Presence of cholestasis and its impact on survival in SARS-CoV-2 associated acute respiratory distress syndrome.
COVID-19
Cholestasis
ICU
Ketamine
Liver injury
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
08 10 2024
08 10 2024
Historique:
received:
16
04
2024
accepted:
23
09
2024
medline:
9
10
2024
pubmed:
9
10
2024
entrez:
8
10
2024
Statut:
epublish
Résumé
Data on cholestasis and biliary injury in patients with COVID-19 are scarce. The primary aim of this study was to evaluate the prevalence of cholestasis and factors associated with its development and outcome in critically ill patients with COVID-19 associated acute respiratory distress syndrome (ARDS). In this retrospective exploratory study, COVID-19 patients with ARDS admitted to an intensive care unit (ICU) at the Medical University of Vienna were evaluated for the development of cholestasis defined as an alkaline phosphatase level of 1.67x upper limit of normal for at least three consecutive days. Simple and multiple logistic regression analysis was used to evaluate parameters associated with development of cholestasis and survival. Of 225 included patients 119 (53%) developed cholestasis during ICU stay. Patients with cholestasis had higher peak levels of alkaline phosphatase, gamma-glutamyl transferase, bilirubin and inflammation parameters. Factors independently associated with cholestasis were extracorporeal membrane oxygenation support, ketamine use, high levels of inflammation parameters and disease severity. Presence of cholestasis and peak ALP levels were independently associated with worse ICU and 6-month survival. Development of cholestasis is a common complication in critically ill COVID-19 patients and represents a negative prognostic marker for survival. It is associated with disease severity and specific treatment modalities of intensive care.
Identifiants
pubmed: 39379494
doi: 10.1038/s41598-024-73948-x
pii: 10.1038/s41598-024-73948-x
doi:
Substances chimiques
Alkaline Phosphatase
EC 3.1.3.1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
23377Informations de copyright
© 2024. The Author(s).
Références
Xu, Z. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 8, 420–422 (2020).
pubmed: 32085846
pmcid: 7164771
doi: 10.1016/S2213-2600(20)30076-X
Mehta, P. et al. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 395, 1033–1034 (2020).
pubmed: 32192578
pmcid: 7270045
doi: 10.1016/S0140-6736(20)30628-0
Nardo, A. D. et al. Pathophysiological mechanisms of liver injury in COVID-19. Liver Int. 41, 20–32 (2021).
pubmed: 33190346
doi: 10.1111/liv.14730
Henrie, J. et al. Profile of liver cholestatic biomarkers following prolonged ketamine administration in patients with COVID-19. BMC Anesthesiol. 23, 44 (2023).
pubmed: 36750971
pmcid: 9902832
doi: 10.1186/s12871-023-02006-2
Marjot, T. et al. COVID-19 and liver disease: Mechanistic and clinical perspectives. Nat. Rev. Gastroenterol. Hepatol. 18, 348–364 (2021).
pubmed: 33692570
pmcid: 7945972
doi: 10.1038/s41575-021-00426-4
Kulkarni, A. V. et al. Systematic review with meta-analysis: Liver manifestations and outcomes in COVID-19. Aliment. Pharmacol. Ther. 52, 584–599 (2020).
pubmed: 32638436
pmcid: 7361465
doi: 10.1111/apt.15916
Yadav, D. K. et al. Involvement of liver in COVID-19: Systematic review and meta-analysis. Gut 70, 807–809 (2021).
pubmed: 32669289
doi: 10.1136/gutjnl-2020-322072
Kumar-M, P. et al. Coronavirus disease (COVID-19) and the liver: A comprehensive systematic review and meta-analysis. Hepatol. Int. 14, 711–722 (2020).
pubmed: 32623633
doi: 10.1007/s12072-020-10071-9
Paliogiannis, P. & Zinellu, A. Bilirubin levels in patients with mild and severe Covid-19: A pooled analysis. Liver Int. 40, 1787–1788 (2020).
pubmed: 32304343
pmcid: 7264680
doi: 10.1111/liv.14477
Bernal-Monterde, V. et al. SARS-CoV-2 infection induces a dual response in liver function tests: Association with mortality during hospitalization. Biomedicines 8, 328 (2020).
pubmed: 32899640
pmcid: 7555293
doi: 10.3390/biomedicines8090328
Leonhardt, S. et al. Hepatobiliary long-term consequences of COVID-19: Dramatically increased rate of secondary sclerosing cholangitis in critically ill COVID-19 patients. Hepatol. Int. 17, 1610–1625 (2023).
pubmed: 37119516
doi: 10.1007/s12072-023-10521-0
Hunyady, P. et al. Secondary sclerosing cholangitis following coronavirus disease 2019 (COVID-19): A multicenter retrospective study. Clin. Infect. Dis. 76, e179–e187 (2022).
doi: 10.1093/cid/ciac565
Edwards, K., Allison, M. & Ghuman, S. Secondary sclerosing cholangitis in critically ill patients: A rare disease precipitated by severe SARS-CoV-2 infection. BMJ Case Rep. 13 (2020).
Roth, N. C. et al. Post-COVID-19 cholangiopathy: A novel entity. Am. J. Gastroenterol. 116, 1077–1082 (2021).
pubmed: 33464757
doi: 10.14309/ajg.0000000000001154
Durazo, F. A. et al. Post-covid-19 Cholangiopathy-A new indication for liver transplantation: A case report. Transpl. Proc. 53, 1132–1137 (2021).
doi: 10.1016/j.transproceed.2021.03.007
Butikofer, S. et al. Secondary sclerosing cholangitis as cause of persistent jaundice in patients with severe COVID-19. Liver Int. 41, 2404–2417 (2021).
pubmed: 34018314
pmcid: 8242687
doi: 10.1111/liv.14971
Geier, A., Fickert, P. & Trauner, M. Mechanisms of disease: Mechanisms and clinical implications of cholestasis in sepsis. Nat. Clin. Pract. Gastroenterol. Hepatol. 3, 574–585 (2006).
pubmed: 17008927
doi: 10.1038/ncpgasthep0602
Horvatits, T., Drolz, A., Trauner, M. & Fuhrmann, V. Liver injury and failure in critical illness. Hepatology. 70, 2204–2215 (2019).
pubmed: 31215660
doi: 10.1002/hep.30824
Leonhardt, S. et al. Secondary sclerosing cholangitis in critically ill patients: Clinical presentation, cholangiographic features, natural history, and outcome a series of 16 cases. Medicine 94, e2188 (2015).
pubmed: 26656347
pmcid: 5008492
doi: 10.1097/MD.0000000000002188
Leonhardt, S. et al. Trigger mechanisms of secondary sclerosing cholangitis in critically ill patients. Crit. Care 19, 131 (2015).
pubmed: 25886728
pmcid: 4407292
doi: 10.1186/s13054-015-0861-5
Beath, S. V. & Kelly, D. A. Total parenteral nutrition-induced cholestasis: Prevention and management. Clin. Liver Dis. 20, 159–176 (2016).
pubmed: 26593297
doi: 10.1016/j.cld.2015.08.009
Madnawat, H. et al. Mechanisms of parenteral nutrition-associated liver and gut injury. Nutr. Clin. Pract. 35, 63–71 (2020).
pubmed: 31872510
doi: 10.1002/ncp.10461
Wendel-Garcia, P. D. et al. Long-term ketamine infusion-induced cholestatic liver injury in COVID-19-associated acute respiratory distress syndrome. Crit. Care 26, 148 (2022).
pubmed: 35606831
pmcid: 9125956
doi: 10.1186/s13054-022-04019-8
de Tymowski, C., Dépret, F., Dudoignon, E., Legrand, M. & Mallet, V. Ketamine-induced cholangiopathy in ARDS patients. Intensive Care Med. 47, 1173–1174 (2021).
pubmed: 34313797
pmcid: 8315088
doi: 10.1007/s00134-021-06482-3
Leonhardt, S., Baumann, S., Jürgensen, C., Hüter, L. & Leonhardt, J. Role of intravenous ketamine in the pathogenesis of secondary sclerosing cholangitis in critically ill patients: Perpetrator or innocent bystander? Answers provided by forensic toxicology. Intensive Care Med. 49, 1549–1551 (2023).
pubmed: 37943301
pmcid: 10709220
doi: 10.1007/s00134-023-07257-8
Ranieri, V. M. et al. Acute respiratory distress syndrome the berlin definition. JAMA 307, 2526–2533 (2012).
pubmed: 22797452
Kumagi, T. et al. Baseline ductopenia and treatment response predict long-term histological progression in primary biliary cirrhosis. Am. J. Gastroenterol. 105, 2186–2194 (2010).
pubmed: 20502446
doi: 10.1038/ajg.2010.216
Hartl, L. et al. Progressive cholestasis and associated sclerosing cholangitis are frequent complications of COVID-19 in patients with chronic liver disease. Hepatology 76, 1563–1575 (2022).
pubmed: 35596929
doi: 10.1002/hep.32582
Wang, Y. J. et al. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J. Hepatol. 73, 807–816 (2020).
pubmed: 32437830
pmcid: 7211738
doi: 10.1016/j.jhep.2020.05.002
Iba, T., Connors, J. M. & Levy, J. H. The coagulopathy, endotheliopathy, and vasculitis of COVID-19. Inflamm. Res. 69, 1181–1189 (2020).
pubmed: 32918567
pmcid: 7486586
doi: 10.1007/s00011-020-01401-6
Lax, S. F. et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: Results from a prospective, single-center, clinicopathologic case series. Ann. Intern. Med. 173, 350–361 (2020).
pubmed: 32422076
doi: 10.7326/M20-2566
Trauner, M., Meier, P. J. & Boyer, J. L. Molecular pathogenesis of cholestasis. N. Engl. J. Med. 339, 1217–1227 (1998).
pubmed: 9780343
doi: 10.1056/NEJM199810223391707
Trauner, M. & Boyer, J. L. Bile salt transporters: Molecular characterization, function, and regulation. Physiol. Rev. 83, 633–671 (2003).
pubmed: 12663868
doi: 10.1152/physrev.00027.2002
Vartak, N. et al. On the mechanisms of biliary flux. Hepatology 74, 3497–3512 (2021).
pubmed: 34164843
doi: 10.1002/hep.32027
Harnisch, L. O. et al. Biomarkers of cholestasis and liver injury in the early phase of acute respiratory distress syndrome and their pathophysiological value. Diagnostics 11, (2021).
de Tymowski, C. et al. Contributing factors and outcomes of burn-associated cholestasis. J. Hepatol. 71, 563–572 (2019).
pubmed: 31152758
doi: 10.1016/j.jhep.2019.05.009
Ruemmele, P., Hofstaedter, F. & Gelbmann, C. M. Secondary sclerosing cholangitis. Nat. Rev. Gastroenterol. Hepatol. 6, 287–295 (2009).
pubmed: 19404269
doi: 10.1038/nrgastro.2009.46
Weig, T. et al. Abdominal obesity and prolonged prone positioning increase risk of developing sclerosing cholangitis in critically ill patients with influenza A-associated ARDS. Eur. J. Med. Res. 17, 30 (2012).
pubmed: 23259907
pmcid: 3543205
doi: 10.1186/2047-783X-17-30
Wong, G. L. et al. Liver injury is common among chronic abusers of ketamine. Clin. Gastroenterol. Hepatol. 12, 1759–1762e1751 (2014).
pubmed: 24534547
doi: 10.1016/j.cgh.2014.01.041
Ding, Z. Y. et al. Association of liver abnormalities with in-hospital mortality in patients with COVID-19. J. Hepatol. 74, 1295–1302 (2021).
pubmed: 33347952
doi: 10.1016/j.jhep.2020.12.012
Hartl, L. et al. Age-adjusted mortality and predictive value of liver chemistries in a viennese cohort of COVID-19 patients. Liver Int. 42, 1297–1307 (2022).
pubmed: 35412018
pmcid: 9115240
doi: 10.1111/liv.15274
Krishnan, A. et al. Abnormal liver chemistries as a predictor of COVID-19 severity and clinical outcomes in hospitalized patients. World J. Gastroenterol. 28, 570–587 (2022).
pubmed: 35316959
pmcid: 8905016
doi: 10.3748/wjg.v28.i5.570
Kramer, L., Jordan, B., Druml, W., Bauer, P. & Metnitz, P. G. Incidence and prognosis of early hepatic dysfunction in critically ill patients—A prospective multicenter study. Crit. Care Med. 35, 1099–1104 (2007).
pubmed: 17334250
doi: 10.1097/01.CCM.0000259462.97164.A0
Trauner, M. & Graziadei, I. W. Review article: Mechanisms of action and therapeutic applications of ursodeoxycholic acid in chronic liver diseases. Aliment. Pharmacol. Ther. 13, 979–996 (1999).
pubmed: 10468672
doi: 10.1046/j.1365-2036.1999.00596.x
Beuers, U., Trauner, M., Jansen, P. & Poupon, R. New paradigms in the treatment of hepatic cholestasis: From UDCA to FXR, PXR and beyond. J. Hepatol. 62, S25–37 (2015).
pubmed: 25920087
doi: 10.1016/j.jhep.2015.02.023
Al Sulaiman, K. et al. Impact of ursodeoxycholic acid in critically ill patients with sepsis: A retrospective study. J. Pharm. Pract. 36, 566–571 (2023).
pubmed: 37189247
doi: 10.1177/08971900211038363
EASL Clinical Practice Guidelines. The diagnosis and management of patients with primary biliary cholangitis. J. Hepatol. 67, 145–172 (2017).
doi: 10.1016/j.jhep.2017.03.022
EASL Clinical Practice. Guidelines on sclerosing cholangitis. J. Hepatol. 77, 761–806 (2022).
doi: 10.1016/j.jhep.2022.05.011
Murillo Perez, C. F. et al. Goals of treatment for improved survival in primary biliary cholangitis: Treatment target should be bilirubin within the normal range and normalization of alkaline phosphatase. Am. J. Gastroenterol. 115, 1066–1074 (2020).
pubmed: 32618657
doi: 10.14309/ajg.0000000000000557