Microarray analysis points to LMNB1 and JUN as potential target genes for predicting metastasis promotion by etoposide in colorectal cancer.
Humans
Etoposide
/ pharmacology
Colorectal Neoplasms
/ genetics
Cell Line, Tumor
Gene Expression Regulation, Neoplastic
/ drug effects
Gene Expression Profiling
Neoplasm Metastasis
Proto-Oncogene Proteins c-jun
/ metabolism
Cell Movement
/ drug effects
Antineoplastic Agents, Phytogenic
/ pharmacology
Chemotherapy
Colorectal cancer
Etoposide
JUN
LMNB1
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
10 10 2024
10 10 2024
Historique:
received:
11
04
2024
accepted:
10
09
2024
medline:
11
10
2024
pubmed:
11
10
2024
entrez:
10
10
2024
Statut:
epublish
Résumé
Etoposide is a second-line chemotherapy agent widely used for metastatic colorectal cancer. However, we discovered that etoposide treatment induced greater motility potential in four colorectal cancer cell lines. Therefore, we used microarrays to test the mRNA of these cancer cell lines to investigate the mechanisms of etoposide promoting colorectal cancer metastasis. Differentially expressed genes (DEGs) were identified by comparing the gene expression profiles in samples from etoposide-treated cells and untreated cells in all four colorectal cancer cell lines. Next, these genes went through the Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway analysis. Among the top 10 genes including the upregulated and downregulated, eight genes had close interaction according to the STRING database: FAS, HMMR, JUN, LMNB1, MLL3, PLK2, STAG1 and TBL1X. After etoposide treatment, the cell cycle, metabolism-related and senescence signaling pathways in the colorectal cancer cell lines were significantly downregulated, whereas necroptosis and oncogene pathways were significantly upregulated. We suggest that the differentially expressed genes LMNB1 and JUN are potential targets for predicting colorectal cancer metastasis. These results provide clinical guidance in chemotherapy, and offer direction for further research in the mechanism of colorectal cancer metastasis.
Identifiants
pubmed: 39390002
doi: 10.1038/s41598-024-72674-8
pii: 10.1038/s41598-024-72674-8
doi:
Substances chimiques
Etoposide
6PLQ3CP4P3
Proto-Oncogene Proteins c-jun
0
Antineoplastic Agents, Phytogenic
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
23661Subventions
Organisme : the Foundation of the committee on science and technology of Tianjin
ID : 20JCQNJC01870
Organisme : the Joint Scientific Research Project between Nankai University and Tianjin Union Medical Center
ID : 2016rmnk002
Organisme : Tianjin Key Medical Discipline (Specialty) Construction Project
ID : TJYXZDXK-044A
Informations de copyright
© 2024. The Author(s).
Références
Bouzo, B. L. et al. Sphingomyelin nanosystems loaded with uroguanylin and etoposide for treating metastatic colorectal cancer. Sci. Rep. 11(1), 17213 (2021).
doi: 10.1038/s41598-021-96578-z
Seminara, P. et al. Mitomycin C and etoposide in advanced colorectal carcinoma. A clinical and in vitro experience that focuses the problem of schedule dependence in combination therapy. Chemotherapy 53(3), 218–225 (2007).
doi: 10.1159/000100872
Zwelling, L. A. DNA topoisomerase II as a target of antineoplastic drug therapy. Cancer Metastasis Rev. 4(4), 263–276 (1985).
doi: 10.1007/BF00048092
Glisson, B. S. & Ross, W. E. DNA topoisomerase II: A primer on the enzyme and its unique role as a multidrug target in cancer chemotherapy. Pharmacol. Ther. 32(2), 89–106 (1987).
doi: 10.1016/0163-7258(87)90054-4
Chang, Y. S., Jalgaonkar, S. P., Middleton, J. D. & Hai, T. Stress-inducible gene Atf3 in the noncancer host cells contributes to chemotherapy-exacerbated breast cancer metastasis. Proc. Natl. Acad. Sci. U. S. A. 114(34), E7159-e7168 (2017).
doi: 10.1073/pnas.1700455114
Middleton, J. D., Fehlman, J., Sivakumar, S., Stover, D. G. & Hai, T. Stress-inducible gene Atf3 dictates a dichotomous macrophage activity in chemotherapy-enhanced lung colonization. Int. J. Mol. Sci. 22(14), 7356 (2021).
doi: 10.3390/ijms22147356
Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging biological principles of metastasis. Cell 168(4), 670–691 (2017).
doi: 10.1016/j.cell.2016.11.037
Kanwore, K. et al. Cancer metabolism: The role of immune cells epigenetic alteration in tumorigenesis, progression, and metastasis of glioma. Front. Immunol. 13, 831636 (2022).
doi: 10.3389/fimmu.2022.831636
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 144(5), 646–674 (2011).
doi: 10.1016/j.cell.2011.02.013
Ghandi, M. et al. Next-generation characterization of the cancer cell line encyclopedia. Nature 569(7757), 503–508 (2019).
doi: 10.1038/s41586-019-1186-3
Tan, C. & Du, X. KRAS mutation testing in metastatic colorectal cancer. World J. Gastroenterol. 18(37), 5171–5180 (2012).
De Roock, W. et al. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. Jama 304(16), 1812–1820 (2010).
doi: 10.1001/jama.2010.1535
Vogelstein, B. et al. Cancer genome landscapes. Science 339(6127), 1546–1558 (2013).
doi: 10.1126/science.1235122
Yu, W. et al. miR-17-5p promotes the invasion and migration of colorectal cancer by regulating HSPB2. J. Cancer 13(3), 918–931 (2022).
doi: 10.7150/jca.65614
Ebadfardzadeh, J. et al. Employing bioinformatics analysis to identify hub genes and microRNAs involved in colorectal cancer. Med. Oncol. 38(9), 114 (2021).
doi: 10.1007/s12032-021-01543-5
Fan, S. et al. Layered signaling regulatory networks analysis of gene expression involved in malignant tumorigenesis of non-resolving ulcerative colitis via integration of cross-study microarray profiles. PloS one 8(6), e67142 (2013).
doi: 10.1371/journal.pone.0067142
Oh, T. et al. Genome-wide identification and validation of a novel methylation biomarker, SDC2, for blood-based detection of colorectal cancer. J. Mol. Diagn. JMD 15(4), 498–507 (2013).
doi: 10.1016/j.jmoldx.2013.03.004
Lynn, R. C. et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576(7786), 293–300 (2019).
doi: 10.1038/s41586-019-1805-z
Holzer, R. G. et al. Saturated fatty acids induce c-Src clustering within membrane subdomains, leading to JNK activation. Cell 147(1), 173–184 (2011).
doi: 10.1016/j.cell.2011.08.034
Reilly, A. et al. Lamin B1 deletion in myeloid neoplasms causes nuclear anomaly and altered hematopoietic stem cell function. Cell Stem Cell 29, 577–592 (2022).
doi: 10.1016/j.stem.2022.02.010
Chatterjee, N. et al. REV1 inhibitor JH-RE-06 enhances tumor cell response to chemotherapy by triggering senescence hallmarks. Proc. Natl. Acad. Sci. U. S. A. 117(46), 28918–28921 (2020).
doi: 10.1073/pnas.2016064117
Liu, J., Qu, L., Meng, L. & Shou, C. Topoisomerase inhibitors promote cancer cell motility via ROS-mediated activation of JAK2-STAT1-CXCL1 pathway. J. Exp. Clin. Cancer Res. CR 38(1), 370 (2019).
doi: 10.1186/s13046-019-1353-2
Chen, L. et al. Fibroblast growth factor 3 promotes spontaneous mammary tumorigenesis in Tientsin albino 2 mice via the FGF3/FGFR1/STAT3 pathway. Front. Oncol. 13, 1161410 (2023).
doi: 10.3389/fonc.2023.1161410
Emmenegger, U. & Kerbel, R. S. Cancer: Chemotherapy counteracted. Nature 468(7324), 637–638 (2010).
doi: 10.1038/468637a
Zhang, Y., Chen, Z. & Li, J. The current status of treatment for colorectal cancer in China: A systematic review. Medicine 96(40), e8242 (2017).
doi: 10.1097/MD.0000000000008242
Gustavsson, B. et al. A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin. Colorectal Cancer 14(1), 1–10 (2015).
doi: 10.1016/j.clcc.2014.11.002
Lee, S. H. Chemotherapy for lung cancer in the era of personalized medicine. Tuberc. Respir. Dis. 82(3), 179–189 (2019).
doi: 10.4046/trd.2018.0068
Karagiannis, G. S. et al. Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Sci. Trans. Med. 9(397), eaan0026 (2017).
doi: 10.1126/scitranslmed.aan0026
Keklikoglou, I. et al. Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat. Cell Biol. 21(2), 190–202 (2019).
doi: 10.1038/s41556-018-0256-3
Park, J. H. et al. Fatty acid synthetase expression in triple-negative breast cancer. J. Pathol. Transl. Med. 56, 73–80 (2022).
doi: 10.4132/jptm.2021.10.27
Ma, H. et al. Pirin inhibits FAS-mediated apoptosis to support colorectal cancer survival. Adv. Sci. 11(10), e2301476 (2024).
doi: 10.1002/advs.202301476
Yang, F. et al. Fas signaling in adipocytes promotes low-grade inflammation and lung metastasis of colorectal cancer through interaction with Bmx. Cancer Lett. 522, 93–104 (2021).
doi: 10.1016/j.canlet.2021.09.024
Ou, B. et al. Plk2 promotes tumor growth and inhibits apoptosis by targeting Fbxw7/Cyclin E in colorectal cancer. Cancer Lett. 380(2), 457–466 (2016).
doi: 10.1016/j.canlet.2016.07.004
Zong, Y. et al. Combination of FOXD1 and Plk2: A novel biomarker for predicting unfavourable prognosis of colorectal cancer. J. Cell. Mol. Med. 26(12), 3471–3482 (2022).
doi: 10.1111/jcmm.17361
He, Z., Mei, L., Connell, M. & Maxwell, C. A. Hyaluronan mediated motility receptor (HMMR) encodes an evolutionarily conserved homeostasis, mitosis, and meiosis regulator rather than a hyaluronan receptor. Cells 9(4), 819 (2020).
doi: 10.3390/cells9040819
Sun, Z., Liu, C. & Cheng, S. Y. Identification of four novel prognosis biomarkers and potential therapeutic drugs for human colorectal cancer by bioinformatics analysis. J. Biomed. Res. 35(1), 21–35 (2020).
doi: 10.7555/JBR.34.20200021
Zhao, B., Wan, Z., Zhang, X. & Zhao, Y. Comprehensive analysis reveals a four-gene signature in colorectal cancer. Trans. Cancer Res. 9(3), 1395–1405 (2020).
doi: 10.21037/tcr.2020.01.18
Chang, A. et al. Recruitment of KMT2C/MLL3 to DNA damage sites mediates DNA damage responses and regulates PARP inhibitor sensitivity in cancer. Cancer Res. 81(12), 3358–3373 (2021).
doi: 10.1158/0008-5472.CAN-21-0688
Li, W. D. et al. Exome sequencing identifies an MLL3 gene germ line mutation in a pedigree of colorectal cancer and acute myeloid leukemia. Blood 121(8), 1478–1479 (2013).
doi: 10.1182/blood-2012-12-470559
Larsson, C. et al. Restoration of KMT2C/MLL3 in human colorectal cancer cells reinforces genome-wide H3K4me1 profiles and influences cell growth and gene expression. Clin. Epigenet. 12(1), 74 (2020).
doi: 10.1186/s13148-020-00863-z
Watanabe, Y. et al. Frequent alteration of MLL3 frameshift mutations in microsatellite deficient colorectal cancer. PloS one 6(8), e23320 (2011).
doi: 10.1371/journal.pone.0023320
van der Lelij, P., Lieb, S. & Jude, J. Synthetic lethality between the cohesin subunits STAG1 and STAG2 in diverse cancer contexts. eLife 6, e26980 (2017).
doi: 10.7554/eLife.26980
Saitta, C. et al. Potential role of STAG1 mutations in genetic predisposition to childhood hematological malignancies. Blood Cancer J. 12(6), 88 (2022).
doi: 10.1038/s41408-022-00683-9
Youssef, Y. et al. Transducin β-like protein 1 controls multiple oncogenic networks in diffuse large B-cell lymphoma. Haematologica 106(11), 2927–2939 (2021).
doi: 10.3324/haematol.2020.268235
Xu, H. et al. TBL1X and Flot2 form a positive feedback loop to promote metastasis in nasopharyngeal carcinoma. Int. J. Biol. Sci. 18(3), 1134–1149 (2022).
doi: 10.7150/ijbs.68091
Zhao, Y. et al. A literature review of gene function prediction by modeling gene ontology. Front. Genet. 11, 400 (2020).
doi: 10.3389/fgene.2020.00400
Teng, Y. N. et al. Etoposide triggers cellular senescence by inducing multiple centrosomes and primary cilia in adrenocortical tumor cells. Cells 10(6), 1466 (2021).
doi: 10.3390/cells10061466