Design principles for energy transfer in the photosystem II supercomplex from kinetic transition networks.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
09 Oct 2024
09 Oct 2024
Historique:
received:
20
02
2024
accepted:
30
09
2024
medline:
10
10
2024
pubmed:
10
10
2024
entrez:
9
10
2024
Statut:
epublish
Résumé
Photosystem II (PSII) has the unique ability to perform water-splitting. With light-harvesting complexes, it forms the PSII supercomplex (PSII-SC) which is a functional unit that can perform efficient energy conversion, as well as photoprotection, allowing photosynthetic organisms to adapt to the naturally fluctuating sunlight intensity. Achieving these functions requires a collaborative energy transfer network between all subunits of the PSII-SC. In this work, we perform kinetic analyses and characterise the energy landscape of the PSII-SC with a structure-based energy transfer model. With first passage time analyses and kinetic Monte Carlo simulations, we are able to map out the overall energy transfer network. We also investigate how energy transfer pathways are affected when individual protein complexes are removed from the network, revealing the functional roles of the subunits of the PSII-SC. In addition, we provide a quantitative description of the flat energy landscape of the PSII-SC. We show that it is a unique landscape that produces multiple kinetically relevant pathways, corresponding to a high pathway entropy. These design principles are crucial for balancing efficient energy conversion and photoprotection.
Identifiants
pubmed: 39384886
doi: 10.1038/s41467-024-53138-z
pii: 10.1038/s41467-024-53138-z
doi:
Substances chimiques
Photosystem II Protein Complex
0
Light-Harvesting Protein Complexes
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8763Subventions
Organisme : DOE | SC | Chemical Sciences, Geosciences, and Biosciences Division (Chemical Sciences, Geosciences, and Energy Biosciences)
ID : FWP 449A
Organisme : RCUK | Engineering and Physical Sciences Research Council (EPSRC)
ID : EP/R513180/1, EP/N509620/1]
Informations de copyright
© 2024. The Author(s).
Références
Blankenship, R. E. Molecular mechanisms of photosynthesis, 3
Demmig-Adams, B., Garab, G., Adams III, W. & Govindjee, U. Nonphotochemical quenching and energy dissipation in plants, algae and cyanobacteria Vol. 40 (Springer, 2014).
Muller, P., Li, X.-P. & Niyogi, K. K. Non-photochemical quenching. a response to excess light energy. Plant Physiol. 125, 1558–1566 (2001).
doi: 10.1104/pp.125.4.1558
Su, X. et al. Structure and assembly mechanism of plant C
doi: 10.1126/science.aan0327
Albanese, P. et al. Dynamic reorganization of photosystem II supercomplexes in response to variations in light intensities. Biochimica et. Biophysica Acta (BBA)-Bioenerg. 1857, 1651–1660 (2016).
doi: 10.1016/j.bbabio.2016.06.011
Kouˇril, R., Wientjes, E., Bultema, J. B., Croce, R. & Boekema, E. J. High-light vs. low-light: effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochimica et. Biophysica Acta (BBA)-Bioenerg. 1827, 411–419 (2013).
doi: 10.1016/j.bbabio.2012.12.003
Salverda, J. M. et al. Energy transfer in light-harvesting complexes LHCII and CP29 of spinach studied with three pulse echo peak shift and transient grating. Biophysical J. 84, 450–465 (2003).
doi: 10.1016/S0006-3495(03)74865-6
Groot, M. L., Breton, J., van Wilderen, L. J., Dekker, J. P. & van Grondelle, R. Femtosecond visible/visible and visible/mid-IR pump- probe study of the photosystem II core antenna complex CP47. J. Phys. Chem. B 108, 8001–8006 (2004).
doi: 10.1021/jp037966s
Pawlowicz, N. P., Groot, M.-L., Van Stokkum, I., Breton, J. & van Grondelle, R. Charge separation and energy transfer in the photosystem II core complex studied by femtosecond midinfrared spectroscopy. Biophysical J. 93, 2732–2742 (2007).
doi: 10.1529/biophysj.107.105452
Lewis, N. H. et al. Observation of electronic excitation transfer through light harvesting complex II using two-dimensional electronic–vibrational spectroscopy. J. Phys. Chem. Lett. 7, 4197–4206 (2016).
doi: 10.1021/acs.jpclett.6b02280
Pan, J. et al. Ultrafast energy transfer within the photosystem II core complex. Phys. Chem. Chem. Phys. 19, 15356–15367 (2017).
doi: 10.1039/C7CP01673E
Yang, S.-J. et al. From antenna to reaction center: Pathways of ultrafast energy and charge transfer in photosystem II. Proc. Natl Acad. Sci. 119, e2208033119 (2022).
doi: 10.1073/pnas.2208033119
Do, T. N. et al. Ultrafast excitation energy transfer dynamics in the LHCII–CP29–CP24 subdomain of plant photosystem II. J. Phys. Chem. Lett. 13, 4263–4271 (2022).
doi: 10.1021/acs.jpclett.2c00194
Raszewski, G. & Renger, T. Light harvesting in photosystem II core complexes is limited by the transfer to the trap: can the core complex turn into a photoprotective mode? J. Am. Chem. Soc. 130, 4431–4446 (2008).
doi: 10.1021/ja7099826
Novoderezhkin, V., Marin, A. & van Grondelle, R. Intra-and inter-monomeric transfers in the light harvesting LHCII complex: the Redfield–Förster picture. Phys. Chem. Chem. Phys. 13, 17093–17103 (2011).
doi: 10.1039/c1cp21079c
Shibata, Y., Nishi, S., Kawakami, K., Shen, J.-R. & Renger, T. Photosystem II does not possess a simple excitation energy funnel: time-resolved fluorescence spectroscopy meets theory. J. Am. Chem. Soc. 135, 6903–6914 (2013).
doi: 10.1021/ja312586p
Caffarri, S., Broess, K., Croce, R. & van Amerongen, H. Excitation energy transfer and trapping in higher plant photosystem II complexes with different antenna sizes. Biophysical J. 100, 2094–2103 (2011).
doi: 10.1016/j.bpj.2011.03.049
Van Oort, B. et al. Effect of antenna-depletion in Photosystem II on excitation energy transfer in Arabidopsis thaliana. Biophysical J. 98, 922–931 (2010).
doi: 10.1016/j.bpj.2009.11.012
Miloslavina, Y., de Bianchi, S., Dall’Osto, L., Bassi, R. & Holzwarth, A. R. Quenching in Arabidopsis thaliana mutants lacking monomeric antenna proteins of photosystem II. J. Biol. Chem. 286, 36830–36840 (2011).
doi: 10.1074/jbc.M111.273227
Broess, K., Trinkunas, G., van Hoek, A., Croce, R. & van Amerongen, H. Determination of the excitation migration time in photosystem II: Consequences for the membrane organization and charge separation parameters. Biochimica et. Biophysica Acta (BBA)-Bioenerg. 1777, 404–409 (2008).
doi: 10.1016/j.bbabio.2008.02.003
Chmeliov, J., Trinkunas, G., van Amerongen, H. & Valkunas, L. Light harvesting in a fluctuating antenna. J. Am. Chem. Soc. 136, 8963–8972 (2014).
doi: 10.1021/ja5027858
Bennett, D. I., Amarnath, K. & Fleming, G. R. A structure-based model of energy transfer reveals the principles of light harvesting in photosystem II supercomplexes. J. Am. Chem. Soc. 135, 9164–9173 (2013).
doi: 10.1021/ja403685a
Leonardo, C. et al. Bidirectional energy flow in the photosystem II supercomplex. J. Phys. Chem. B 128, 7941–7953 (2024).
doi: 10.1021/acs.jpcb.4c02508
Jennings, R. C., Bassi, R., Garlaschi, F. M., Dainese, P. & Zucchelli, G. Distribution of the chlorophyll spectral forms in the chlorophyll-protein complexes of photosystem II antenna. Biochemistry 32, 3203–3210 (1993).
doi: 10.1021/bi00064a002
Jennings, R. C. et al. A study of photosystem II fluorescence emission in terms of the antenna chlorophyll-protein complexes. Biochimica et. Biophysica Acta (BBA)-Bioenerg. 1183, 194–200 (1993).
doi: 10.1016/0005-2728(93)90018-B
Noé, F. & Fischer, S. Transition networks for modeling the kinetics of conformational change in macromolecules. Curr. Opin. Struct. Biol. 18, 154–162 (2008).
doi: 10.1016/j.sbi.2008.01.008
Prada-Gracia, D., Gómez-Gardenes, J., Echenique, P. & Falo, F. Exploring the free energy landscape: from dynamics to networks and back. PLoS Comput. Biol. 5, e1000415 (2009).
doi: 10.1371/journal.pcbi.1000415
Wales, D. J. Energy landscapes: some new horizons. Curr. Opin. Struct. Biol. 20, 3–10 (2010).
doi: 10.1016/j.sbi.2009.12.011
Woods, E. J., Kannan, D., Sharpe, D. J., Swinburne, T. D. & Wales, D. J. Analysing ill-conditioned Markov chains. Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 381, 20220245 (2023).
doi: 10.1098/rsta.2022.0245
Woods, E. J. & Wales, D. J. Analysis and interpretation of first passage time distributions featuring rare events. Phys. Chem. Chem. Phys. 26, 1640–1657 (2024).
doi: 10.1039/D3CP04199A
Anderson, M. C., Woods, E. J., Fay, T. P., Wales, D. J. & Limmer, D. T. On the mechanism of polaritonic rate suppression from quantum transition paths. J. Phys. Chem. Lett. 14, 6888–6894 (2023).
doi: 10.1021/acs.jpclett.3c01188
Bortz, A. B., Kalos, M. H. & Lebowitz, J. L. A new algorithm for Monte Carlo simulation of Ising spin systems. J. Comput. Phys. 17, 10–18 (1975).
doi: 10.1016/0021-9991(75)90060-1
Voter, A. F. Classically exact overlayer dynamics: diffusion of rhodium clusters on Rh(100). Phys. Rev. B 34, 6819–6829 (1986).
doi: 10.1103/PhysRevB.34.6819
Fichthorn, K. A. & Weinberg, W. H. Theoretical foundations of dynamical monte carlo simulations. J. Chem. Phys. 95, 1090–1096 (1991).
doi: 10.1063/1.461138
Jahns, P., Latowski, D. & Strzalka, K. Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochimica et. Biophysica Acta (BBA)-Bioenerg. 1787, 3–14 (2009).
doi: 10.1016/j.bbabio.2008.09.013
Dall’Osto, L. et al. Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes. Nat. Plants 3, 1–9 (2017).
Townsend, A. J. et al. The causes of altered chlorophyll fluorescence quenching induction in the Arabidopsis mutant lacking all minor antenna complexes. Biochimica et. Biophysica Acta (BBA)-Bioenerg. 1859, 666–675 (2018).
doi: 10.1016/j.bbabio.2018.03.005
Mascoli, V. et al. Capturing the quenching mechanism of light-harvesting complexes of plants by zooming in on the ensemble. Chem 5, 2900–2912 (2019).
doi: 10.1016/j.chempr.2019.08.002
Nicol, L., Nawrocki, W. J. & Croce, R. Disentangling the sites of non-photochemical quenching in vascular plants. Nat. Plants 5, 1177–1183 (2019).
doi: 10.1038/s41477-019-0526-5
Lapillo, M., Cignoni, E., Cupellini, L. & Mennucci, B. The energy transfer model of nonphotochemical quenching: Lessons from the minor CP29 antenna complex of plants. Biochimica et. Biophysica Acta (BBA)-Bioenerg. 1861, 148282 (2020).
doi: 10.1016/j.bbabio.2020.148282
Sardar, S. et al. Molecular mechanisms of light harvesting in the minor antenna CP29 in near-native membrane lipidic environment. The J. Chem. Phys. 156, 205101 (2022).
Accomasso, D., Londi, G., Cupellini, L. & Mennucci, B. The nature of carotenoid S* state and its role in the nonphotochemical quenching of plants. Nat. Commun. 15, 847 (2024).
doi: 10.1038/s41467-024-45090-9
De Bianchi, S., Dall’Osto, L., Tognon, G., Morosinotto, T. & Bassi, R. Minor antenna proteins CP24 and CP26 affect the interactions between photosystem II subunits and the electron transport rate in grana membranes of Arabidopsis. Plant Cell 20, 1012–1028 (2008).
doi: 10.1105/tpc.107.055749
de Bianchi, S. et al. Arabidopsis mutants deleted in the light-harvesting protein Lhcb4 have a disrupted photosystem II macrostructure and are defective in photoprotection. Plant Cell 23, 2659–2679 (2011).
doi: 10.1105/tpc.111.087320
Goral, T. K. et al. Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. Plant J. 69, 289–301 (2012).
doi: 10.1111/j.1365-313X.2011.04790.x
Dall’Osto, L., Unl¨U, C., Cazzaniga, S. & van Amerongen, H. Disturbed excitation energy transfer in Arabidopsis thaliana mutants lacking minor antenna complexes of photosystem II. Biochimica et. Biophysica Acta (BBA)-Bioenerg. 1837, 1981–1988 (2014).
doi: 10.1016/j.bbabio.2014.09.011
Guardini, Z., Bressan, M., Caferri, R., Bassi, R. & Dall’Osto, L. Identification of a pigment cluster catalysing fast photoprotective quenching response in CP29. Nat. Plants 6, 303–313 (2020).
doi: 10.1038/s41477-020-0612-8
Vasil’ev, S., Orth, P., Zouni, A., Owens, T. G. & Bruce, D. Excited-state dynamics in photosystem II: Insights from the x-ray crystal structure. Proc. Natl Acad. Sci. USA 98, 8602–8607 (2001).
doi: 10.1073/pnas.141239598
Broess, K. et al. Excitation energy transfer and charge separation in photosystem II membranes revisited. Biophysical J. 91, 3776–3786 (2006).
doi: 10.1529/biophysj.106.085068
van der Weij-de Wit, C., Dekker, J., van Grondelle, R. & Van Stokkum, I. Charge separation is virtually irreversible in photosystem II core complexes with oxidized primary quinone acceptor. J. Phys. Chem. A 115, 3947–3956 (2011).
doi: 10.1021/jp1083746
Hsieh, S.-T., Zhang, L., Ye, D.-W., Huang, X. & Cheng, Y.-C. A theoretical study on the dynamics of light harvesting in the dimeric photosystem II core complex: Regulation and robustness of energy transfer pathways. Faraday Discuss. 216, 94–115 (2019).
doi: 10.1039/C8FD00205C
Becker, O. M. & Karplus, M. The topology of multidimensional potential energy surfaces: Theory and application to peptide structure and kinetics. J. Chem. Phys. 106, 1495–1517 (1997).
doi: 10.1063/1.473299
Wales, D. J., Miller, M. A. & Walsh, T. R. Archetypal energy landscapes. Nature 394, 758–760 (1998).
doi: 10.1038/29487
Leopold, P. E., Montal, M. & Onuchic, J. N. Protein folding funnels: a kinetic approach to the sequence-structure relationship. Proc. Natl Acad. Sci. USA 89, 8721–8725 (1992).
doi: 10.1073/pnas.89.18.8721
Bryngelson, J. D. & Wolynes, P. G. Spin glasses and the statistical mechanics of protein folding. Proc. Natl Acad. Sci. USA 84, 7524–7528 (1987).
doi: 10.1073/pnas.84.21.7524
Miller, M. A., Doye, J. P. K. & Wales, D. J. Structural relaxation in Morse clusters: energy landscapes. J. Chem. Phys. 110, 328 (1999).
doi: 10.1063/1.478067
Doye, J. P. K., Miller, M. A. & Wales, D. J. The double-funnel energy landscape of the 38-atom Lennard-Jones cluster. J. Chem. Phys. 110, 6896–6906 (1999).
doi: 10.1063/1.478595
Wales, D. J. & Bogdan, T. V. Potential energy and free energy landscapes. J. Phys. Chem. B 110, 20765–20776 (2006).
doi: 10.1021/jp0680544
Röder, K. & Wales, D. J. Evolved minimal frustration in multifunctional biomolecules. J. Phys. Chem. B 122, 10989–10995 (2018).
doi: 10.1021/acs.jpcb.8b03632
Röder, K., Joseph, J. A., Husic, B. E. & Wales, D. J. Energy landscapes for proteins: from single funnels to multifunctional systems. Adv. Theory Simul. 2, 1800175 (2019).
doi: 10.1002/adts.201800175
de Souza, V. K. & Wales, D. J. Energy landscapes for diffusion: analysis of cage-breaking processes (13 pages). J. Chem. Phys. 129, 164507 (2008).
doi: 10.1063/1.2992128
de Souza, V. K. & Wales, D. J. Connectivity in the potential energy landscape for binary Lennard-Jones systems (12 pages). J. Chem. Phys. 130, 194508 (2009).
doi: 10.1063/1.3131690
Wales, D. J. Exploring energy landscapes. Ann. Rev. Phys. Chem. 69, 401–425 (2018).
doi: 10.1146/annurev-physchem-050317-021219
Kirkpatrick, T. R. & Wolynes, P. G. Stable and metastable states in mean-field Potts and structural glasses. Phys. Rev. B 36, 8552 (1987).
doi: 10.1103/PhysRevB.36.8552
Kirkpatrick, T. R., Thirumalai, D. & Wolynes, P. G. Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Phys. Rev. A 40, 1045 (1989).
doi: 10.1103/PhysRevA.40.1045
Wolynes, P. G. J. Res. Natl Inst. Stand. Technol. 102, 187 (1997).
doi: 10.6028/jres.102.014
Verpoort, P. C., Lee, A. A. & Wales, D. J. Archetypal landscapes for deep neural networks. Proc. Natl Acad. Sci. USA 117, 21857–21864 (2020).
doi: 10.1073/pnas.1919995117
Wales, D. J. Dynamical signatures of multifunnel energy landscapes. J. Phys. Chem. Lett. 13, 6349–6358 (2022).
doi: 10.1021/acs.jpclett.2c01258
Lecomte, V., Appert-Rolland, C. & van Wijland, F. Thermodynamic formalism for systems with markov dynamics. J. Stat. Phys. 127, 51–106 (2007).
doi: 10.1007/s10955-006-9254-0
Newcomb, L. B., Alaghemandi, M. & Green, J. R. Nonequilibrium phase coexistence and criticality near the second explosion limit of hydrogen combustion. J. Chem. Phys. 147, 034108 (2017).
doi: 10.1063/1.4994265
Malý, P. et al. Separating single-from multi-particle dynamics in nonlinear spectroscopy. Nature 616, 280–287 (2023).
doi: 10.1038/s41586-023-05846-7
Lee, T.-Y. et al. Chlorophyll to zeaxanthin energy transfer in nonphotochemical quenching: An exciton annihilation-free transient absorption study. Proc. Natl Acad. Sci. USA 121, e2411620121 (2024).
Raszewski, G., Saenger, W. & Renger, T. Theory of optical spectra of photosystem II reaction centers: location of the triplet state and the identity of the primary electron donor. Biophysical J. 88, 986–998 (2005).
doi: 10.1529/biophysj.104.050294
Müh, F., Madjet, M. E.-A. & Renger, T. Structure-based simulation of linear optical spectra of the CP43 core antenna of photosystem II. Photosynthesis Res. 111, 87–101 (2012).
doi: 10.1007/s11120-011-9675-8
Mascoli, V., Novoderezhkin, V., Liguori, N., Xu, P. & Croce, R. Design principles of solar light harvesting in plants: Functional architecture of the monomeric antenna CP29. Biochimica Et. Biophysica Acta (BBA)-Bioenerg. 1861, 148156 (2020).
doi: 10.1016/j.bbabio.2020.148156
Madjet, M. E., Abdurahman, A. & Renger, T. Intermolecular Coulomb couplings from ab initio electrostatic potentials: application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers. J. Phys. Chem. B 110, 17268–17281 (2006).
doi: 10.1021/jp0615398
Park, S. et al. Chlorophyll–carotenoid excitation energy transfer and charge transfer in Nannochloropsis oceanica for the regulation of photosynthesis. Proc. Natl Acad. Sci. USA 116, 3385–3390 (2019).
doi: 10.1073/pnas.1819011116
disconnectionDPS: A program for creating disconnectivity graphs. http://www-wales.ch.cam.ac.uk/software.html (accessed on 4