Advanced breast diffusion-weighted imaging: what are the next steps? A proposal from the EUSOBI International Breast Diffusion-weighted Imaging working group.

Breast neoplasms Diffusion magnetic resonance imaging Surveys and questionnaires

Journal

European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774

Informations de publication

Date de publication:
08 Oct 2024
Historique:
received: 19 01 2024
accepted: 23 07 2024
revised: 25 05 2024
medline: 9 10 2024
pubmed: 9 10 2024
entrez: 8 10 2024
Statut: aheadofprint

Résumé

This study by the EUSOBI International Breast Diffusion-weighted Imaging (DWI) working group aimed to evaluate the current and future applications of advanced DWI in breast imaging. A literature search and a comprehensive survey of EUSOBI members to explore the clinical use and potential of advanced DWI techniques and a literature search were involved. Advanced DWI approaches such as intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI), and diffusion tensor imaging (DTI) were assessed for their current status and challenges in clinical implementation. Although a literature search revealed an increasing number of publications and growing academic interest in advanced DWI, the survey revealed limited adoption of advanced DWI techniques among EUSOBI members, with 32% using IVIM models, 17% using non-Gaussian diffusion techniques for kurtosis analysis, and only 8% using DTI. A variety of DWI techniques are used, with IVIM being the most popular, but less than half use it, suggesting that the study identified a gap between the potential benefits of advanced DWI and its actual use in clinical practice. The findings highlight the need for further research, standardization and simplification to transition advanced DWI from a research tool to regular practice in breast imaging. The study concludes with guidelines and recommendations for future research directions and clinical implementation, emphasizing the importance of interdisciplinary collaboration in this field to improve breast cancer diagnosis and treatment. Advanced DWI in breast imaging, while currently in limited clinical use, offers promising improvements in diagnosis, staging, and treatment monitoring, highlighting the need for standardized protocols, accessible software, and collaborative approaches to promote its broader integration into routine clinical practice. Increasing number of publications on advanced DWI over the last decade indicates growing research interest. EUSOBI survey shows that advanced DWI is used primarily in research, not extensively in clinical practice. More research and standardization are needed to integrate advanced DWI into routine breast imaging practice.

Identifiants

pubmed: 39379708
doi: 10.1007/s00330-024-11010-0
pii: 10.1007/s00330-024-11010-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Investigateurs

Denis Le Bihan (D)

Informations de copyright

© 2024. The Author(s).

Références

Baltzer P, Mann RM, Iima M et al (2020) Diffusion-weighted imaging of the breast—a consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group. Eur Radiol 30:1436–1450
pubmed: 31786616 doi: 10.1007/s00330-019-06510-3
Iima M, Le Bihan D (2016) Clinical intravoxel incoherent motion and diffusion MR imaging: past, present, and future. Radiology 278:13–32
pubmed: 26690990 doi: 10.1148/radiol.2015150244
Chabert S (2004) Relevance of the information about the diffusion distribution in vivo given by kurtosis in q-space imaging. In: Proceedings of the 12th Annual Meeting of International Society for Magnetic Resonance in Medicine (ISMRM), Kyoto, Japan 1238
Jensen JH, Helpern JA, Ramani A et al (2005) Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53:1432–1440
pubmed: 15906300 doi: 10.1002/mrm.20508
Le Bihan D, Breton E, Lallemand D et al (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505
pubmed: 3393671 doi: 10.1148/radiology.168.2.3393671
Basser PJ, Mattiello J, Lebihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103:247–254
pubmed: 8019776 doi: 10.1006/jmrb.1994.1037
Partridge SC, Nissan N, Rahbar H et al (2017) Diffusion-weighted breast MRI: clinical applications and emerging techniques. J Magn Reson Imaging 45:337–355
pubmed: 27690173 doi: 10.1002/jmri.25479
Iima M, Honda M, Sigmund EE et al (2020) Diffusion MRI of the breast: current status and future directions. J Magn Reson Imaging 52:70–90
pubmed: 31520518 doi: 10.1002/jmri.26908
Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407
pubmed: 3763909 doi: 10.1148/radiology.161.2.3763909
Chen W, Zhang J, Long D et al (2017) Optimization of intra-voxel incoherent motion measurement in diffusion-weighted imaging of breast cancer. J Appl Clin Med Phys 18:191–199
pubmed: 28349630 pmcid: 5689860 doi: 10.1002/acm2.12065
Park VY, Kim SG, Kim E-K et al (2019) Diffusional kurtosis imaging for differentiation of additional suspicious lesions on preoperative breast MRI of patients with known breast cancer. Magn Reson Imaging 62:199–208
pubmed: 31323316 pmcid: 6945504 doi: 10.1016/j.mri.2019.07.011
Giannelli M, Toschi N (2016) On the use of trace-weighted images in body diffusional kurtosis imaging. Magn Reson Imaging 34:502–507
pubmed: 26706136 doi: 10.1016/j.mri.2015.12.013
Magin RL (2016) Models of diffusion signal decay in magnetic resonance imaging: capturing complexity. Concepts Magn Reson A Bridg Educ Res 45A:e21401
doi: 10.1002/cmr.a.21401
Panagiotaki E, Walker-Samuel S, Siow B et al (2014) Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res 74:1902–1912
pubmed: 24491802 doi: 10.1158/0008-5472.CAN-13-2511
Jiang X, Xu J, Gore JC (2020) Mapping hepatocyte size in vivo using temporal diffusion spectroscopy MRI. Magn Reson Med 84:2671–2683
pubmed: 32333469 pmcid: 7402009 doi: 10.1002/mrm.28299
Fokkinga E, Hernandez-Tamames JA, Ianus A et al (2023) Advanced diffusion-weighted MRI for cancer microstructure assessment in body imaging, and its relationship with histology. J Magn Reson Imaging. https://doi.org/10.1002/jmri.29144
Xu J, Jiang X, Li H et al (2020) Magnetic resonance imaging of mean cell size in human breast tumors. Magn Reson Med 83:2002–2014
pubmed: 31765494 doi: 10.1002/mrm.28056
Senn N, Masannat Y, Husain E et al (2019) q-Space imaging yields a higher effect gradient to assess cellularity than conventional diffusion-weighted imaging methods at 3.0 T: a pilot study with freshly excised whole-breast tumors. Radiol Imaging Cancer 1:e190008
pubmed: 33778671 pmcid: 7983771 doi: 10.1148/rycan.2019190008
Naranjo ID, Reymbaut A, Brynolfsson P et al (2021) Multidimensional diffusion magnetic resonance imaging for characterization of tissue microstructure in breast cancer patients: a prospective pilot study. Cancers (Basel) 13:1606
Gurney-Champion OJ, Klaassen R, Froeling M et al (2018) Comparison of six fit algorithms for the intra-voxel incoherent motion model of diffusion-weighted magnetic resonance imaging data of pancreatic cancer patients. PLoS One 13:e0194590
pubmed: 29617445 pmcid: 5884505 doi: 10.1371/journal.pone.0194590
Liu B, Zeng Q, Huang J et al (2022) IVIM using convolutional neural networks predicts microvascular invasion in HCC. Eur Radiol 32:7185–7195
pubmed: 35713662 doi: 10.1007/s00330-022-08927-9
Kaandorp MPT, Barbieri S, Klaassen R et al (2021) Improved unsupervised physics-informed deep learning for intravoxel incoherent motion modeling and evaluation in pancreatic cancer patients. Magn Reson Med 86:2250–2265
pubmed: 34105184 pmcid: 8362093 doi: 10.1002/mrm.28852
Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR Biomed 15:456–467
pubmed: 12489095 doi: 10.1002/nbm.783
Alexander AL, Lee JE, Lazar M, Field AS (2007) Diffusion tensor imaging of the brain. Neurotherapeutics 4:316–329
pubmed: 17599699 pmcid: 2041910 doi: 10.1016/j.nurt.2007.05.011
Le Bihan D, Johansen-Berg H (2012) Diffusion MRI at 25: exploring brain tissue structure and function. Neuroimage 61:324–341
pubmed: 22120012 doi: 10.1016/j.neuroimage.2011.11.006
Huang SY, Witzel T, Keil B et al (2021) Connectome 2.0: developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome. Neuroimage 243:118530
pubmed: 34464739 doi: 10.1016/j.neuroimage.2021.118530
Sigmund EE, Furman-Haran E, Baltzer PAT, Partridge SC (2023) Diffusion tensor imaging (DTI) of the breast. In: Diffusion MRI of the breast. Elsevier, Amsterdam, pp 144–161
Iima M, Partridge SC, Le Bihan D (2020) Six DWI questions you always wanted to know but were afraid to ask: clinical relevance for breast diffusion MRI. Eur Radiol 30:2561–2570
pubmed: 31965256 doi: 10.1007/s00330-019-06648-0
Teruel JR, Goa PE, Sjøbakk TE et al (2016) Diffusion weighted imaging for the differentiation of breast tumors: from apparent diffusion coefficient to high order diffusion tensor imaging. J Magn Reson Imaging 43:1111–1121
pubmed: 26494124 doi: 10.1002/jmri.25067
Liang J, Zeng S, Li Z et al (2020) Intravoxel incoherent motion diffusion-weighted imaging for quantitative differentiation of breast tumors: a meta-analysis. Front Oncol 10:585486
pubmed: 33194733 pmcid: 7606934 doi: 10.3389/fonc.2020.585486
Wang Q, Guo Y, Zhang J et al (2016) Contribution of IVIM to conventional dynamic contrast-enhanced and diffusion-weighted MRI in differentiating benign from malignant breast masses. Breast Care 11:254–258
pubmed: 27721712 pmcid: 5040879 doi: 10.1159/000447765
Li K, Machireddy A, Tudorica A et al (2020) Discrimination of malignant and benign breast lesions using quantitative multiparametric MRI: a preliminary study. Tomography 6:148–159
pubmed: 32548291 pmcid: 7289240 doi: 10.18383/j.tom.2019.00028
Dijkstra H, Dorrius MD, Wielema M et al (2016) Quantitative DWI implemented after DCE-MRI yields increased specificity for BI-RADS 3 and 4 breast lesions. J Magn Reson Imaging 44:1642–1649
pubmed: 27273694 doi: 10.1002/jmri.25331
Jiang L, Lu X, Hua B et al (2018) Intravoxel incoherent motion diffusion-weighted imaging versus dynamic contrast-enhanced magnetic resonance imaging: comparison of the diagnostic performance of perfusion-related parameters in breast. J Comput Assist Tomogr 42:6–11
pubmed: 28786902 doi: 10.1097/RCT.0000000000000661
Ma D, Lu F, Zou X et al (2017) Intravoxel incoherent motion diffusion-weighted imaging as an adjunct to dynamic contrast-enhanced MRI to improve accuracy of the differential diagnosis of benign and malignant breast lesions. Magn Reson Imaging 36:175–179
pubmed: 27742437 doi: 10.1016/j.mri.2016.10.005
Kim Y, Ko K, Kim D et al (2016) Intravoxel incoherent motion diffusion-weighted MR imaging of breast cancer: association with histopathological features and subtypes. Br J Radiol 89:20160140
pubmed: 27197744 pmcid: 5257327 doi: 10.1259/bjr.20160140
Zhou Z, Chen Y, Zhao F et al (2023) Predictive value of intravoxel incoherent motion combined with diffusion kurtosis imaging for breast cancer axillary lymph node metastasis: a retrospective study. Acta Radiol 64:951–961
pubmed: 35765225 doi: 10.1177/02841851221107626
Che S, Zhao X, Ou Y et al (2016) Role of the intravoxel incoherent motion diffusion weighted imaging in the pre-treatment prediction and early response monitoring to neoadjuvant chemotherapy in locally advanced breast cancer. Medicine (Baltimore) 95:e2420
pubmed: 26825883 doi: 10.1097/MD.0000000000002420
Kim Y, Kim SH, Lee HW et al (2018) Intravoxel incoherent motion diffusion-weighted MRI for predicting response to neoadjuvant chemotherapy in breast cancer. Magn Reson Imaging 48:27–33
pubmed: 29278762 doi: 10.1016/j.mri.2017.12.018
Gu H, Cui W, Luo S, Deng X (2022) Diagnostic performance of diffusion kurtosis imaging for benign and malignant breast lesions: a systematic review and meta-analysis. Appl Bionics Biomech 2022:2042736
pubmed: 35721236 pmcid: 9203235 doi: 10.1155/2022/2042736
Zhang D, Geng X, Suo S et al (2022) The predictive value of DKI in breast cancer: does tumour subtype affect pathological response evaluations? Magn Reson Imaging 85:28–34
Gu Y, Wang N, Hao G et al (2023) The role of diffusion kurtosis MR imaging in the evaluation of invasive breast cancer classification and its correlation with prognostic factors: a prospective study of primarily advanced stage cancers. IMR Press 50:112
Honda M, Iima M, Kataoka M et al (2022) Biomarkers predictive of distant disease-free survival derived from diffusion-weighted imaging of breast cancer. Magn Reson Med Sci. https://doi.org/10.2463/mrms.mp.2022-0060
Tang W-J, Yao W, Jin Z et al (2022) Evaluation of the effects of anti-PD-1 therapy on triple-negative breast cancer in mice by diffusion kurtosis imaging and dynamic contrast-enhanced imaging. J Magn Reson Imaging. https://doi.org/10.1002/jmri.28215
Yao F-F, Zhang Y (2023) A review of quantitative diffusion-weighted MR imaging for breast cancer: towards noninvasive biomarker. Clin Imaging. https://doi.org/10.1016/j.clinimag.2023.03.016
Suo S, Cheng F, Cao M et al (2017) Multiparametric diffusion-weighted imaging in breast lesions: association with pathologic diagnosis and prognostic factors. J Magn Reson Imaging 46:740–750
pubmed: 28139036 doi: 10.1002/jmri.25612
Wang K, Li Z, Wu Z et al (2019) Diagnostic performance of diffusion tensor imaging for characterizing breast tumors: a comprehensive meta-analysis. Front Oncol 9:1–12
pubmed: 30761267 pmcid: 6361832 doi: 10.3389/fonc.2019.01229
Nissan N, Allweis T, Menes T et al (2020) Breast MRI during lactation: effects on tumor conspicuity using dynamic contrast-enhanced (DCE) in comparison with diffusion tensor imaging (DTI) parametric maps. Eur Radiol 30:767–777
pubmed: 31529255 doi: 10.1007/s00330-019-06435-x
Someya Y, Iima M, Imai H et al (2022) Investigation of breast cancer microstructure and microvasculature from time-dependent DWI and CEST in correlation with histological biomarkers. Sci Rep 12:6523
pubmed: 35444193 pmcid: 9021220 doi: 10.1038/s41598-022-10081-7
Hoffmann E, Gerwing M, Niland S et al (2023) Profiling specific cell populations within the inflammatory tumor microenvironment by oscillating-gradient diffusion-weighted MRI. J Immunother Cancer 11:e006092
Teruel JR, Cho GY, Moccaldi Rt M et al (2017) Stimulated echo diffusion tensor imaging (STEAM-DTI) with varying diffusion times as a probe of breast tissue. J Magn Reson Imaging 45:84–93
pubmed: 27441890 doi: 10.1002/jmri.25376
Basukala D, Mikheev A, Sevilimedu V et al (2023) Multisite MRI intravoxel incoherent motion repeatability and reproducibility across 3 T scanners in a breast diffusion phantom: a BReast intravoxel incoherent motion multisite (BRIMM) study. J Magn Reson Imaging. https://doi.org/10.1002/jmri.29008
Iima M, Le Bihan D (2023) The road to breast cancer screening with diffusion MRI. Front Oncol 13:993540
pubmed: 36895474 pmcid: 9989267 doi: 10.3389/fonc.2023.993540
Iima M, Kataoka M, Kanao S et al (2018) Intravoxel incoherent motion and quantitative non-Gaussian diffusion MR imaging: evaluation of the diagnostic and prognostic value of several markers of malignant and benign breast lesions. Radiology 287:432–441
pubmed: 29095673 doi: 10.1148/radiol.2017162853
Goto M, Le Bihan D, Sakai K, Yamada K (2022) The diffusion MRI signature index is highly correlated with immunohistochemical status and molecular subtype of invasive breast carcinoma. Eur Radiol 32:4879–4888
pubmed: 35394179 doi: 10.1007/s00330-022-08562-4
Goto M, Le Bihan D, Yoshida M et al (2019) Adding a model-free diffusion MRI marker to BI-RADS assessment improves specificity for diagnosing breast lesions. Radiology 292:84–93
pubmed: 31112086 doi: 10.1148/radiol.2019181780
Sauer ST, Christner SA, Schlaiß T et al (2023) Diffusion-weighted breast MRI at 3 Tesla: improved lesion visibility and image quality with a combination of water-excitation and spectral fat saturation. Acad Radiol 30:1773–1783
pubmed: 36764882 doi: 10.1016/j.acra.2023.01.014
Kishimoto AO, Kataoka M, Iima M et al (2020) The comparison of high-resolution diffusion weighted imaging (DWI) with high-resolution contrast-enhanced MRI in the evaluation of breast cancers. Magn Reson Imaging 71:161–169
pubmed: 32320723 doi: 10.1016/j.mri.2020.03.007
Ota R, Kataoka M, Iima M et al (2023) Evaluation of breast lesions based on modified BI-RADS using high-resolution readout-segmented diffusion-weighted echo-planar imaging and T2/T1-weighted image. Magn Reson Imaging. https://doi.org/10.1016/j.mri.2022.12.024
Li X, Zhu H, Sun K et al (2022) Whole-tumor apparent diffusion coefficient (ADC) analyses of breast lesions based on simultaneous multi-slice readout-segmented echo-planar diffusion-weighted imaging. Magn Reson Imaging 94:119–126
pubmed: 36191856 doi: 10.1016/j.mri.2022.09.008
Hu Y, Ikeda DM, Pittman SM et al (2021) Multishot diffusion-weighted MRI of the breast With Multiplexed Sensitivity Encoding (MUSE) and Shot Locally Low-Rank (Shot-LLR) reconstructions. J Magn Reson Imaging 53:807–817
Tang C, Qin Y, Hu Q, Ai T (2022) Diagnostic value of multi-model high-resolution diffusion-weighted MR imaging in breast lesions: based on simultaneous multi-slice readout-segmented echo-planar imaging. Eur J Radiol 154:110439
pubmed: 35863281 doi: 10.1016/j.ejrad.2022.110439
Solomon E, Liberman G, Nissan N et al (2020) Diffusion-weighted breast MRI of malignancies with submillimeter resolution and immunity to artifacts by spatiotemporal encoding at 3T. Magn Reson Med 84:1391–1403
pubmed: 32077516 doi: 10.1002/mrm.28213
Sun K, Zhu H, Xia B et al (2022) Image quality and whole-lesion histogram and texture analysis of diffusion-weighted imaging of breast MRI based on advanced ZOOMit and simultaneous multislice readout-segmented echo-planar imaging. Front Oncol 12:913072
pubmed: 36033543 pmcid: 9411810 doi: 10.3389/fonc.2022.913072
Hausmann D, Todorski I, Pindur A et al (2023) Advanced diffusion-weighted imaging sequences for breast MRI: comprehensive comparison of improved sequences and ultra-high b-values to identify the optimal combination. Diagnostics 13:607
pubmed: 36832095 pmcid: 9955562 doi: 10.3390/diagnostics13040607
Jones DK, Cercignani M (2010) Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed 23:803–820
pubmed: 20886566 doi: 10.1002/nbm.1543
Belli G, Busoni S, Ciccarone A et al (2016) Quality assurance multicenter comparison of different MR scanners for quantitative diffusion-weighted imaging. J Magn Reson Imaging 43:213–219
pubmed: 26013043 doi: 10.1002/jmri.24956
Wang J, Ma C, Yang P et al (2023) Diffusion-weighted imaging of the abdomen: correction for gradient nonlinearity bias in apparent diffusion coefficient. J Magn Reson Imaging 58:223–231
pubmed: 36373955 doi: 10.1002/jmri.28529

Auteurs

Maya Honda (M)

Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Department of Diagnostic Radiology, Kansai Electric Power Hospital, Osaka, Japan.

Eric E Sigmund (EE)

Department of Radiology, NYU Langone Health, 6, 60 1st Avenue, New York, NY, 10016, USA.

Denis Le Bihan (D)

NeuroSpin/Joliot, CEA-Saclay Center, Paris-Saclay University, Gif-sur-Yvette, France.
Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.
National Institute for Physiological Sciences, Okazaki, Japan.

Katja Pinker (K)

Department of Radiology, Breast Imaging Division, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.

Paola Clauser (P)

Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna/Vienna General Hospital, Wien, Austria.

Dimitrios Karampinos (D)

Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany.

Savannah C Partridge (SC)

Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA.

Eva Fallenberg (E)

Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany.

Laura Martincich (L)

Unit of Radiodiagnostics, Ospedale Cardinal G. Massaia -ASL AT, Via Conte Verde 125, 14100, Asti, Italy.

Pascal Baltzer (P)

Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany.

Ritse M Mann (RM)

Department of Diagnostic Imaging, Radboud University Medical Centre, Nijmegen, Netherlands.

Julia Camps-Herrero (J)

Ribera Salud Hospitals, Valencia, Spain.

Mami Iima (M)

Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan. mamiiima1@gmail.com.
Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging, Nagoya University Graduate School of Medicine, Nagoya, Japan. mamiiima1@gmail.com.

Classifications MeSH