Antifungal efficacy of photodynamic therapy on Cryptococcus and Candida species is enhanced by Streptomyces spp. extracts in vitro.


Journal

Lasers in medical science
ISSN: 1435-604X
Titre abrégé: Lasers Med Sci
Pays: England
ID NLM: 8611515

Informations de publication

Date de publication:
10 Oct 2024
Historique:
received: 12 06 2024
accepted: 26 09 2024
medline: 11 10 2024
pubmed: 11 10 2024
entrez: 10 10 2024
Statut: epublish

Résumé

The research on actinobacteria isolated from traditional medicinal plants is limited. Here, four new Streptomyces isolates (Ha1, Pp1, UzK and UzM) were obtained from the rhizospheres of Helianthus annuus, Pongamia pinnata and Ziziphus mauritiana, frequently utilized in Indian traditional medicine. The Streptomyces isolates aqueous extracts were studied alone against the growth of the Cryptococcus neoformans H99 reference strain, the fluconazole-tolerant T1-5796 and 89-610 strains, three histone deacetylase (HDAC) genes mutant strains, C. gattii NIH198, Candida albicans, C. glabrata, C. parapsilosis and C. tropicalis to determine minimum inhibitory concentration (MIC). Next, the extracts were employed in combination with aluminium-phthalocyanine chloride nanoemulsion-mediated photodynamic therapy to evaluate a possible interaction. We demonstrated that the C. neoformans T1-5796 fluconazole-tolerant strain was more severely inhibited by the Pp1 isolate extract (MIC: 6 mg mL

Identifiants

pubmed: 39388001
doi: 10.1007/s10103-024-04204-x
pii: 10.1007/s10103-024-04204-x
doi:

Substances chimiques

Antifungal Agents 0
Photosensitizing Agents 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

255

Subventions

Organisme : Fundação de Apoio à Pesquisa do Distrito Federal
ID : 00193-00000229/2021-21
Organisme : Fundação de Apoio à Pesquisa do Distrito Federal
ID : 00001053/2021-24
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 403536/2021/9
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 0193.001.200/2016

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.

Références

World Health Organization (2018) WHO - the top 10 causes of death, 24 Maggio. WHO, Geneva, Switzerland
Bongomin F, Gago S, Oladele RO, Denning DW (2017) Global and multi-national prevalence of fungal diseases—estimate precision. J Fungi 3. https://doi.org/10.3390/jof3040057
Bretagne S, Sitbon K, Desnos-Ollivier M et al (2022) Active surveillance program to increase awareness on invasive fungal diseases: the french ressif network (2012 to 2018). mBio 13. https://doi.org/10.1128/mbio.00920-22
Rajasingham R, Smith RM, Park BJ et al (2017) Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis 17:873–881. https://doi.org/10.1016/S1473-3099(17)30243-8
doi: 10.1016/S1473-3099(17)30243-8 pubmed: 28483415 pmcid: 5818156
Kullberg BJ, Arendrup M (2015) Invasive candidiasis. N Engl J Med 373:1445–1456. https://doi.org/10.1056/NEJMra1315399
Arendrup MC, Patterson TF (2017) Multidrug-resistant Candida: epidemiology, molecular mechanisms, and treatment. J Infect Dis 216:445–451. https://doi.org/10.1093/infdis/jix131
doi: 10.1093/infdis/jix131
Brandão FAS, Derengowski LS, Albuquerque P et al (2015) Histone deacetylases inhibitors effects on Cryptococcus neoformans major virulence phenotypes. Virulence 6:618–630. https://doi.org/10.1080/21505594.2015.1038014
doi: 10.1080/21505594.2015.1038014 pubmed: 26103530 pmcid: 4720250
Brandão F, Esher SK, Ost KS et al (2018) HDAC genes play distinct and redundant roles in Cryptococcus neoformans virulence. Sci Rep 8:1–17. https://doi.org/10.1038/s41598-018-21965-y
doi: 10.1038/s41598-018-21965-y
Gusa A, Williams JD, Cho JE et al (2020) Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro. Proc Natl Acad Sci U S A 117:9973–9980. https://doi.org/10.1073/pnas.2001451117
doi: 10.1073/pnas.2001451117 pubmed: 32303657 pmcid: 7211991
Ouargli M, Gacemi-Kirane D, Mansouri R et al (2015) Antifungal activity of Streptomyces sp. against environmental and clinical Cryptococcus spp. isolates. J Chem Pharm Res 7:1019–1027
Zhou B, Ji YY, Zhang HJ, Shen L (2021) Gephyyamycin and cysrabelomycin, two new angucyclinone derivatives from the Streptomyces sp. HN-A124. Nat Prod Res 35:2117–2122. https://doi.org/10.1080/14786419.2019.1660336
doi: 10.1080/14786419.2019.1660336 pubmed: 34190022
Hung J, Lee C, Hsu H et al (2021) Recent advances in photodynamic therapy against fungal keratitis. Pharmaceutics 13:2011
doi: 10.3390/pharmaceutics13122011 pubmed: 34959293 pmcid: 8709008
Bagga B, Sharma S, Ahirwar LK et al (2022) Clinical outcomes of rose bengal mediated photodynamic antimicrobial therapy on fungal keratitis with their microbiological and pathological correlation. Curr Eye Res 1–8:1. https://doi.org/10.1080/02713683.2022.2058019
doi: 10.1080/02713683.2022.2058019
Du M, Xuan W, Zhen X et al (2021) Antimicrobial photodynamic therapy for oral Candida infection in adult AIDS patients: a pilot clinical trial. Photodiagnosis Photodyn Ther 34:102310. https://doi.org/10.1016/j.pdpdt.2021.102310
doi: 10.1016/j.pdpdt.2021.102310 pubmed: 33901690
Tiburcio MA, Rocha AR, Romano RA et al (2022) In vitro evaluation of the cis-[Ru(phen)2(pPDIp)]2+⁎⁎ complex for antimicrobial photodynamic therapy against Sporothrix brasiliensis and Candida albicans. J Photochem Photobiol B 229:112414. https://doi.org/10.1016/J.JPHOTOBIOL.2022.112414
doi: 10.1016/J.JPHOTOBIOL.2022.112414 pubmed: 35276578
Morais JAV, Rodrigues MC, Ferreira FF et al (2020) Photodynamic therapy inhibits cell growth and enhances the histone deacetylase-mediated viability impairment in Cryptococcus spp. in vitro. Photodiagnosis Photodyn Ther 29. https://doi.org/10.1016/j.pdpdt.2019.101583
Ranjan K, Brandão F, Morais JAV et al (2021) The role of Cryptococcus neoformans histone deacetylase genes in the response to antifungal drugs, epigenetic modulators and to photodynamic therapy mediated by an aluminium phthalocyanine chloride nanoemulsion in vitro. J Photochem Photobiol B 216:112131. https://doi.org/10.1016/j.jphotobiol.2021.112131
doi: 10.1016/j.jphotobiol.2021.112131 pubmed: 33517071
Al-Mutairi R, Tovmasyan A, Batinic-Haberle I, Benov L (2018) Sublethal photodynamic treatment does not lead to development of resistance. Front Microbiol 9:1–9. https://doi.org/10.3389/fmicb.2018.01699
doi: 10.3389/fmicb.2018.01699
Goyal M, Nagori BP, Sasmal D (2012) Review on ethnomedicinal uses, pharmacological activity and phytochemical constituents of Ziziphus mauritiana (Z. Jujuba Lam., non Mill) Ziziphus. Spatula 2:107. https://doi.org/10.5455/spatula.20120422080614
doi: 10.5455/spatula.20120422080614
Bashir T, Mashwani Z-U-R, Zahara K et al (2015) Chemistry, pharmacology and ethnomedicinal uses of Helianthus annuus (sunflower): a review. Pure Appl Biol 4:226–235
doi: 10.19045/bspab.2015.42011
Schmitt S, Tsai P, Bell J et al (2012) Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6:564–576. https://doi.org/10.1038/ismej.2011.116
doi: 10.1038/ismej.2011.116 pubmed: 21993395
Schäfer J, Jäckel U, Kämpfer P (2010) Development of a new PCR primer system for selective amplification of actinobacteria. FEMS Microbiol Lett 311:103–112. https://doi.org/10.1111/j.1574-6968.2010.02069.x
doi: 10.1111/j.1574-6968.2010.02069.x pubmed: 20840602
Clinical and Laboratory Standards Institute (CLSI) (2008) Reference method for broth dilution antifungal susceptibility testing of yeasts. 3rd ed. Wayne: Clinical and Laboratory Standards Institute. (Approved standard. M27-A3)
Muehlmann AL, Rodrigues CM, Longo PJ et al (2015) Aluminium-phthalocyanine chloride nanoemulsions for anticancer photodynamic therapy: development and in vitro activity against monolayers and spheroids of human mammary adenocarcinoma MCF-7 cells. J Nanobiotechnol 13. https://doi.org/10.1186/s12951-015-0095-3
Graça AP, Viana F, Bondoso J et al (2015) The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae). Front Microbiol 6:131762. https://doi.org/10.3389/fmicb.2015.00389
doi: 10.3389/fmicb.2015.00389
Edet ML, Hemalatha S (2023) Identification of natural CTXM-15 inhibitors from aqueous extract of endophytic bacteria Cronobactersakazaki. Braz J Microbiol 54:827–839. https://doi.org/10.1007/s42770-023-00945-z
doi: 10.1007/s42770-023-00945-z pubmed: 36899290 pmcid: 10234978
Amorim EA, da Castro F, da Souza EJM et al (2020) Antimicrobial potential of Streptomyces ansochromogenes (PB3) isolated from a plant native to the Amazon against Pseudomonas aeruginosa. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.574693
Khebizi N, Boudjella H, Bijani C et al (2017) Oligomycins a and E, major bioactive secondary metabolites produced by Streptomyces sp. strain HG29 isolated from a Saharan soil. J Mycol Med 28:150–160. https://doi.org/10.1016/j.mycmed.2017.10.007
doi: 10.1016/j.mycmed.2017.10.007 pubmed: 29158025
Hosoya T, Hirokawa T, Takagi M, Shin-ya K (2013) Trichostatin analogues JBIR-109, JBIR-110, and JBIR-111 from the marine sponge-derived Streptomyces sp. RM72. J Nat Prod 76:1231–1231. https://doi.org/10.1021/np400470r
doi: 10.1021/np400470r
Conte M, Fontana E, Nebbioso A, Altucci L (2020) Marine-derived secondary metabolites as promising epigenetic bio-compounds for anticancer therapy. Mar Drugs 19:15. https://doi.org/10.3390/md19010015
doi: 10.3390/md19010015 pubmed: 33396307 pmcid: 7824531
Angiolella L, Rojas F, Giammarino A et al (2024) Identification of virulence factors in isolates of Candida Haemulonii, Candida albicans and Clavispora lusitaniae with low susceptibility and resistance to fluconazole and amphotericin B. Microorganisms 12:212. https://doi.org/10.3390/microorganisms12010212
doi: 10.3390/microorganisms12010212 pubmed: 38276197 pmcid: 10819056
Morales EG, Guidi M, Peterka T et al (2021) Primary cutaneous cryptococcosis due to Cryptococcus neoformans in an immunocompetent host treated with itraconazole and drainage: case report and review of the literature. Case Rep Dermatol 13:89–97. https://doi.org/10.1159/000512289
doi: 10.1159/000512289
Flores-Maldonado OE, Montoya AM, Andrade A et al (2019) Evaluation of the induction of cell-mediated immunity against Candida albicans in a model of cutaneous infection in newborn 0-day-old mice. Mycopathologia 184:747–757. https://doi.org/10.1007/s11046-019-00398-9
doi: 10.1007/s11046-019-00398-9 pubmed: 31637573
Rodrigues GB, Brancini GTP, Pinto MR et al (2020) Photodynamic inactivation of Candida albicans and Candida tropicalis with aluminum phthalocyanine chloride nanoemulsion. Fungal Biol 124:297–303. https://doi.org/10.1016/j.funbio.2019.08.004
doi: 10.1016/j.funbio.2019.08.004 pubmed: 32389291
Pérez-Laguna V, Barrena-López Y, Gilaberte Y, Rezusta A (2021) In vitro effect of photodynamic therapy with different lights and combined or uncombined with chlorhexidine on candida Spp. Pharmaceutics 13:1176. https://doi.org/10.3390/pharmaceutics13081176
doi: 10.3390/pharmaceutics13081176 pubmed: 34452140 pmcid: 8398142
Khozeimeh F, Tavangar A, Razaghi Abyaneh M et al (2023) Evaluation of the effects of photodynamic therapy with methylene blue on different Candida species in vitro. J Lasers Med Sci 14:e34. https://doi.org/10.34172/jlms.2023.34
doi: 10.34172/jlms.2023.34 pubmed: 38028872 pmcid: 10658125
Ni J, Wang Y, Zhang H et al (2021) Aggregation-induced generation of reactive oxygen species: mechanism and photosensitizer construction. Molecules 26:268. https://doi.org/10.3390/molecules26020268
doi: 10.3390/molecules26020268 pubmed: 33430513 pmcid: 7827197
Yi X, Fransisca C, He Y et al (2017) Photodynamic effects on Fonsecaea monophora conidia and RAW264.7 in vitro. J Photochem Photobiol B 176:112–117. https://doi.org/10.1016/j.jphotobiol.2017.09.001
doi: 10.1016/j.jphotobiol.2017.09.001 pubmed: 28992604
Tribus M, Galehr J, Trojer P et al (2005) HdaA, a major class 2 histone deacetylase of Aspergillus nidulans, affects growth under conditions of oxidative stress. Eukaryot Cell 4:1736–1745. https://doi.org/10.1128/EC.4.10.1736-1745.2005
doi: 10.1128/EC.4.10.1736-1745.2005 pubmed: 16215180 pmcid: 1265891
Akiyama DY, Rocha MC, Costa JH et al (2020) The histone deacetylase clr3regulates secondary metabolite production and growth under oxidative stress conditions in Penicillium brasilianum. bioRxiv 2020.05.01.072108. https://doi.org/10.1101/2020.05.01.072108
Snell SB, Foster TH, Haidaris CG (2012) Miconazole induces fungistasis and increases killing of Candida albicans Subjected to photodynamic therapy. Photochem Photobiol 88:596–603. https://doi.org/10.1111/j.1751-1097.2011.01039.x
doi: 10.1111/j.1751-1097.2011.01039.x pubmed: 22077904
Lyon J, Carvalho C, Rezende R et al (2016) Synergism between fluconazole and methylene blue-photodynamic therapy against fluconazole-resistant Candida strains. Indian J Med Microbiol 34:506–508. https://doi.org/10.4103/0255-0857.195351
doi: 10.4103/0255-0857.195351 pubmed: 27934831
Daliri F, Azizi A, Goudarzi M et al (2019) In vitro comparison of the effect of photodynamic therapy with curcumin and methylene blue on Candida albicans colonies. Photodiagnosis Photodyn Ther 26:193–198. https://doi.org/10.1016/j.pdpdt.2019.03.017
doi: 10.1016/j.pdpdt.2019.03.017 pubmed: 30914389
Kharkwal GB, Sharma SK, Huang YY et al (2011) Photodynamic therapy for infections: clinical applications. Lasers Surg Med 43:755–767. https://doi.org/10.1002/lsm.21080
doi: 10.1002/lsm.21080 pubmed: 22057503 pmcid: 3449167
Wozniak A, Grinholc M (2018) Combined antimicrobial activity of photodynamic inactivation and antimicrobials-state of the art. Front Microbiol 9:930. https://doi.org/10.3389/fmicb.2018.00930
doi: 10.3389/fmicb.2018.00930 pubmed: 29867839 pmcid: 5952179

Auteurs

Kunal Ranjan (K)

Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India.
Graduation Program in Molecular Pathology, University of Brasilia, Brasilia, Brazil.

José Athayde Vasconcelos Morais (JAV)

Graduation Program in Animal Biology, University of Brasilia, Brasilia, Brazil.
Laboratory of Nanoscience and Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia, Brazil.

Mandeep Dixit (M)

Department of Botany, Hansraj College, University of Delhi, New Delhi, India.

Lourival Carvalho Nunes (LC)

Graduation Program in Molecular Pathology, University of Brasilia, Brasilia, Brazil.
Department of Genetics and Morphology, University of Brasilia, Brasilia, Brazil, 70910-900.

Fernando Pacheco Rodrigues (FP)

Department of Genetics and Morphology, University of Brasilia, Brasilia, Brazil, 70910-900.

Luís Alexandre Muehlmann (LA)

Graduation Program in Animal Biology, University of Brasilia, Brasilia, Brazil.
Laboratory of Nanoscience and Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia, Brazil.

Pratyoosh Shukla (P)

Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India.

Marcio José Poças-Fonseca (MJ)

Graduation Program in Molecular Pathology, University of Brasilia, Brasilia, Brazil. mpossas@unb.br.
Department of Genetics and Morphology, University of Brasilia, Brasilia, Brazil, 70910-900. mpossas@unb.br.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH