Visual placebo and nocebo effects.
nocebo
nocebo effect
placebo
placebo effect
visual perception
Journal
The Journal of physiology
ISSN: 1469-7793
Titre abrégé: J Physiol
Pays: England
ID NLM: 0266262
Informations de publication
Date de publication:
09 Oct 2024
09 Oct 2024
Historique:
received:
03
07
2024
accepted:
06
09
2024
medline:
9
10
2024
pubmed:
9
10
2024
entrez:
9
10
2024
Statut:
aheadofprint
Résumé
Placebo and nocebo effects modulate symptom perception through expectations and learning processes in various domains. Predominantly, their impact has been investigated on pain and physical performance. However, the influence of placebos and nocebos on visual system functionality has yet to be explored. The present study aimed to test whether placebo and nocebo effects can intervene in altering participants' performance outcomes during a novel visual accuracy task and to examine the underlying neural mechanisms through EEG. After performing a baseline session, visual accuracy was said to be enhanced or disrupted by a sham transcranial electrical stimulation over the occipital lobe. Behavioural results showed a significant increase in visual accuracy for the placebo group, from the baseline session to the test session, whereas the nocebo group showed a decrease in visual accuracy. EEG analyses on the event-related potential P300 component, conducted on both a centro-parietal electrode patch and a parieto-occipital, one displayed an increase in the amplitude of P300 for the placebo group, and a decrease in the nocebo group. These findings suggest for the first time that placebo and nocebo effects can influence visual perception and attentional processes linked to it. Overall, the present study contributes to understanding how expectations affect sensory perception beyond pain and the motor system, paving the way for investigating these phenomena in other sensory modalities such as auditory or olfactory perception. KEY POINTS: Placebo and nocebo effects have been studied predominantly in pain and motor performance fields. In a novel visual task, the impact of placebo and nocebo effects on the visual system has been evaluated, in both early components (stimuli-related) and late components (attention-related). The placebo group showed an increase in visual accuracy and EEG-evoked potential amplitudes, whereas the nocebo group showed a decrease in both. This study shows how expectations and the related placebo and nocebo effects can shape basic stimuli sensory perception in the visual domain.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Ministero dell'Università e della Ricerca (MUR)
ID : 2022AL38E4
Organisme : Carlo Molo Foundation
Informations de copyright
© 2024 The Authors. The Journal of Physiology © 2024 The Physiological Society.
Références
Arvaneh, M., Robertson, I. H., & Ward, T. E. (2019). A P300‐Based brain‐computer interface for improving attention. Frontiers in Human Neuroscience, 12, 524.
Beedie, C. J., Coleman, D. A., & Foad, A. J. (2007). Positive and negative placebo effects resulting from the deceptive administration of an ergogenic aid. International Journal of Sport Nutrition and Exercise Metabolism, 17(3), 259–269.
Benedetti, F. (2014). Placebo effects: From the neurobiological paradigm to translational implications. Neuron, 84(3), 623–637.
Benedetti, F., Amanzio, M., Rosato, R., & Blanchard, C. (2011). Nonopioid placebo analgesia is mediated by CB1 cannabinoid receptors. Nature Medicine, 17(10), 1228–1230.
Benedetti, F., Amanzio, M., Vighetti, S., & Asteggiano, G. (2006). The biochemical and neuroendocrine bases of the hyperalgesic nocebo effect. Journal of Neuroscience, 26(46), 12014–12022.
Benedetti, F., Thoen, W., Blanchard, C., Vighetti, S., & Arduino, C. (2013). Pain as a reward: Changing the meaning of pain from negative to positive co‐activates opioid and cannabinoid systems. Pain, 154(3), 361–367.
Bledowski, C., Prvulovic, D., Goebel, R., Zanella, F. E., & Linden, D. E. J. (2004). Attentional systems in target and distractor processing: A combined ERP and fMRI study. Neuroimage, 22(2), 530–540.
Boehm, K., Berger, B., Ostermann, T., & Heusser, P. (2016). Placebo effects in medicine: A bibliometric analysis. Journal of the Royal Society of Medicine Open, 7(7), 205427041664389.
Brączyk, J., & Bąbel, P. (2024). Can observational learning reinforce open‐label placebo hypoalgesia? Pain, 165(7), 1605–1612.
Brietzke, C., Asano, R. Y., De Russi De Lima, F., Pinheiro, F. A., Franco‐Alvarenga, Ugrinowitsch, C., & Pires, F. O. (2017). Caffeine effects on VO2max test outcomes investigated by a placebo perceived‐as‐caffeine design. Nutrition and Health, 23(4), 231–238.
Bruner, J. S., & Goodman, C. C. (1947). Value and need as organizing factors in perception. The Journal of Abnormal and Social Psychology, 42(1), 33–44.
Büchel, C., Geuter, S., Sprenger, C., & Eippert, F. (2014). Placebo analgesia: A predictive coding perspective. Neuron, 81(6), 1223–1239.
Carlino, E., Benedetti, F., & Pollo, A. (2014). The effects of manipulating verbal suggestions on physical performance. Zeitschrift fur Psychologie /Journal of Psychology, 222(3), 154–164.
Carlino, E., Guerra, G., & Piedimonte, A. (2016). Placebo effects: From pain to motor performance. Neuroscience Letters, 632, 224–230.
Carlino, E., Piedimonte, A., & Benedetti, F. (2016). Nature of the placebo and nocebo effect in relation to functional neurologic disorders. Functional Neurologic Disorders, 139, 597–606.
Carlino, E., & Vase, L. (2018). Can knowledge of Placebo and Nocebo Mechanisms Help Improve Randomized Clinical Trials? Neurobiology of the Placebo Effect Part I, 138, 329–357.
Carlino, E., Piedimonte, A., Romagnolo, A., Guerra, G., Frisaldi, E., Vighetti, S., Lopiano, L., & Benedetti, F. (2019). Verbal communication about drug dosage balances drug reduction in Parkinson's disease: Behavioral and electrophysiological evidences. Parkinsonism & Related Disorders, 65, 184–189.
Carlino, E., Torta, D. M. E., Piedimonte, A., Frisaldi, E., Vighetti, S., & Benedetti, F. (2015). Role of explicit verbal information in conditioned analgesia. European Journal of Pain (United Kingdom), 19(4), 546–553.
Colloca, L., Sigaudo, M., & Benedetti, F. (2008). The role of learning in nocebo and placebo effects. Pain, 136(1), 211–218.
Corsi, N., & Colloca, L. (2017). Placebo and nocebo effects: The advantage of measuring expectations and psychological factors. Frontiers in Psychology, 8, 308.
Corsi, N., Emadi Andani, M., Sometti, D., Tinazzi, M., & Fiorio, M. (2019). When words hurt: Verbal suggestion prevails over conditioning in inducing the motor nocebo effect. European Journal of Neuroscience, 50(8), 3311–3326.
Crawford, L. S., Meylakh, N., Macey, P. M., Macefield, V. G., Keay, K. A., & Henderson, L. A. (2023). Stimulus‐independent and stimulus‐dependent neural networks underpin placebo analgesia responsiveness in humans. Communications Biology, 6(1), 569.
Crawford, L. S., Mills, E. P., Hanson, T., Macey, P. M., Glarin, R., Macefield, V. G., Keay, K. A., & Henderson, L. A. (2021). Brainstem mechanisms of pain modulation: A within‐subjects 7T fMRI study of placebo analgesic and nocebo hyperalgesic responses. Journal of Neuroscience, 41(47), 9794–9806.
Datta, A., Cusack, R., Hawkins, K., Heutink, J., Rorden, C., Robertson, I. H., & Manly, T. (2007). The P300 as a marker of waning attention and error propensity. Computational Intelligence and Neuroscience, 2007, 1–9.
de la Fuente‐Fernández, R. (2009). The placebo‐reward hypothesis: Dopamine and the placebo effect. Parkinsonism & Related Disorders, 15, S72–S74.
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.
De Pascalis, V., & Vecchio, A. (2022). The influence of EEG oscillations, heart rate variability changes, and personality on self‐pain and empathy for pain under placebo analgesia. Scientific Reports, 12(1), 6041.
Di Russo, F., Martínez, A., Sereno, M. I., Pitzalis, S., & Hillyard, S. A. (2002). Cortical sources of the early components of the visual evoked potential. Human Brain Mapping, 15(2), 95–111.
Di Russo, F., Pitzalis, S., Aprile, T., Spitoni, G., Patria, F., Stella, A., Spinelli, D., & Hillyard, S. A. (2007). Spatiotemporal analysis of the cortical sources of the steady‐state visual evoked potential. Human Brain Mapping, 28(4), 323–334.
Donchin, E. (1981). Surprise!…Surprise? Psychophysiology, 18(5), 493–513.
Dunning, D., & Balcetis, E. (2013). Wishful seeing: How preferences shape visual perception. Current Directions in Psychological Science, 22(1), 33–37.
Eippert, F., Bingel, U., Schoell, E. D., Yacubian, J., Klinger, R., Lorenz, J., & Büchel, C. (2009). Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron, 63(4), 533–543.
Emadi Andani, M., Tinazzi, M., Corsi, N., & Fiorio, M. (2015). Modulation of inhibitory corticospinal circuits induced by a nocebo procedure in motor performance. PLoS ONE, 10(4), e0125223.
Eriksen, C. W. (1962). Figments, fantasies, and follies: A search for the subconscious mind. Journal of Personality, 30(2), 3–26.
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.
Fiorio, M., Emadi Andani, M., Marotta, A., Classen, J., & Tinazzi, M. (2014). Placebo‐induced changes in excitatory and inhibitory corticospinal circuits during motor performance. Journal of Neuroscience, 34(11), 3993–4005.
Friston, K. (2010). The free‐energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138.
Hemptinne, C., Liu‐Shuang, J., Yuksel, D., & Rossion, B. (2018). Rapid objective assessment of contrast sensitivity and visual acuity with sweep visual evoked potentials and an extended electrode array. Investigative Ophthalmology & Visual Science, 59(2), 1144.
Höfler, C., Gremsl, A., & Schienle, A. (2018). Nocebo and pseudo‐neglect: Paradoxical effects detected with eye‐tracking. International Journal of Psychophysiology, 125, 29–34.
Höfler, C., Potthoff, J., & Schienle, A. (2019). A direct comparison of placebo and nocebo effects on visuospatial attention: An eye‐Tracking experiment. Frontiers in Psychiatry, 10, 446.
Hutmacher, F. (2019). Why is there so much more research on vision than on any other sensory modality? Frontiers in Psychology, 10, 2246.
Jung, T. P., Makeig, S., Humphries, C., Lee, T. W., Mckeown, M. J., Iragui, V., & Sejnowski, T. J. (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 37(2), 163–178.
Klug, M., & Gramann, K. (2021). Identifying key factors for improving ICA‐based decomposition of EEG data in mobile and stationary experiments. European Journal of Neuroscience, 54(12), 8406–8420.
Korth, M., & Nguyen, N. X. (1997). The effect of stimulus size on human cortical potentials evoked by chromatic patterns. Vision Research, 37(5), 649–657.
Kothari, R., Singh, S., Singh, R., Shukla, A. K., & Bokariya, P. (2014). Influence of visual angle on pattern reversal visual evoked potentials. Oman Journal of Ophthalmology, 7(3), 120.
Langer, E., Djikic, M., Pirson, M., Madenci, A., & Donohue, R. (2010). Believing is seeing: Using mindlessness (mindfully) to improve visual acuiy. Psychological Science, 21(5), 661–666.
Liu, J., Zhang, C., Zhu, Y., Liu, Y., Sun, H., Ristaniemi, T., Cong, F., & Parviainen, T. (2020). Dissociable effects of reward on P300 and EEG spectra under conditions of high vs. low vigilance during a selective visual attention task. Frontiers in Human Neuroscienc, 14, 207.
Marenna, S., Rossi, E., Huang, S. C., Castoldi, V., Comi, G., & Leocani, L. (2023). Visual evoked potentials waveform analysis to measure intracortical damage in a preclinical model of multiple sclerosis. Frontiers in Cellular Neuroscience, 17, 1186110.
Mihaylova, M. S., Hristov, I., Racheva, K., Totev, T., & Mitov, D. (2015). Effect of extending grating length and width on human visually evoked potentials. Acta Neurobiologiae Experimentalis (Wars), 75(3), 293–304.
Miller, F. G., Wendler, D., & Swartzman, L. C. (2005). Deception in research on the placebo effect. PLoS Medicine, 2(9), e262.
Mirzaee Saba, L., Hashemi, H., Jafarzadehpour, E., Mirzajani, A., Yekta, A., Jafarzadehpour, A., Zarei, A., Nabovati, P., & Khabazkhoob, M. (2023). P100 wave latency and amplitude in visual evoked potential records in different visual quadrants of normal individuals. Journal of Ophthalmic and Vision Research, 18(2), 175–181.
Mitra, P., & Coch, D. (2009). A masked priming ERP study of letter processing using single letters and false fonts. Cognitive, Affective & Behavioral Neuroscience, 9(2), 216–228.
Moran, Z D., Bachman, P., Pham, P., Hah Cho, S., Cannon, T D., & Shams, L. (2013). Multisensory encoding improves auditory recognition. Multisensory Research, 26(6), 581–592.
Odom, J. V., Bach, M., Brigell, M., Holder, G. E., McCulloch, D. L., Mizota, A., & Tormene, A. P. (2016). ISCEV standard for clinical visual evoked potentials: (2016 update). Documenta Ophthalmologica, 133(1), 1–9.
Pagnini, F., Barbiani, D., Cavalera, C., Volpato, E., Grosso, F., Minazzi, G. A., Vailati Riboni, F., Graziano, F., Di Tella, S., Manzoni, G. M., Silveri, M. C., Riva, G., & Phillips, D. (2023). Placebo and nocebo effects as bayesian‐brain phenomena: The overlooked role of likelihood and attention. Perspectives on Psychological Science, 18(5), 1217–1229.
Park, J., Chiang, C., Brannon, E. M., & Woldorff, M. G. (2014). Experience‐dependent hemispheric specialization of letters and numbers is revealed in early visual processing. Journal of Cognitive Neuroscience, 26(10), 2239–2249.
Petrovic, P., Kalso, E., Petersson, K. M., & Ingvar, M. (2002). Placebo and opioid analgesia ‐ Imaging a shared neuronal network. Science (1979), 295, 1737–1740.
Pia, L., Garbarini, F., Burin, D., Fossataro, C., & Berti, A. (2015). A predictive nature for tactile awareness? Insights from damaged and intact central‐nervous‐system functioning. Frontiers in Human Neuroscienc, 9, 287.
Piedimonte, A., Barbiani, D., Benedetti, F., Zamfira, D. A., & Carlino, E. (2020). The placebo effect in breath holding: A preliminary behavioral investigation. Neuroscience Letters, 739, 135434.
Piedimonte, A., Benedetti, F., & Carlino, E. (2015). Placebo‐induced decrease in fatigue: Evidence for a central action on the preparatory phase of movement. European Journal of Neuroscience, 41(4), 492–497.
Piedimonte, A., Guerra, G., Vighetti, S., & Carlino, E. (2017). Measuring expectation of pain: Contingent negative variation in placebo and nocebo effects. European Journal of Pain (United Kingdom), 21(5), 874–885.
Piedimonte, A., Zamfira, D. A., Guerra, G., Vighetti, S., & Carlino, E. (2021). Pain expectation and avoidance in the social context: an electrophysiological study. Journal of Physiological Sciences, 71(1), 29.
Pike, J., & Polich, J. (1988). Hemispheric differences for visual evoked potentials from checkerboard stimuli. Neuropsychologia, 26(6), 947–952.
Pion‐Tonachini, L., Kreutz‐Delgado, K., & Makeig, S. (2019). ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. Neuroimage, 198, 181–197.
Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148.
Pollo, A., Amanzio, M., Arslanian, A., Casadio, C., Maggi, G., & Benedetti, F. (2001). Response expectancies in placebo analgesia and their clinical relevance. Pain, 93(1), 77–84.
Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra‐classical receptive‐field effects. Nature Neuroscience, 2(1), 79–87.
Rossettini, G., Campaci, F., Bialosky, J., Huysmans, E., Vase, L., & Carlino, E. (2023). The biology of placebo and nocebo effects on experimental and chronic pain: State of the art. Journal of Clinical Medicine, 12(12), 4113.
Russell, K., Duncan, M., Price, M., Mosewich, A., Ellmers, T., & Hill, M. (2022). A comparison of placebo and nocebo effects on objective and subjective postural stability: A double‐edged sword? Frontiers in Human Neuroscienc, 16, 967722.
Schienle, A., Gremsl, A., Übel, S., & Körner, C. (2016). Testing the effects of a disgust placebo with eye tracking. International Journal of Psychophysiology, 101, 69–75.
Segalowitz, S. J., Dywan, J., & Unsal, A. (1997). Attentional factors in response time variability after traumatic brain injury: An ERP study. Journal of the International Neuropsychological Society, 3(2), 95–107.
Seth, A. K., Suzuki, K., & Critchley, H. D. (2012). An interoceptive predictive coding model of conscious presence. Frontiers in Psychology, 2, 395.
Szuromi, B., Czobor, P., Komlósi, S., & Bitter, I. (2011). P300 deficits in adults with attention deficit hyperactivity disorder: A meta‐analysis. Psychological Medicine, 41(7), 1529–1538.
Tsui, E., & Patel, P. (2020). Calculated decisions: Visual acuity testing (Snellen chart). Emergency Medicine Practice. 22(4), CD1–CD2.
Tu, Y., Wilson, G., Camprodon, J., Dougherty, D. D., Vangel, M., Benedetti, F., Kaptchuk, T. J., Gollub, R. L., & Kong, J. (2021). Manipulating placebo analgesia and nocebo hyperalgesia by changing brain excitability. Proceedings of the National Academy of Sciences of the United States of America, 118(19), e2101273118.
Valero, F., González‐Mohíno, F., & Salinero, J. J. (2024). Belief that caffeine ingestion improves performance in a 6‐minute time trial test without affecting pacing strategy. Nutrients, 16(2), 327.
Vera, J., Redondo, B., Ocaso, E., Martinez‐Guillorme, S., Molina, R., & Jiménez, R. (2022). Manipulating expectancies in optometry practice: Ocular accommodation and stereoacuity are sensitive to placebo and nocebo effects. Ophthalmic and Physiological Optics, 42(6), 1390–1398.
Villa‐Sánchez, B., Emadi Andani, M., & Fiorio, M. (2018). The role of the dorsolateral prefrontal cortex in the motor placebo effect. European Journal of Neuroscience, 48(11), 3410–3425.
Villa‐Sánchez, B., Emadi Andani, M., Menegaldo, G., Tinazzi, M., & Fiorio, M. (2019). Positive verbal suggestion optimizes postural control. Scientific Reports, 9(1), 6408.
Wager, T. D., Rilling, J. K., Smith, E. E., Sokolik, A., Casey, K. L., Davidson, R. J., Kosslyn, S. M., Rose, R. M., & Cohen, J. D. (2004). Placebo‐induced changes in fMRI in the anticipation and experience of pain. Science (1979), 303(5661), 1162–1167.
Weimer, K., Buschhart, C., Broelz, E. K., Enck, P., & Horing, B. (2022). Bibliometric properties of placebo literature from the JIPS Database: A descriptive study. Frontiers in Psychiatry, 13, 853953.
Zech, N., Seemann, M., Grzesiek, M., Breu, A., Seyfried, T. F., & Hansen, E. (2019). Nocebo effects on muscular performance ‐ An experimental study about clinical situations. Frontiers in pharmacology, 10, 219.
Zheng, X., Xu, G., Zhang, K., Liang, R., Yan, W., Tian, P., Jia, Y., Zhang, S., & Du, C. (2020). Assessment of human visual acuity using visual evoked potential: A review. Sensors (Switzerland), 20(19), 5542.