Presence of cholestasis and its impact on survival in SARS-CoV-2 associated acute respiratory distress syndrome.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
08 10 2024
Historique:
received: 16 04 2024
accepted: 23 09 2024
medline: 9 10 2024
pubmed: 9 10 2024
entrez: 8 10 2024
Statut: epublish

Résumé

Data on cholestasis and biliary injury in patients with COVID-19 are scarce. The primary aim of this study was to evaluate the prevalence of cholestasis and factors associated with its development and outcome in critically ill patients with COVID-19 associated acute respiratory distress syndrome (ARDS). In this retrospective exploratory study, COVID-19 patients with ARDS admitted to an intensive care unit (ICU) at the Medical University of Vienna were evaluated for the development of cholestasis defined as an alkaline phosphatase level of 1.67x upper limit of normal for at least three consecutive days. Simple and multiple logistic regression analysis was used to evaluate parameters associated with development of cholestasis and survival. Of 225 included patients 119 (53%) developed cholestasis during ICU stay. Patients with cholestasis had higher peak levels of alkaline phosphatase, gamma-glutamyl transferase, bilirubin and inflammation parameters. Factors independently associated with cholestasis were extracorporeal membrane oxygenation support, ketamine use, high levels of inflammation parameters and disease severity. Presence of cholestasis and peak ALP levels were independently associated with worse ICU and 6-month survival. Development of cholestasis is a common complication in critically ill COVID-19 patients and represents a negative prognostic marker for survival. It is associated with disease severity and specific treatment modalities of intensive care.

Identifiants

pubmed: 39379494
doi: 10.1038/s41598-024-73948-x
pii: 10.1038/s41598-024-73948-x
doi:

Substances chimiques

Alkaline Phosphatase EC 3.1.3.1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

23377

Informations de copyright

© 2024. The Author(s).

Références

Xu, Z. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 8, 420–422 (2020).
pubmed: 32085846 pmcid: 7164771 doi: 10.1016/S2213-2600(20)30076-X
Mehta, P. et al. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 395, 1033–1034 (2020).
pubmed: 32192578 pmcid: 7270045 doi: 10.1016/S0140-6736(20)30628-0
Nardo, A. D. et al. Pathophysiological mechanisms of liver injury in COVID-19. Liver Int. 41, 20–32 (2021).
pubmed: 33190346 doi: 10.1111/liv.14730
Henrie, J. et al. Profile of liver cholestatic biomarkers following prolonged ketamine administration in patients with COVID-19. BMC Anesthesiol. 23, 44 (2023).
pubmed: 36750971 pmcid: 9902832 doi: 10.1186/s12871-023-02006-2
Marjot, T. et al. COVID-19 and liver disease: Mechanistic and clinical perspectives. Nat. Rev. Gastroenterol. Hepatol. 18, 348–364 (2021).
pubmed: 33692570 pmcid: 7945972 doi: 10.1038/s41575-021-00426-4
Kulkarni, A. V. et al. Systematic review with meta-analysis: Liver manifestations and outcomes in COVID-19. Aliment. Pharmacol. Ther. 52, 584–599 (2020).
pubmed: 32638436 pmcid: 7361465 doi: 10.1111/apt.15916
Yadav, D. K. et al. Involvement of liver in COVID-19: Systematic review and meta-analysis. Gut 70, 807–809 (2021).
pubmed: 32669289 doi: 10.1136/gutjnl-2020-322072
Kumar-M, P. et al. Coronavirus disease (COVID-19) and the liver: A comprehensive systematic review and meta-analysis. Hepatol. Int. 14, 711–722 (2020).
pubmed: 32623633 doi: 10.1007/s12072-020-10071-9
Paliogiannis, P. & Zinellu, A. Bilirubin levels in patients with mild and severe Covid-19: A pooled analysis. Liver Int. 40, 1787–1788 (2020).
pubmed: 32304343 pmcid: 7264680 doi: 10.1111/liv.14477
Bernal-Monterde, V. et al. SARS-CoV-2 infection induces a dual response in liver function tests: Association with mortality during hospitalization. Biomedicines 8, 328 (2020).
pubmed: 32899640 pmcid: 7555293 doi: 10.3390/biomedicines8090328
Leonhardt, S. et al. Hepatobiliary long-term consequences of COVID-19: Dramatically increased rate of secondary sclerosing cholangitis in critically ill COVID-19 patients. Hepatol. Int. 17, 1610–1625 (2023).
pubmed: 37119516 doi: 10.1007/s12072-023-10521-0
Hunyady, P. et al. Secondary sclerosing cholangitis following coronavirus disease 2019 (COVID-19): A multicenter retrospective study. Clin. Infect. Dis. 76, e179–e187 (2022).
doi: 10.1093/cid/ciac565
Edwards, K., Allison, M. & Ghuman, S. Secondary sclerosing cholangitis in critically ill patients: A rare disease precipitated by severe SARS-CoV-2 infection. BMJ Case Rep. 13 (2020).
Roth, N. C. et al. Post-COVID-19 cholangiopathy: A novel entity. Am. J. Gastroenterol. 116, 1077–1082 (2021).
pubmed: 33464757 doi: 10.14309/ajg.0000000000001154
Durazo, F. A. et al. Post-covid-19 Cholangiopathy-A new indication for liver transplantation: A case report. Transpl. Proc. 53, 1132–1137 (2021).
doi: 10.1016/j.transproceed.2021.03.007
Butikofer, S. et al. Secondary sclerosing cholangitis as cause of persistent jaundice in patients with severe COVID-19. Liver Int. 41, 2404–2417 (2021).
pubmed: 34018314 pmcid: 8242687 doi: 10.1111/liv.14971
Geier, A., Fickert, P. & Trauner, M. Mechanisms of disease: Mechanisms and clinical implications of cholestasis in sepsis. Nat. Clin. Pract. Gastroenterol. Hepatol. 3, 574–585 (2006).
pubmed: 17008927 doi: 10.1038/ncpgasthep0602
Horvatits, T., Drolz, A., Trauner, M. & Fuhrmann, V. Liver injury and failure in critical illness. Hepatology. 70, 2204–2215 (2019).
pubmed: 31215660 doi: 10.1002/hep.30824
Leonhardt, S. et al. Secondary sclerosing cholangitis in critically ill patients: Clinical presentation, cholangiographic features, natural history, and outcome a series of 16 cases. Medicine 94, e2188 (2015).
pubmed: 26656347 pmcid: 5008492 doi: 10.1097/MD.0000000000002188
Leonhardt, S. et al. Trigger mechanisms of secondary sclerosing cholangitis in critically ill patients. Crit. Care 19, 131 (2015).
pubmed: 25886728 pmcid: 4407292 doi: 10.1186/s13054-015-0861-5
Beath, S. V. & Kelly, D. A. Total parenteral nutrition-induced cholestasis: Prevention and management. Clin. Liver Dis. 20, 159–176 (2016).
pubmed: 26593297 doi: 10.1016/j.cld.2015.08.009
Madnawat, H. et al. Mechanisms of parenteral nutrition-associated liver and gut injury. Nutr. Clin. Pract. 35, 63–71 (2020).
pubmed: 31872510 doi: 10.1002/ncp.10461
Wendel-Garcia, P. D. et al. Long-term ketamine infusion-induced cholestatic liver injury in COVID-19-associated acute respiratory distress syndrome. Crit. Care 26, 148 (2022).
pubmed: 35606831 pmcid: 9125956 doi: 10.1186/s13054-022-04019-8
de Tymowski, C., Dépret, F., Dudoignon, E., Legrand, M. & Mallet, V. Ketamine-induced cholangiopathy in ARDS patients. Intensive Care Med. 47, 1173–1174 (2021).
pubmed: 34313797 pmcid: 8315088 doi: 10.1007/s00134-021-06482-3
Leonhardt, S., Baumann, S., Jürgensen, C., Hüter, L. & Leonhardt, J. Role of intravenous ketamine in the pathogenesis of secondary sclerosing cholangitis in critically ill patients: Perpetrator or innocent bystander? Answers provided by forensic toxicology. Intensive Care Med. 49, 1549–1551 (2023).
pubmed: 37943301 pmcid: 10709220 doi: 10.1007/s00134-023-07257-8
Ranieri, V. M. et al. Acute respiratory distress syndrome the berlin definition. JAMA 307, 2526–2533 (2012).
pubmed: 22797452
Kumagi, T. et al. Baseline ductopenia and treatment response predict long-term histological progression in primary biliary cirrhosis. Am. J. Gastroenterol. 105, 2186–2194 (2010).
pubmed: 20502446 doi: 10.1038/ajg.2010.216
Hartl, L. et al. Progressive cholestasis and associated sclerosing cholangitis are frequent complications of COVID-19 in patients with chronic liver disease. Hepatology 76, 1563–1575 (2022).
pubmed: 35596929 doi: 10.1002/hep.32582
Wang, Y. J. et al. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J. Hepatol. 73, 807–816 (2020).
pubmed: 32437830 pmcid: 7211738 doi: 10.1016/j.jhep.2020.05.002
Iba, T., Connors, J. M. & Levy, J. H. The coagulopathy, endotheliopathy, and vasculitis of COVID-19. Inflamm. Res. 69, 1181–1189 (2020).
pubmed: 32918567 pmcid: 7486586 doi: 10.1007/s00011-020-01401-6
Lax, S. F. et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: Results from a prospective, single-center, clinicopathologic case series. Ann. Intern. Med. 173, 350–361 (2020).
pubmed: 32422076 doi: 10.7326/M20-2566
Trauner, M., Meier, P. J. & Boyer, J. L. Molecular pathogenesis of cholestasis. N. Engl. J. Med. 339, 1217–1227 (1998).
pubmed: 9780343 doi: 10.1056/NEJM199810223391707
Trauner, M. & Boyer, J. L. Bile salt transporters: Molecular characterization, function, and regulation. Physiol. Rev. 83, 633–671 (2003).
pubmed: 12663868 doi: 10.1152/physrev.00027.2002
Vartak, N. et al. On the mechanisms of biliary flux. Hepatology 74, 3497–3512 (2021).
pubmed: 34164843 doi: 10.1002/hep.32027
Harnisch, L. O. et al. Biomarkers of cholestasis and liver injury in the early phase of acute respiratory distress syndrome and their pathophysiological value. Diagnostics 11, (2021).
de Tymowski, C. et al. Contributing factors and outcomes of burn-associated cholestasis. J. Hepatol. 71, 563–572 (2019).
pubmed: 31152758 doi: 10.1016/j.jhep.2019.05.009
Ruemmele, P., Hofstaedter, F. & Gelbmann, C. M. Secondary sclerosing cholangitis. Nat. Rev. Gastroenterol. Hepatol. 6, 287–295 (2009).
pubmed: 19404269 doi: 10.1038/nrgastro.2009.46
Weig, T. et al. Abdominal obesity and prolonged prone positioning increase risk of developing sclerosing cholangitis in critically ill patients with influenza A-associated ARDS. Eur. J. Med. Res. 17, 30 (2012).
pubmed: 23259907 pmcid: 3543205 doi: 10.1186/2047-783X-17-30
Wong, G. L. et al. Liver injury is common among chronic abusers of ketamine. Clin. Gastroenterol. Hepatol. 12, 1759–1762e1751 (2014).
pubmed: 24534547 doi: 10.1016/j.cgh.2014.01.041
Ding, Z. Y. et al. Association of liver abnormalities with in-hospital mortality in patients with COVID-19. J. Hepatol. 74, 1295–1302 (2021).
pubmed: 33347952 doi: 10.1016/j.jhep.2020.12.012
Hartl, L. et al. Age-adjusted mortality and predictive value of liver chemistries in a viennese cohort of COVID-19 patients. Liver Int. 42, 1297–1307 (2022).
pubmed: 35412018 pmcid: 9115240 doi: 10.1111/liv.15274
Krishnan, A. et al. Abnormal liver chemistries as a predictor of COVID-19 severity and clinical outcomes in hospitalized patients. World J. Gastroenterol. 28, 570–587 (2022).
pubmed: 35316959 pmcid: 8905016 doi: 10.3748/wjg.v28.i5.570
Kramer, L., Jordan, B., Druml, W., Bauer, P. & Metnitz, P. G. Incidence and prognosis of early hepatic dysfunction in critically ill patients—A prospective multicenter study. Crit. Care Med. 35, 1099–1104 (2007).
pubmed: 17334250 doi: 10.1097/01.CCM.0000259462.97164.A0
Trauner, M. & Graziadei, I. W. Review article: Mechanisms of action and therapeutic applications of ursodeoxycholic acid in chronic liver diseases. Aliment. Pharmacol. Ther. 13, 979–996 (1999).
pubmed: 10468672 doi: 10.1046/j.1365-2036.1999.00596.x
Beuers, U., Trauner, M., Jansen, P. & Poupon, R. New paradigms in the treatment of hepatic cholestasis: From UDCA to FXR, PXR and beyond. J. Hepatol. 62, S25–37 (2015).
pubmed: 25920087 doi: 10.1016/j.jhep.2015.02.023
Al Sulaiman, K. et al. Impact of ursodeoxycholic acid in critically ill patients with sepsis: A retrospective study. J. Pharm. Pract. 36, 566–571 (2023).
pubmed: 37189247 doi: 10.1177/08971900211038363
EASL Clinical Practice Guidelines. The diagnosis and management of patients with primary biliary cholangitis. J. Hepatol. 67, 145–172 (2017).
doi: 10.1016/j.jhep.2017.03.022
EASL Clinical Practice. Guidelines on sclerosing cholangitis. J. Hepatol. 77, 761–806 (2022).
doi: 10.1016/j.jhep.2022.05.011
Murillo Perez, C. F. et al. Goals of treatment for improved survival in primary biliary cholangitis: Treatment target should be bilirubin within the normal range and normalization of alkaline phosphatase. Am. J. Gastroenterol. 115, 1066–1074 (2020).
pubmed: 32618657 doi: 10.14309/ajg.0000000000000557

Auteurs

Mathias Schneeweiss-Gleixner (M)

Department of Medicine III, Division of Gastroenterology and Hepatology with Intensive Care Unit 13h1, Medical University of Vienna, Vienna, Austria.

Katharina Krenn (K)

Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria.

Mathias Petter (M)

Department of Medicine III, Division of Gastroenterology and Hepatology with Intensive Care Unit 13h1, Medical University of Vienna, Vienna, Austria.

Patrick Haselwanter (P)

Department of Medicine III, Division of Gastroenterology and Hepatology with Intensive Care Unit 13h1, Medical University of Vienna, Vienna, Austria.

Felix Kraft (F)

Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria.

Lukas Adam (L)

Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria.

Georg Semmler (G)

Department of Medicine III, Division of Gastroenterology and Hepatology with Intensive Care Unit 13h1, Medical University of Vienna, Vienna, Austria.

Lukas Hartl (L)

Department of Medicine III, Division of Gastroenterology and Hepatology with Intensive Care Unit 13h1, Medical University of Vienna, Vienna, Austria.

Emina Halilbasic (E)

Department of Medicine III, Division of Gastroenterology and Hepatology with Intensive Care Unit 13h1, Medical University of Vienna, Vienna, Austria.

Nina Buchtele (N)

Department of Medicine I, Intensive Care Unit 13i2, Medical University of Vienna, Vienna, Austria.

Christoph Krall (C)

Department of Medical Statistics, Medical University of Vienna, Vienna, Austria.

Thomas Staudinger (T)

Department of Medicine I, Intensive Care Unit 13i2, Medical University of Vienna, Vienna, Austria.

Christian Zauner (C)

Department of Medicine III, Division of Gastroenterology and Hepatology with Intensive Care Unit 13h1, Medical University of Vienna, Vienna, Austria.

Michael Trauner (M)

Department of Medicine III, Division of Gastroenterology and Hepatology with Intensive Care Unit 13h1, Medical University of Vienna, Vienna, Austria. michael.trauner@meduniwien.ac.at.

Albert Friedrich Stättermayer (AF)

Department of Medicine III, Division of Gastroenterology and Hepatology with Intensive Care Unit 13h1, Medical University of Vienna, Vienna, Austria. albertfriedrich.staettermayer@meduniwien.ac.at.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH