial strain rate. Springerplus. 2013;2(1):198.
pubmed: 23741643
pmcid: 3664751
Hayase J, et al. Detection of inflammation using cardiac positron emission tomography for evaluation of ventricular arrhythmias: An institutional experience. Heart Rhythm. 2022;19(12):2064–72.
pubmed: 35932988
Jong J, Pinney JR, Packard RR. Anthracycline-induced cardiotoxicity: From pathobiology to identification of molecular targets for nuclear imaging. Front Cardiovasc Med. 2022;9:919719.
pubmed: 35990941
pmcid: 9381993
Hasinoff BB, Schroeder PE, Patel D. The Metabolites of the Cardioprotective Drug Dexrazoxane Do Not Protect Myocytes from Doxorubicin-Induced Cytotoxicity. Mol Pharmacol. 2003;64(3):670–8.
pubmed: 12920203
Deng S, et al. Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting both Topoisomerase II isoforms. BMC Cancer. 2014;14(1):842.
pubmed: 25406834
pmcid: 4242484
Schroeder PE, Patel D, Hasinoff BB. The Dihydroorotase Inhibitor 5-Aminoorotic Acid Inhibits the Metabolism in the Rat of the Cardioprotective Drug Dexrazoxane and Its One-Ring Open Metabolites. Drug Metab Dispos. 2008;36(9):1780–5.
pubmed: 18515330
Jirkovský E, et al. Clinically Translatable Prevention of Anthracycline Cardiotoxicity by Dexrazoxane Is Mediated by Topoisomerase II Beta and Not Metal Chelation. Circ Heart Fail. 2021;14(11):e008209.
pubmed: 34551586
Mei M, et al. Antioxidant and anti-inflammatory effects of dexrazoxane on dopaminergic neuron degeneration in rodent models of Parkinson’s disease. Neuropharmacology. 2019;160:107758.
pubmed: 31494143
Swain SM, et al. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol. 1997;15(4):1318–32.
pubmed: 9193323
Marty M, et al. Multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (Cardioxane®) in advanced/metastatic breast cancer patients treated with anthracycline-based chemotherapy. Ann Oncol. 2006;17(4):614–22.
pubmed: 16423847
Asselin BL, et al. Cardioprotection and Safety of Dexrazoxane in Patients Treated for Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or Advanced-Stage Lymphoblastic Non-Hodgkin Lymphoma: A Report of the Children’s Oncology Group Randomized Trial Pediatric Oncology Grou. J Clin Oncol. 2016;34(8):854–62.
pubmed: 26700126
Schloemer NJ, et al. Administration of Dexrazoxane Improves Cardiac Indices in Children and Young Adults With Acute Myeloid Leukemia (AML) While Maintaining Survival Outcomes. J Pediatr Hematol Oncol. 2017;39(5):e254–8.
pubmed: 28452856
pmcid: 5591641
Lopez M, et al. Randomized prospective clinical trial of high-dose epirubicin and dexrazoxane in patients with advanced breast cancer and soft tissue sarcomas. J Clin Oncol. 1998;16(1):86–92.
pubmed: 9440727
Tebbi CK, et al. Dexrazoxane-Associated Risk for Acute Myeloid Leukemia/Myelodysplastic Syndrome and Other Secondary Malignancies in Pediatric Hodgkin’s Disease. J Clin Oncol. 2007;25(5):493–500.
pubmed: 17290056
Kopp LM, et al. Effects of dexrazoxane on doxorubicin-related cardiotoxicity and second malignant neoplasms in children with osteosarcoma: a report from the Children’s Oncology Group. Cardio-Oncol. 2019;5(1):1–2.
Reichardt P, et al. Risk–benefit of dexrazoxane for preventing anthracycline-related cardiotoxicity: re-evaluating the European labeling. Future Oncol. 2018;14(25):2663–76.
pubmed: 29747541
Macedo AVS, et al. Efficacy of Dexrazoxane in Preventing Anthracycline Cardiotoxicity in Breast Cancer. JACC: CardioOncology. 2019;1(1):68–79.
pubmed: 34396164
pmcid: 8352186
Sobczuk P, et al. Anthracycline-induced cardiotoxicity and renin-angiotensin-aldosterone system—from molecular mechanisms to therapeutic applications. Heart Fail Rev. 2022;27(1):295–319.
pubmed: 32472524
Hiona A, et al. Pretreatment with angiotensin-converting enzyme inhibitor improves doxorubicin-induced cardiomyopathy via preservation of mitochondrial function. J Thorac Cardiovasc Surg. 2011;142(2):396-403.e3.
pubmed: 21094500
Cadeddu C, et al. Protective effects of the angiotensin II receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress, and early ventricular impairment. Am Heart J. 2010;160(3):487.e1-487.e7.
pubmed: 20826257
Gulati G, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016;37(21):1671–80.
pubmed: 26903532
pmcid: 4887703
Heck SL, et al. Prevention of Cardiac Dysfunction During Adjuvant Breast Cancer Therapy (PRADA): Extended Follow-Up of a 2×2 Factorial, Randomized, Placebo-Controlled, Double-Blind Clinical Trial of Candesartan and Metoprolol. Circulation. 2021;143(25):2431–40.
pubmed: 33993702
pmcid: 8212877
Graffagnino J, Kondapalli L, Arora G, Hawi R, Lenneman CG. Strategies to prevent cardiotoxicity. Curr Treat Options Oncol. 2020;21(4):32
Toyoda S, et al. Effects of carvedilol vs bisoprolol on inflammation and oxidative stress in patients with chronic heart failure. J Cardiol. 2020;75(2):140–7.
pubmed: 31444140
Avila MS, et al. Carvedilol for Prevention of Chemotherapy-Related Cardiotoxicity. J Am Coll Cardiol. 2018;71(20):2281–90.
pubmed: 29540327
Bosch X, et al. Enalapril and Carvedilol for Preventing Chemotherapy-Induced Left Ventricular Systolic Dysfunction in Patients With Malignant Hemopathies. J Am Coll Cardiol. 2013;61(23):2355–62.
pubmed: 23583763
Wihandono A, et al. The Role of Lisinopril and Bisoprolol to Prevent Anthracycline Induced Cardiotoxicity in Locally Advanced Breast Cancer Patients. Asian Pac J Cancer Prev. 2021;22(9):2847–53.
pubmed: 34582653
pmcid: 8850900
Kaya MG, et al. Protective effects of nebivolol against anthracycline-induced cardiomyopathy: A randomized control study. Int J Cardiol. 2013;167(5):2306–10.
pubmed: 22727976
Riad A, et al. Pretreatment with Statin Attenuates the Cardiotoxicity of Doxorubicin in Mice. Can Res. 2009;69(2):695–9.
Henninger C, Fritz G. Statins in anthracycline-induced cardiotoxicity: Rac and Rho, and the heartbreakers. Cell Death Dis. 2018;8(1):e2564–e2564.
Svvs R, et al. Protective role of atorvastatin against doxorubicin-induced cardiotoxicity and testicular toxicity in mice. J Physiol Biochem. 2013;69(3):513–25.
Abdel-Qadir H, et al. Statin Exposure and Risk of Heart Failure after Anthracycline- or Trastuzumab-Based Chemotherapy for Early Breast Cancer: A Propensity Score-Matched Cohort Study. J Am Heart Assoc. 2021;10(2):e018393.
pubmed: 33401953
pmcid: 7955306
Seicean S, et al. Effect of Statin Therapy on the Risk for Incident Heart Failure in Patients With Breast Cancer Receiving Anthracycline Chemotherapy. J Am Coll Cardiol. 2012;60(23):2384–90.
pubmed: 23141499
Acar Z, et al. Efficiency of Atorvastatin in the Protection of Anthracycline-Induced Cardiomyopathy. J Am Coll Cardiol. 2011;58(9):988–9.
pubmed: 21851890
Neilan TG, et al. Atorvastatin for Anthracycline-Associated Cardiac Dysfunction. JAMA. 2023;330(6):528.
pubmed: 37552303
pmcid: 10410476
Hundley WG, D'Agostino R Jr, Crotts T, Craver K, Hackney MH, Jordan JH, Ky B, Wagner LI, Herrington DM, Yeboah J, Reding KW, Ladd AC, Rapp SR, Russo S, O'Connell N, Weaver KE, Dressler EV, Ge Y, Melin SA, Gudena V, Lesser GJ. Statins and left ventricular ejection fraction following doxorubicin treatment. NEJM Evid. 2022;1(9). https://doi.org/10.1056/evidoa2200097 .
Bruynzeel AME, et al. Anti-inflammatory agents and monoHER protect against DOX-induced cardiotoxicity and accumulation of CML in mice. Br J Cancer. 2007;96(6):937–43.
pubmed: 17325706
pmcid: 2360105
Wu X, Shen F, Jiang G, Xue G, Philips S, Gardner L, Cunningham G, Bales C, Cantor E, Schneider BP. A non-coding GWAS variant impacts anthracycline-induced cardiotoxic phenotypes in human iPSC-derived cardiomyocytes. Nat Commun. 2022;13(1):7171.
Imazio M, et al. A Randomized Trial of Colchicine for Acute Pericarditis. N Engl J Med. 2013;369(16):1522–8.
pubmed: 23992557
Kommu S, Arepally S. The effect of colchicine on atrial fibrillation: a systematic review and meta-analysis. Cureus. 2023;15(2):e35120.
González L, et al. The Role of Colchicine in Atherosclerosis: From Bench to Bedside. Pharmaceutics. 2022;14(7):1395.
pubmed: 35890291
pmcid: 9323936
Peng Y, et al. Low‐dose colchicine ameliorates doxorubicin cardiotoxicity via promoting autolysosome degradation. J Am Heart Assoc. 2024;13(9):e033700.
Sun Z, et al. SIRT3 attenuates doxorubicin-induced cardiotoxicity by inhibiting NLRP3 inflammasome via autophagy. Biochem Pharmacol. 2023;207:115354.
pubmed: 36435202
Sun Z, et al. Dihydromyricetin alleviates doxorubicin-induced cardiotoxicity by inhibiting NLRP3 inflammasome through activation of SIRT1. Biochem Pharmacol. 2020;175:113888.
pubmed: 32112883
Zhang L, et al. Calycosin Alleviates Doxorubicin-Induced Cardiotoxicity and Pyroptosis by Inhibiting NLRP3 Inflammasome Activation. Oxid Med Cell Longev. 2022;2022:1–15.
Ridker P. From RESCUE to ZEUS: will interleukin-6 inhibition with ziltivekimab prove effective for cardiovascular event reduction? Cardiovasc Res. 2021;117(11):e138–40.
pubmed: 34352102
pmcid: 8861265
Petrie MBB, et al. HERMES: Effects Of Ziltivekimab Versus Placebo On Morbidity And Mortality In Patients With Heart Failure With Mildly Reduced Or Preserved Ejection Fraction And Systemic Inflammation. J Card Fail. 2024;30(1):126.
Wei S, et al. (2021) NLRP3 Inflammasome: A Promising Therapeutic Target for Drug-Induced Toxicity. Front Cell Dev Biol. 2021;9:634607.
pubmed: 33912556
pmcid: 8072389
Stein-Merlob AF, et al. Cardiotoxicities of novel cancer immunotherapies. Heart. 2021;107(21):1694–703.
pubmed: 33722826
Deng T, et al. (2021) DAMPs released by pyroptotic cells as major contributors and therapeutic targets for CAR-T-related toxicities. Cell Death & Disease. 2021;12(1):129.