A study method using early dynamic acquisition of [
Brain metastasis
Dynamic acquisition
FDOPA PET
Progression
Radionecrosis
Journal
EJNMMI research
ISSN: 2191-219X
Titre abrégé: EJNMMI Res
Pays: Germany
ID NLM: 101560946
Informations de publication
Date de publication:
09 Oct 2024
09 Oct 2024
Historique:
received:
30
07
2024
accepted:
29
09
2024
medline:
9
10
2024
pubmed:
9
10
2024
entrez:
9
10
2024
Statut:
epublish
Résumé
It is difficult to distinguish between the brain metastasis progression (BMP) and brain radionecrosis (BRN) on the basis of Seven lesions were classified as BMP and twelve were classified as BRN. Statistically significant intergroup differences in the VOImax/CLmean and VOImax/WMmean activity ratios were observed for both the clinical volume and the early acquisition. The best performing quantitative variable was the VOImax/CLmean ratio on early acquisition, with a diagnostic accuracy of 94.7%, a sensitivity of 100%, and a specificity of 91.7%. The
Sections du résumé
BACKGROUND
BACKGROUND
It is difficult to distinguish between the brain metastasis progression (BMP) and brain radionecrosis (BRN) on the basis of
RESULTS
RESULTS
Seven lesions were classified as BMP and twelve were classified as BRN. Statistically significant intergroup differences in the VOImax/CLmean and VOImax/WMmean activity ratios were observed for both the clinical volume and the early acquisition. The best performing quantitative variable was the VOImax/CLmean ratio on early acquisition, with a diagnostic accuracy of 94.7%, a sensitivity of 100%, and a specificity of 91.7%.
CONCLUSION
CONCLUSIONS
The
Identifiants
pubmed: 39382811
doi: 10.1186/s13550-024-01158-7
pii: 10.1186/s13550-024-01158-7
doi:
Types de publication
Journal Article
Langues
eng
Pagination
93Informations de copyright
© 2024. The Author(s).
Références
Eichler AF, Chung E, Kodack DP, Loeffler JS, Fukumura D, Jain RK. The biology of brain metastases-translation to new therapies. Nat Rev Clin Oncol. 2011;8:344–56. https://doi.org/10.1038/nrclinonc.2011.58 .
doi: 10.1038/nrclinonc.2011.58
pubmed: 21487419
Soffietti R, Abacioglu U, Baumert B, Combs SE, Kinhult S, Kros JM, et al. Diagnosis and treatment of brain metastases from solid tumors: guidelines from the European Association of Neuro-Oncology (EANO). Neuro Oncol. 2017;19:162–74. https://doi.org/10.1093/neuonc/now241 .
doi: 10.1093/neuonc/now241
pubmed: 28391295
Soffietti R, Cornu P, Delattre JY, Grant R, Graus F, Grisold W, et al. EFNS guidelines on diagnosis and treatment of brain metastases: report of an EFNS Task Force. Eur J Neurol. 2006;13:674–81. https://doi.org/10.1111/j.1468-1331.2006.01506.x .
doi: 10.1111/j.1468-1331.2006.01506.x
pubmed: 16834697
Kohutek ZA, Yamada Y, Chan TA, Brennan CW, Tabar V, Gutin PH, et al. Long-term risk of radionecrosis and imaging changes after stereotactic radiosurgery for brain metastases. J Neurooncol. 2015;125:149–56. https://doi.org/10.1007/s11060-015-1881-3 .
doi: 10.1007/s11060-015-1881-3
pubmed: 26307446
Nonoguchi N, Miyatake S, Fukumoto M, Furuse M, Hiramatsu R, Kawabata S, et al. The distribution of vascular endothelial growth factor-producing cells in clinical radiation necrosis of the brain: pathological consideration of their potential roles. J Neurooncol. 2011;105:423–31. https://doi.org/10.1007/s11060-011-0610-9 .
doi: 10.1007/s11060-011-0610-9
pubmed: 21688077
Tanino T, Kanasaki Y, Tahara T, Michimoto K, Kodani K, Kakite S, et al. Radiation-induced microbleeds after cranial irradiation: evaluation by phase-sensitive magnetic resonance imaging with 3.0 tesla. Yonago Acta Med. 2013;56:7–12.
pubmed: 24031146
Andruska N, Kennedy WR, Bonestroo L, Anderson R, Huang Y, Robinson CG, et al. Dosimetric predictors of symptomatic radiation necrosis after five-fraction radiosurgery for brain metastases. Radiother Oncol. 2021;156:181–7. https://doi.org/10.1016/j.radonc.2020.12.011 .
doi: 10.1016/j.radonc.2020.12.011
pubmed: 33310010
Barisano G, Bergamaschi S, Acharya J, Rajamohan A, Gibbs W, Kim P, et al. Complications of Radiotherapy and Radiosurgery in the brain and spine. Neurographics. 2011;8:167–87. https://doi.org/10.3174/ng.1700066 .
doi: 10.3174/ng.1700066
Chao ST, Ahluwalia MS, Barnett GH, Stevens GH, Murphy ES, Stockham AL, et al. Challenges with the diagnosis and treatment of cerebral radiation necrosis. Int J Radiat Oncol Biol Phys. 2013;87:449–57. https://doi.org/10.1016/j.ijrobp.2013.05.015 .
doi: 10.1016/j.ijrobp.2013.05.015
pubmed: 23790775
Tong E, McCullagh KL, Iv M. Advanced Imaging of Brain metastases: from augmenting visualization and improving diagnosis to evaluating treatment response. Front Neurol. 2020;11:270. https://doi.org/10.3389/fneur.2020.00270 .
doi: 10.3389/fneur.2020.00270
pubmed: 32351445
Wang B, Zhao B, Zhang Y, Ge M, Zhao P, Na S. at al. Absolute CBV for the differentiation of recurrence and radionecrosis of brain metastases after gamma knife radiotherapy: a comparison with relative CBV. Clin Radiol. 2018;73:758.e751-758e757 https://doi.org/10.1016/j.crad.2018.04.006
Kumar AJ, Leeds NE, Fuller GN, Van Tassel P, Maor MH, Sawaya RE, et al. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology. 2000;217:377–84. https://doi.org/10.1148/radiology.217.2.r00nv36377 .
doi: 10.1148/radiology.217.2.r00nv36377
pubmed: 11058631
Nichelli L, Casagranda S. Current emerging MRI tools for radionecrosis and pseudoprogression diagnosis. Curr Opin Oncol. 2021;33:597–607. https://doi.org/10.1097/CCO.0000000000000793 .
doi: 10.1097/CCO.0000000000000793
pubmed: 34534142
Hojjati M, Badve C, Garg V, Tatsuoka C, Rogers L, Sloan A, et al. Role of FDG-PET/MRI, FDG-PET/CT, and dynamic susceptibility contrast Perfusion MRI in differentiating Radiation Necrosis from Tumor recurrence in Glioblastomas. J Neuroimaging. 2018;28:118–25. https://doi.org/10.1111/jon.12460 .
doi: 10.1111/jon.12460
pubmed: 28718993
Verger A, Imbert L, Zaragori T. Dynamic amino-acid PET in neuro-oncology: a prognostic tool becomes essential. Eur J Nucl Med Mol Imaging. 2014;48:4129–32. https://doi.org/10.1007/s00259-021-05530-w .
doi: 10.1007/s00259-021-05530-w
Calabria F, Chiaravalloti A, Di Pietro B, Grasso C, Schillaci O. Molecular imaging of brain tumors with 18F-DOPA PET and PET/CT. Nucl Med Commun. 2012;33:563–70. https://doi.org/10.1097/MNM.0b013e328351d566 .
doi: 10.1097/MNM.0b013e328351d566
pubmed: 22395034
Karunanithi S, Sharma P, Kumar A, Khangembam BC, Bandopadhyaya GP, Kumar R, et al. Comparative diagnostic accuracy of contrast-enhanced MRI and (18)F-FDOPA PET-CT in recurrent glioma. Eur Radiol. 2013;23:2628–35. https://doi.org/10.1007/s00330-013-2838-6 .
doi: 10.1007/s00330-013-2838-6
pubmed: 23624623
Youland RS, Pafundi DH, Brinkmann DH, Lowe VJ, Morris JM, Kemp BJ, et al. Prospective trial evaluating the sensitivity and specificity of 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (18F-DOPA) PET and MRI in patients with recurrent gliomas. J Neurooncol. 2018;137:583–91. https://doi.org/10.1007/s11060-018-2750-7 .
doi: 10.1007/s11060-018-2750-7
pubmed: 29330751
Cicone F, Minniti G, Romano A, Papa A, Scaringi C, Tavanti F, et al. Accuracy of F-DOPA PET and perfusion-MRI for differentiating radionecrotic from progressive brain metastases after radiosurgery. Eur J Nucl Med Mol Imaging. 2015;42:103–11. https://doi.org/10.1007/s00259-014-2886-4 .
doi: 10.1007/s00259-014-2886-4
pubmed: 25182751
Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [(18)F]FDG: version 1.0. Eur J Nucl Med Mol Imaging. 2019;46:540–57. https://doi.org/10.1007/s00259-018-4207-9 .
doi: 10.1007/s00259-018-4207-9
pubmed: 30519867
Wagatsuma K, Miwa K, Sakata M, Oda K, Ono H, Kameyama M, et al. Comparison between new-generation SiPM-based and conventional PMT-based TOF-PET/CT. Phys Med. 2017;42:203–10. https://doi.org/10.1016/j.ejmp.2017.09.124 .
doi: 10.1016/j.ejmp.2017.09.124
pubmed: 29173917
Zeimpekis KG, Kotasidis FA, Huellner M, Nemirovsky A, Kaufmann PA, Treyer V. NEMA NU 2-2018 performance evaluation of a new generation 30-cm axial field-of-view Discovery MI PET/CT. Eur J Nucl Med Mol Imaging. 2022;49:3023–32. https://doi.org/10.1007/s00259-022-05751-7 .
doi: 10.1007/s00259-022-05751-7
pubmed: 35284970
Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9. https://doi.org/10.1109/42.363108 .
doi: 10.1109/42.363108
pubmed: 18218538
Chondrogiannis S, Marzola MC, Al-Nahhas A, Venkatanarayana TD, Mazza A, Opocher G, D, et al. Normal biodistribution pattern and physiologic variants of 18F-DOPA PET imaging. Nucl Med Commun. 2013;34:1141–9. https://doi.org/10.1097/MNM.0000000000000008 .
doi: 10.1097/MNM.0000000000000008
pubmed: 24128899
Lizarraga KJ, Allen-Auerbach M, Czernin J, DeSalles AA, Yong WH, Phelps ME, et al. (18)F-FDOPA PET for differentiating recurrent or progressive brain metastatic tumors from late or delayed radiation injury after radiation treatment. J Nucl Med. 2014;55:30–6. https://doi.org/10.2967/jnumed.113.121418 .
doi: 10.2967/jnumed.113.121418
pubmed: 24167081
Zaragori T, Ginet M, Marie PY, Roch V, Grignon R, Gauchotte G, et al. Use of static and dynamic [(18)F]-F-DOPA PET parameters for detecting patients with glioma recurrence or progression. EJNMMI Res. 2020;10:56. https://doi.org/10.1186/s13550-020-00645-x .
doi: 10.1186/s13550-020-00645-x
pubmed: 32472232
Ceccon G, Lohmann P, Stoffels G, Judov N, Filss CP, Rapp M, et al. Dynamic O-(2-18F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro Oncol. 2017;19:281–8. https://doi.org/10.1093/neuonc/now149 .
doi: 10.1093/neuonc/now149
pubmed: 27471107