White matter alterations associated with chronic cannabis use disorder: a structural network and fixel-based analysis.
Journal
Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664
Informations de publication
Date de publication:
11 Oct 2024
11 Oct 2024
Historique:
received:
26
03
2024
accepted:
02
10
2024
revised:
25
09
2024
medline:
11
10
2024
pubmed:
11
10
2024
entrez:
10
10
2024
Statut:
epublish
Résumé
Cannabis use disorder (CUD) is associated with adverse mental health effects, as well as social and cognitive impairment. Given prevalence rates of CUD are increasing, there is considerable efforts, and need, to identify prognostic markers which may aid in minimising any harm associated with this condition. Previous neuroimaging studies have revealed changes in white matter (WM) organization in people with CUD, though, the findings are mixed. In this study, we applied MRI-based analysis techniques that offer complimentary mechanistic insights, i.e., a connectome approach and fixel-based analysis (FBA) to investigate properties of individual WM fibre populations and their microstructure across the entire brain, providing a highly sensitive approach to detect subtle changes and overcome limitations of previous diffusion models. We compared 56 individuals with CUD (median age 25 years) to a sample of 38 healthy individuals (median age 31.5 years). Compared to controls, those with CUD had significantly increased structural connectivity strength (FDR corrected) across 9 edges between the right parietal cortex and several cortical and subcortical regions, including left orbitofrontal, left temporal pole, and left hippocampus and putamen. Utilizing FBA, WM density was significantly higher in those with CUD (FWE-corrected) across the splenium of the corpus callosum, and lower in the bilateral cingulum and right cerebellum. We observed significant correlation between cannabis use over the past month and connectivity strength of the frontoparietal edge, and between age of regular use and WM density of the bilateral cingulum and right cerebellum. Our findings enhance the understanding of WM architecture alterations associated with CUD.
Identifiants
pubmed: 39389949
doi: 10.1038/s41398-024-03150-0
pii: 10.1038/s41398-024-03150-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
429Subventions
Organisme : Department of Health | National Health and Medical Research Council (NHMRC)
ID : APP1139978
Informations de copyright
© 2024. The Author(s).
Références
Leung J, Chan GC, Hides L, Hall WD. What is the prevalence and risk of cannabis use disorders among people who use cannabis? A systematic review and meta-analysis. Addict Behav. 2020;109:106479.
pubmed: 32485547
doi: 10.1016/j.addbeh.2020.106479
Bloomfield MA, Hindocha C, Green SF, Wall MB, Lees R, Petrilli K, et al. The neuropsychopharmacology of cannabis: a review of human imaging studies. Pharmacol Ther. 2019;195:132–61.
pubmed: 30347211
pmcid: 6416743
doi: 10.1016/j.pharmthera.2018.10.006
Chye Y, Kirkham R, Lorenzetti V, McTavish E, Solowij N, Yücel M. Cannabis, cannabinoids, and brain morphology: a review of the evidence. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021;6:627–35.
pubmed: 32948510
Lorenzetti V, Chye Y, Silva P, Solowij N, Roberts CA. Does regular cannabis use affect neuroanatomy? An updated systematic review and meta-analysis of structural neuroimaging studies. Eur Arch Psychiatry Clin Neurosci. 2019;269:59–71.
pubmed: 30706169
doi: 10.1007/s00406-019-00979-1
Ashtari M, Avants B, Cyckowski L, Cervellione KL, Roofeh D, Cook P, et al. Medial temporal structures and memory functions in adolescents with heavy cannabis use. J Psychiatr Res. 2011;45:1055–66.
pubmed: 21296361
pmcid: 3303223
doi: 10.1016/j.jpsychires.2011.01.004
Filbey FM, Aslan S, Calhoun VD, Spence JS, Damaraju E, Caprihan A, et al. Long-term effects of marijuana use on the brain. Proc Natl Acad Sci USA. 2014;111:16913–8.
pubmed: 25385625
pmcid: 4250161
doi: 10.1073/pnas.1415297111
Yücel M, Solowij N, Respondek C, Whittle S, Fornito A, Pantelis C, et al. Regional brain abnormalities associated with long-term heavy cannabis use. Arch Gen psychiatry. 2008;65:694–701.
pubmed: 18519827
doi: 10.1001/archpsyc.65.6.694
Chye Y, Solowij N, Suo C, Batalla A, Cousijn J, Goudriaan AE, et al. Orbitofrontal and caudate volumes in cannabis users: a multi-site mega-analysis comparing dependent versus non-dependent users. Psychopharmacology. 2017;234:1985–95.
pubmed: 28364340
doi: 10.1007/s00213-017-4606-9
Jacobus J, Squeglia LM, Meruelo AD, Castro N, Brumback T, Giedd JN, et al. Cortical thickness in adolescent marijuana and alcohol users: a three-year prospective study from adolescence to young adulthood. Dev Cogn Neurosci. 2015;16:101–9.
pubmed: 25953106
pmcid: 4624050
doi: 10.1016/j.dcn.2015.04.006
Lopez-Larson MP, Bogorodzki P, Rogowska J, McGlade E, King JB, Terry J, et al. Altered prefrontal and insular cortical thickness in adolescent marijuana users. Behav Brain Res. 2011;220:164–72.
pubmed: 21310189
pmcid: 3073407
doi: 10.1016/j.bbr.2011.02.001
Mata I, Perez-Iglesias R, Roiz-Santiañez R, Tordesillas-Gutierrez D, Pazos A, Gutierrez A, et al. Gyrification brain abnormalities associated with adolescence and early-adulthood cannabis use. Brain Res. 2010;1317:297–304.
pubmed: 20045399
doi: 10.1016/j.brainres.2009.12.069
Lorenzetti V, Solowij N, Whittle S, Fornito A, Lubman DI, Pantelis C, et al. Gross morphological brain changes with chronic, heavy cannabis use. Br J Psychiatry. 2015;206:77–8.
pubmed: 25431432
doi: 10.1192/bjp.bp.114.151407
McQueeny T, Padula CB, Price J, Medina KL, Logan P, Tapert SF. Gender effects on amygdala morphometry in adolescent marijuana users. Behav Brain Res. 2011;224:128–34.
pubmed: 21664935
pmcid: 3139567
doi: 10.1016/j.bbr.2011.05.031
Lichenstein SD, Manco N, Cope LM, Egbo L, Garrison KA, Hardee J, et al. Systematic review of structural and functional neuroimaging studies of cannabis use in adolescence and emerging adulthood: evidence from 90 studies and 9441 participants. Neuropsychopharmacology. 2022;47:1000–28.
pubmed: 34839363
doi: 10.1038/s41386-021-01226-9
Arnone D, Barrick TR, Chengappa S, Mackay CE, Clark CA, Abou-Saleh M. Corpus callosum damage in heavy marijuana use: preliminary evidence from diffusion tensor tractography and tract-based spatial statistics. Neuroimage. 2008;41:1067–74.
pubmed: 18424082
doi: 10.1016/j.neuroimage.2008.02.064
Gruber SA, Silveri MM, Dahlgren MK, Yurgelun-Todd D. Why so impulsive? White matter alterations are associated with impulsivity in chronic marijuana smokers. Exp Clin Psychopharmacol. 2011;19:231.
pubmed: 21480730
pmcid: 3659424
doi: 10.1037/a0023034
Zalesky A, Solowij N, Yücel M, Lubman DI, Takagi M, Harding IH, et al. Effect of long-term cannabis use on axonal fibre connectivity. Brain. 2012;135:2245–55.
pubmed: 22669080
doi: 10.1093/brain/aws136
DeLisi LE, Bertisch HC, Szulc KU, Majcher M, Brown K, Bappal A, et al. A preliminary DTI study showing no brain structural change associated with adolescent cannabis use. Harm Reduct J. 2006;3:1–6.
doi: 10.1186/1477-7517-3-17
Kim D-J, Skosnik PD, Cheng H, Pruce BJ, Brumbaugh MS, Vollmer JM, et al. Structural network topology revealed by white matter tractography in cannabis users: a graph theoretical analysis. Brain Connect. 2011;1:473–83.
pubmed: 22432904
pmcid: 3604771
doi: 10.1089/brain.2011.0053
Sweigert J, Pagulayan K, Greco G, Blake M, Larimer M, Kleinhans NM. A multimodal investigation of cerebellar integrity associated with high‐risk cannabis use. Addict Biol. 2020;25:e12839.
pubmed: 31814242
doi: 10.1111/adb.12839
Dhollander T, Mito R, Raffelt D, Connelly A, editors. Improved white matter response function estimation for 3-tissue constrained spherical deconvolution. International Society of Magnetic Resonance in Medicine. ISMRM, Montréal. 2019;27:555.
Raffelt DA, Tournier J-D, Smith RE, Vaughan DN, Jackson G, Ridgway GR, et al. Investigating white matter fibre density and morphology using fixel-based analysis. Neuroimage 2017;144:58–73.
pubmed: 27639350
doi: 10.1016/j.neuroimage.2016.09.029
Dhollander T, Clemente A, Singh M, Boonstra F, Civier O, Duque JD, et al. Fixel-based analysis of diffusion MRI: methods, applications, challenges and opportunities. Neuroimage. 2021;241:118417.
pubmed: 34298083
doi: 10.1016/j.neuroimage.2021.118417
Boonstra F, Gajamange S, Noffs G, Perera T, Strik M, Vogel A, et al. Evaluation of cerebellar function scores in relation to cerebellar axonal loss in multiple sclerosis. bioRxiv [Preprint]. 2020. Available from https://doi.org/10.1101/2020.05.15.094938 .
Storelli L, Pagani E, Preziosa P, Filippi M, Rocca MA. Measurement of white matter fiber-bundle cross-section in multiple sclerosis using diffusion-weighted imaging. Mult Scler J. 2021;27:818–26.
doi: 10.1177/1352458520938999
Mito R, Raffelt D, Dhollander T, Vaughan DN, Tournier J-D, Salvado O, et al. Fibre-specific white matter reductions in Alzheimer’s disease and mild cognitive impairment. Brain. 2018;141:888–902.
pubmed: 29309541
doi: 10.1093/brain/awx355
Grazioplene RG, Bearden CE, Subotnik KL, Ventura J, Haut K, Nuechterlein KH, et al. Connectivity-enhanced diffusion analysis reveals white matter density disruptions in first episode and chronic schizophrenia. Neuroimage Clin. 2018;18:608–16.
pubmed: 29845009
pmcid: 5964624
doi: 10.1016/j.nicl.2018.02.015
Kirkovski M, Fuelscher I, Hyde C, Donaldson PH, Ford TC, Rossell SL, et al. Fixel based analysis reveals atypical white matter micro-and macrostructure in adults with autism spectrum disorder: an investigation of the role of biological sex. Front Integr Neurosci. 2020;14:40.
pubmed: 32903660
pmcid: 7438780
doi: 10.3389/fnint.2020.00040
Kirkovski M, Singh M, Dhollander T, Fuelscher I, Hyde C, Albein-Urios N, et al. An investigation of age-related neuropathophysiology in autism spectrum disorder using fixel-based analysis of corpus callosum white matter micro-and macrostructure. J Autism Dev Disord. 2024;54:2198–2210. https://doi.org/10.1007/s10803-023-05980-1 .
Damatac CG, Soheili-Nezhad S, Freches GB, Zwiers MP, De Bruijn S, Ikde S, et al. Longitudinal changes of ADHD symptoms in association with white matter microstructure: a tract-specific fixel-based analysis. Neuroimage Clin. 2022;35:103057.
pubmed: 35644111
pmcid: 9144034
doi: 10.1016/j.nicl.2022.103057
Soleimani N, Kazemi K, Helfroush MS, Aarabi A. Altered brain structural and functional connectivity in cannabis users. Sci Rep. 2023;13:5847.
pubmed: 37037859
pmcid: 10086048
doi: 10.1038/s41598-023-32521-8
Kim DJ, Schnakenberg Martin AM, Shin YW, Jo HJ, Cheng H, Newman SD, et al. Aberrant structural–functional coupling in adult cannabis users. Hum Brain Mapp. 2019;40:252–61.
pubmed: 30203892
doi: 10.1002/hbm.24369
Dhollander T, Connelly A, editors. A novel iterative approach to reap the benefits of multi-tissue CSD from just single-shell (+ b= 0) diffusion MRI data. International Society for Magnetic Resonance in Medicine. ISMRM, Singapore. 2016;24:3010.
Dhollander T, Raffelt D, Connelly A, editors. Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image. ISMRM workshop on breaking the barriers of diffusion MRI. Lisbon, Portugal. 2016;5.
Andersson JL, Graham MS, Zsoldos E, Sotiropoulos SN. Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. Neuroimage. 2016;141:556–72.
pubmed: 27393418
doi: 10.1016/j.neuroimage.2016.06.058
Andersson JL, Graham MS, Drobnjak I, Zhang H, Filippini N, Bastiani M. Towards a comprehensive framework for movement and distortion correction of diffusion MR images: Within volume movement. Neuroimage. 2017;152:450–66.
pubmed: 28284799
doi: 10.1016/j.neuroimage.2017.02.085
Smith RE, Tournier J-D, Calamante F, Connelly A. SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. Neuroimage. 2015;119:338–51.
pubmed: 26163802
doi: 10.1016/j.neuroimage.2015.06.092
Jeurissen B, Leemans A, Tournier JD, Jones DK, Sijbers J. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp. 2013;34:2747–66.
pubmed: 22611035
doi: 10.1002/hbm.22099
Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91.
pubmed: 17695343
doi: 10.3758/BF03193146
Lecrubier Y, Sheehan DV, Weiller E, Amorim P, Bonora I, Sheehan KH, et al. The Mini International Neuropsychiatric Interview (MINI). A short diagnostic structured interview: reliability and validity according to the CIDI. Eur psychiatry. 1997;12:224–31.
doi: 10.1016/S0924-9338(97)83296-8
Robinson SM, Sobell LC, Sobell MB, Leo GI. Reliability of the Timeline Followback for cocaine, cannabis, and cigarette use. Psychol Addict Behav. 2014;28:154.
pubmed: 23276315
doi: 10.1037/a0030992
Sobell LC, Sobell MB. Timeline follow-back: a technique for assessing self-reported alcohol consumption. Measuring alcohol consumption: psychosocial and biochemical methods: Springer. Humana Press/SpringerNature. 1992;41–72. https://doi.org/10.1007/978-1-4612-0357-5_3 .
Rush AJ, Trivedi MH, Ibrahim HM, Carmody TJ, Arnow B, Klein DN, et al. The 16-Item Quick Inventory of Depressive Symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): a psychometric evaluation in patients with chronic major depression. Biol Psychiatry. 2003;54:573–83.
pubmed: 12946886
doi: 10.1016/S0006-3223(02)01866-8
Spielberger CD, Gonzalez-Reigosa F, Martinez-Urrutia A, Natalicio LF, Natalicio DS. The state-trait anxiety inventory. Rev Int Psicol/Int J Psychol. 1971;5. https://doi.org/10.30849/rip/ijp.v5i3&4.620 .
CambridgeCognition. CANTAB [cognitive assessment software]. 2019. Available from: www.cantab.com .
Lezak MD. Neuropsychological assessment. USA: Oxford University Press; 2004.
Goscinski WJ, McIntosh P, Felzmann U, Maksimenko A, Hall CJ, Gureyev T, et al. The multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) high performance computing infrastructure: applications in neuroscience and neuroinformatics research. Front Neuroinform. 2014;8:30.
pubmed: 24734019
pmcid: 3973921
doi: 10.3389/fninf.2014.00030
Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.
pubmed: 16530430
doi: 10.1016/j.neuroimage.2006.01.021
ENIGMA. ENIGMA Cortical Quality Control Protocol 2.0 2017. Available from: https://enigma.ini.usc.edu/protocols/imaging-protocols/ .
Tournier J-D, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M, et al. MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage. 2019;202:116137.
pubmed: 31473352
doi: 10.1016/j.neuroimage.2019.116137
Isensee F, Schell M, Pflueger I, Brugnara G, Bonekamp D, Neuberger U, et al. Automated brain extraction of multisequence MRI using artificial neural networks. Hum Brain Mapp. 2019;40:4952–64.
pubmed: 31403237
pmcid: 6865732
doi: 10.1002/hbm.24750
Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17:825–41.
pubmed: 12377157
doi: 10.1006/nimg.2002.1132
Tournier JD, Calamante F, Connelly A. MRtrix: diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol. 2012;22:53–66.
doi: 10.1002/ima.22005
Raffelt D, Dhollander T, Tournier J-D, Tabbara R, Smith RE, Pierre E, et al. Bias field correction and intensity normalisation for quantitative analysis of apparent fibre density. International Society of Magnetic Resonance in Medicine. ISMRM, Hawaii. 2017;25:3541.
Smith RE, Tournier J-D, Calamante F, Connelly A. Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage. 2012;62:1924–38.
pubmed: 22705374
doi: 10.1016/j.neuroimage.2012.06.005
Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008;6:e159.
pubmed: 18597554
pmcid: 2443193
doi: 10.1371/journal.pbio.0060159
Raffelt DA, Smith RE, Ridgway GR, Tournier J-D, Vaughan DN, Rose S, et al. Connectivity-based fixel enhancement: whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres. Neuroimage. 2015;117:40–55.
pubmed: 26004503
doi: 10.1016/j.neuroimage.2015.05.039
Zalesky A, Fornito A, Bullmore ET. Network-based statistic: identifying differences in brain networks. Neuroimage. 2010;53:1197–207.
pubmed: 20600983
doi: 10.1016/j.neuroimage.2010.06.041
Rossetti MG, Mackey S, Patalay P, Allen NB, Batalla A, Bellani M, et al. Sex and dependence related neuroanatomical differences in regular cannabis users: findings from the ENIGMA Addiction Working Group. Transl psychiatry. 2021;11:272.
pubmed: 33958576
pmcid: 8102553
doi: 10.1038/s41398-021-01382-y
Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. Neuroimage. 2014;92:381–97.
pubmed: 24530839
doi: 10.1016/j.neuroimage.2014.01.060
Hua K, Zhang J, Wakana S, Jiang H, Li X, Reich DS, et al. Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage. 2008;39:336–47.
pubmed: 17931890
doi: 10.1016/j.neuroimage.2007.07.053
Numssen O, Bzdok D, Hartwigsen G. Functional specialization within the inferior parietal lobes across cognitive domains. eLife. 2021;10:e63591.
pubmed: 33650486
pmcid: 7946436
doi: 10.7554/eLife.63591
Robinson EA, Gleeson J, Arun AH, Clemente A, Gaillard A, Rossetti MG, et al. Measuring white matter microstructure in 1,457 cannabis users and 1,441 controls: A systematic review of diffusion-weighted MRI studies. Front Neuroimaging. 2023;2:1129587.
pubmed: 37554654
pmcid: 10406316
doi: 10.3389/fnimg.2023.1129587
Liang X, Yeh C-H, Poudel G, Swinnen SP, Caeyenberghs K. Longitudinal fixel-based analysis reveals restoration of white matter alterations following balance training in young brain-injured patients. Neuroimage Clin. 2021;30:102621.
pubmed: 33780865
pmcid: 8022866
doi: 10.1016/j.nicl.2021.102621
Gorman BD, Calamante F, Civier O, DeMayo MM, Demetriou EA, Hickie IB, et al. Investigating white matter structure in social anxiety disorder using fixel-based analysis. J Psychiatr Res. 2021;143:30–7.
pubmed: 34438201
doi: 10.1016/j.jpsychires.2021.08.028
Blanco‐Hinojo L, Pujol J, Harrison BJ, Macià D, Batalla A, Nogué S, et al. Attenuated frontal and sensory inputs to the basal ganglia in cannabis users. Addict Biol. 2017;22:1036–47.
pubmed: 26934839
doi: 10.1111/adb.12370
Hirjak D, Schmitgen MM, Werler F, Wittemann M, Kubera KM, Wolf ND, et al. Multimodal MRI data fusion reveals distinct structural, functional and neurochemical correlates of heavy cannabis use. Addict Biol. 2022;27:e13113.
pubmed: 34808703
doi: 10.1111/adb.13113
Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15:483–506.
pubmed: 21908230
doi: 10.1016/j.tics.2011.08.003
Uddin LQ, Yeo B, Spreng RN. Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topogr. 2019;32:926–42.
pubmed: 31707621
pmcid: 7325607
doi: 10.1007/s10548-019-00744-6
Milardi D, Quartarone A, Bramanti A, Anastasi G, Bertino S, Basile GA, et al. The cortico-basal ganglia-cerebellar network: past, present and future perspectives. Front Syst Neurosci. 2019;13:61.
pubmed: 31736719
pmcid: 6831548
doi: 10.3389/fnsys.2019.00061
Cooper S, Robison A, Mazei-Robison MS. Reward circuitry in addiction. Neurotherapeutics. 2017;14:687–97.
pubmed: 28324454
pmcid: 5509624
doi: 10.1007/s13311-017-0525-z
Squire LR, Zola SM. Structure and function of declarative and nondeclarative memory systems. Proc Natl Acad Sci USA. 1996;93:13515–22.
pubmed: 8942965
pmcid: 33639
doi: 10.1073/pnas.93.24.13515
Graybiel AM. Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci. 1990;13:244–54.
pubmed: 1695398
doi: 10.1016/0166-2236(90)90104-I
Connor JP, Stjepanović D, Le Foll B, Hoch E, Budney AJ, Hall WD. Cannabis use and cannabis use disorder. Nat Rev Dis Prim. 2021;7:16.
pubmed: 33627670
doi: 10.1038/s41572-021-00247-4
Huerga‐Gómez A, Aguado T, Sánchez‐de la Torre A, Bernal‐Chico A, Matute C, Mato S, et al. Δ9‐Tetrahydrocannabinol promotes oligodendrocyte development and CNS myelination in vivo. Glia. 2021;69:532–45.
pubmed: 32956517
doi: 10.1002/glia.23911
Murray CJ, Vecchiarelli HA, Tremblay M-È. Enhancing axonal myelination in seniors: a review exploring the potential impact cannabis has on myelination in the aged brain. Front Aging Neurosci. 2023;15:1119552.
pubmed: 37032821
pmcid: 10073480
doi: 10.3389/fnagi.2023.1119552
Leonard BE, Aricioglu F. Cannabinoids and neuroinflammation: therapeutic implications. J Affect Disord Rep. 2023;12:100463.
doi: 10.1016/j.jadr.2023.100463
Lorenzetti V, Takagi M, van Dalen Y, Yücel M, Solowij N. Investigating the residual effects of chronic cannabis use and abstinence on verbal and visuospatial learning. Front Psychiatry. 2021;12:663701.
pubmed: 34220577
pmcid: 8247947
doi: 10.3389/fpsyt.2021.663701
Schuster RM, Gilman J, Schoenfeld D, Evenden J, Hareli M, Ulysse C, et al. One month of cannabis abstinence in adolescents and young adults is associated with improved memory. J Clin Psychiatry. 2018;79:2484.
doi: 10.4088/JCP.17m11977
Maleki S, Hendrikse J, Chye Y, Caeyenberghs K, Coxon JP, Oldham S, et al. Associations of cardiorespiratory fitness and exercise with brain white matter in healthy adults: a systematic review and meta-analysis. Brain Imaging Behav. 2022;16:2402–25.
pubmed: 35773556
pmcid: 9581839
doi: 10.1007/s11682-022-00693-y
Zhu H, Zhu L, Xiong X, Dong X, Chen D, Wang J, et al. Influence of aerobic fitness on white matter integrity and inhibitory control in early adulthood: a 9-week exercise intervention. Brain Sci. 2021;11:1080.
pubmed: 34439699
pmcid: 8391670
doi: 10.3390/brainsci11081080
Dahlgren MK, Gonenc A, Sagar KA, Smith RT, Lambros AM, El-Abboud C, et al. Increased white matter coherence following three and six months of medical cannabis treatment. Cannabis Cannabinoid Res. 2022;7:827–39.
pubmed: 36367574
pmcid: 9784607
doi: 10.1089/can.2022.0097