The genetics of spatiotemporal variation in cortical thickness in youth.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
10 Oct 2024
10 Oct 2024
Historique:
received:
08
08
2022
accepted:
24
09
2024
medline:
11
10
2024
pubmed:
11
10
2024
entrez:
10
10
2024
Statut:
epublish
Résumé
Prior studies have shown strong genetic effects on cortical thickness (CT), structural covariance, and neurodevelopmental trajectories in childhood and adolescence. However, the importance of genetic factors on the induction of spatiotemporal variation during neurodevelopment remains poorly understood. Here, we explore the genetics of maturational coupling by examining 308 MRI-derived regional CT measures in a longitudinal sample of 677 twins and family members. We find dynamic inter-regional genetic covariation in youth, with the emergence of regional subnetworks in late childhood and early adolescence. Three critical neurodevelopmental epochs in genetically-mediated maturational coupling were identified, with dramatic network strengthening near eleven years of age. These changes are associated with statistically-significant (empirical p-value <0.0001) increases in network strength as measured by average clustering coefficient and assortativity. We then identify genes from the Allen Human Brain Atlas with similar co-expression patterns to genetically-mediated structural covariation in children. This set was enriched for genes involved in potassium transport and dendrite formation. Genetically-mediated CT-CT covariance was also strongly correlated with expression patterns for genes located in cells of neuronal origin.
Identifiants
pubmed: 39390064
doi: 10.1038/s42003-024-06956-2
pii: 10.1038/s42003-024-06956-2
doi:
Types de publication
Journal Article
Twin Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
1301Subventions
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : K01ES026840
Informations de copyright
© 2024. The Author(s).
Références
Gogtay, N. & Giedd, J. Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl Acad. Sci. USA 101, 8174–8179 (2004).
pubmed: 15148381
pmcid: 419576
doi: 10.1073/pnas.0402680101
Schmitt, J. et al. The dynamic role of genetics on cortical patterning during childhood and adolescence. Proc. Natl Acad. Sci. USA 111, 6774–6779 (2014).
pubmed: 24753564
pmcid: 4020057
doi: 10.1073/pnas.1311630111
Tamnes, C. K. et al. Development of the cerebral cortex across adolescence: a multisample study of inter-related longitudinal changes in cortical volume, surface area, and thickness. J. Neurosci. 37, 3402–3412 (2017).
pubmed: 28242797
pmcid: 5373125
doi: 10.1523/JNEUROSCI.3302-16.2017
Lyall, A. E. et al. Dynamic development of regional cortical thickness and surface area in early childhood. Cereb. Cortex 25, 2204–2212 (2015).
pubmed: 24591525
doi: 10.1093/cercor/bhu027
Gilmore, J. H. et al. Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cereb. Cortex 11, 2478–2485 (2012).
doi: 10.1093/cercor/bhr327
Raznahan, A. et al. How does your cortex grow? J. Neurosci. 31, 7174–7177 (2011).
pubmed: 21562281
pmcid: 3157294
doi: 10.1523/JNEUROSCI.0054-11.2011
Shaw, P. et al. Neurodevelopmental trajectories of the human cerebral cortex. J. Neurosci. 28, 3586–3594 (2008).
pubmed: 18385317
pmcid: 6671079
doi: 10.1523/JNEUROSCI.5309-07.2008
Sowell, E. R. et al. Longitudinal mapping of cortical thickness and brain growth in normal children. J. Neurosci. 24, 8223–8231 (2004).
pubmed: 15385605
pmcid: 6729679
doi: 10.1523/JNEUROSCI.1798-04.2004
Raznahan, A. et al. Patterns of coordinated anatomical change in human cortical development: a longitudinal neuroimaging study of maturational coupling. Neuron 72, 873–884 (2011).
pubmed: 22153381
pmcid: 4870892
doi: 10.1016/j.neuron.2011.09.028
Walhovd, K. B., Fjell, A. M., Giedd, J., Dale, A. M. & Brown, T. T. Through thick and thin: a need to reconcile contradictory results on trajectories in human cortical development. Cereb. Cortex 27, 1–10 (2016).
Mechelli, A., Friston, K. J., Frackowiak, R. S. & Price, C. J. Structural covariance in the human cortex. J. Neurosci. 25, 8303–8310 (2005).
pubmed: 16148238
pmcid: 6725541
doi: 10.1523/JNEUROSCI.0357-05.2005
Alexander-Bloch, A., Giedd, J. N. & Bullmore, E. Imaging structural co-variance between human brain regions. Nat. Rev. Neurosci. 14, 322–336 (2013).
pubmed: 23531697
pmcid: 4043276
doi: 10.1038/nrn3465
Lerch, J. P. et al. Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. NeuroImage 31, 993–1003 (2006).
pubmed: 16624590
doi: 10.1016/j.neuroimage.2006.01.042
He, Y., Chen, Z. J. & Evans, A. C. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex 17, 2407–2419 (2007).
pubmed: 17204824
doi: 10.1093/cercor/bhl149
Zielinski, B. A., Gennatas, E. D., Zhou, J. & Seeley, W. W. Network-level structural covariance in the developing brain. Proc. Natl Acad. Sci. USA 107, 18191–18196 (2010).
pubmed: 20921389
pmcid: 2964249
doi: 10.1073/pnas.1003109107
Geng, X. et al. Structural and maturational covariance in early childhood brain development. Cereb. Cortex 27, 1795–1807 (2017).
pubmed: 26874184
Vijayakumar, N. et al. The development of structural covariance networks during the transition from childhood to adolescence. Sci. Rep. 11, 1–12 (2021).
doi: 10.1038/s41598-021-88918-w
Váša, F. et al. Adolescent tuning of association cortex in human structural brain networks. Cereb. Cortex 28, 281–294 (2018).
pubmed: 29088339
doi: 10.1093/cercor/bhx249
Khundrakpam, B. S. et al. Imaging structural covariance in the development of intelligence. NeuroImage 144, 227–240 (2017).
pubmed: 27554529
doi: 10.1016/j.neuroimage.2016.08.041
Alexander-Bloch, A., Raznahan, A., Bullmore, E. & Giedd, J. The convergence of maturational change and structural covariance in human cortical networks. J. Neurosci. 33, 2889–2899 (2013).
pubmed: 23407947
pmcid: 3711653
doi: 10.1523/JNEUROSCI.3554-12.2013
Maggioni, E., Squarcina, L., Dusi, N., Diwadkar, V. A. & Brambilla, P. Twin MRI studies on genetic and environmental determinants of brain morphology and function in the early lifespan. Neurosci. Biobehav. Rev. 109, 139–149 (2020).
pubmed: 31911159
doi: 10.1016/j.neubiorev.2020.01.003
Gilmore, J. H. et al. Genetic and environmental contributions to neonatal brain structure: a twin study. Hum. Brain Mapp. 31, 1174–1182 (2010).
pubmed: 20063301
pmcid: 3109622
doi: 10.1002/hbm.20926
Peper, J. S. et al. Heritability of regional and global brain structure at the onset of puberty: a magnetic resonance imaging study in 9-year-old twin pairs. Hum. Brain Mapp. 30, 2184–2196 (2009).
pubmed: 19294640
pmcid: 6870645
doi: 10.1002/hbm.20660
Giedd, J., Schmitt, J. E. & Neale, M. C. Structural Brain Magnetic Resonance Imaging of Pediatric Twins. Hum. Brain Mapp. 28, 474–481 (2007).
Lenroot, R. K. R. K. et al. Differences in genetic and environmental influences on the human cerebral cortex associated with development during childhood and adolescence. Hum. Brain Mapp. 30, 163–174 (2009).
pubmed: 18041741
doi: 10.1002/hbm.20494
Schmitt, J. E. et al. Identification of genetically mediated cortical networks: a multivariate study of pediatric twins and siblings. Cereb. Cortex 18, 1737–1747 (2008).
pubmed: 18234689
pmcid: 2790393
doi: 10.1093/cercor/bhm211
Schmitt, J. E. et al. Variance decomposition of MRI-based covariance maps using genetically informative samples and structural equation modeling. Neuroimage 47, 56–64 (2009).
pubmed: 18672072
doi: 10.1016/j.neuroimage.2008.06.039
van Soelen, I. L. C. et al. Genetic influences on thinning of the cerebral cortex during development. Neuroimage 59, 3871–3880 (2012).
pubmed: 22155028
doi: 10.1016/j.neuroimage.2011.11.044
Brouwer, R. M. et al. Genetic variants associated with longitudinal changes in brain structure across the lifespan. Nat. Neurosci. 25, 421–432 (2022).
pubmed: 35383335
pmcid: 10040206
doi: 10.1038/s41593-022-01042-4
Teeuw, J. et al. Genetic influences on the development of cerebral cortical thickness during childhood and adolescence in a Dutch longitudinal twin sample: The brainscale study. Cereb. Cortex 29, 978–993 (2019).
pubmed: 29378010
doi: 10.1093/cercor/bhy005
Huttenlocher, P. R., & Dabholkar, A. S. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387, 167–178 (1997).
pubmed: 9336221
doi: 10.1002/(SICI)1096-9861(19971020)387:2<167::AID-CNE1>3.0.CO;2-Z
Rakic, P. Evolution of the neocortex: A perspective from developmental biology. Nat. Rev. Neurosci. 10, 724–735 (2009).
pubmed: 19763105
pmcid: 2913577
doi: 10.1038/nrn2719
Rakic, P. Specification of cerebral cortical areas. Science (1979) 241, 170–176 (1988).
Krzanowski, J. W. Principal Component Analysis in the Presence of Group Structure. J. R. Stat. Soc. Ser. C. (Appl. Stat.) 33, 164–168 (2018).
Norbom, L. B. et al. New insights into the dynamic development of the cerebral cortex in childhood and adolescence: Integrating macro- and microstructural MRI findings. Prog. Neurobiol. 204, 102109 (2021).
pubmed: 34147583
doi: 10.1016/j.pneurobio.2021.102109
Schmitt, J. E., Giedd, J. N., Raznahan, A. & Neale, M. C. The genetic contributions to maturational coupling in the human cerebrum: a longitudinal pediatric twin imaging study. Cereb. Cortex 28, 3184–3191 (2018).
pubmed: 28968785
doi: 10.1093/cercor/bhx190
Irimia, A. & Van Horn, J. D. The structural, connectomic and network covariance of the human brain. Neuroimage 66, 489–499 (2013).
pubmed: 23116816
doi: 10.1016/j.neuroimage.2012.10.066
Yee, Y. et al. Structural covariance of brain region volumes is associated with both structural connectivity and transcriptomic similarity. Neuroimage 179, 357–372 (2018).
pubmed: 29782994
doi: 10.1016/j.neuroimage.2018.05.028
French, L. & Pavlidis, P. Relationships between gene expression and brain wiring in the adult rodent brain. PLoS Comput Biol. 7, e1001049 (2011).
pubmed: 21253556
pmcid: 3017102
doi: 10.1371/journal.pcbi.1001049
Fjell, A. M. et al. Development and aging of cortical thickness correspond to genetic organization patterns. Proc. Natl Acad. Sci. USA 112, 1–6 (2015).
doi: 10.1073/pnas.1508831112
Kang, H. J. et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483–489 (2011).
pubmed: 22031440
pmcid: 3566780
doi: 10.1038/nature10523
Fair, D. A. et al. The maturing architecture of the brain’s default network. Proc. Natl Acad. Sci. USA 105, 4028–4032 (2008).
pubmed: 18322013
pmcid: 2268790
doi: 10.1073/pnas.0800376105
Petanjek, Z. et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc. Natl Acad. Sci. USA 108, 13281–13286 (2011).
pubmed: 21788513
pmcid: 3156171
doi: 10.1073/pnas.1105108108
Silbereis, J. C., Pochareddy, S., Zhu, Y., Li, M. & Sestan, N. The Cellular and Molecular Landscapes of the Developing Human Central Nervous System. Neuron 89, 268 (2016).
doi: 10.1016/j.neuron.2015.12.008
Kalinka, A. T. et al. Gene expression divergence recapitulates the developmental hourglass model. Nature 468, 811–816 (2010).
pubmed: 21150996
doi: 10.1038/nature09634
Domazet-Lošo, T. & Tautz, D. A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature 468, 815–819 (2010).
pubmed: 21150997
doi: 10.1038/nature09632
Li, M. et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science (1979) 362, eaat7615 (2018).
Paus, T., Keshavan, M. & Giedd, J. Why do many psychiatric disorders emerge during adolescence? Nat. Rev. Neurosci. 9, 947–957 (2008).
pubmed: 19002191
pmcid: 2762785
doi: 10.1038/nrn2513
Smoller, J. W. et al. Psychiatric genetics and the structure of psychopathology. Mol. Psychiatry 24, 409–420 (2019).
pubmed: 29317742
doi: 10.1038/s41380-017-0010-4
Romero-Garcia, R. et al. Structural covariance networks are coupled to expression of genes enriched in supragranular layers of the human cortex. Neuroimage 171, 256–267 (2018).
pubmed: 29274746
doi: 10.1016/j.neuroimage.2017.12.060
Valk, S. L. et al. Shaping brain structure: genetic and phylogenetic axes of macroscale organization of cortical thickness. Sci. Adv. 6, 1–15 (2020).
doi: 10.1126/sciadv.abb3417
Burt, J. B. et al. Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nat. Neurosci. 21, 1251–1259 (2018).
pubmed: 30082915
pmcid: 6119093
doi: 10.1038/s41593-018-0195-0
Giedd, J. N. et al. Child psychiatry branch of the national institute of mental health longitudinal structural magnetic resonance imaging study of human brain development. Neuropsychopharmacology 40, 43–49 (2015).
pubmed: 25195638
doi: 10.1038/npp.2014.236
Shin, J. et al. Cell-specific gene-expression profiles and cortical thickness in the human brain. Cereb. Cortex 28, 3267–3277 (2018).
pubmed: 28968835
doi: 10.1093/cercor/bhx197
Cotella, D. et al. Toxic role of K + channel oxidation in mammalian brain. J. Neurosci. 32, 4133–4144 (2012).
pubmed: 22442077
pmcid: 6621216
doi: 10.1523/JNEUROSCI.6153-11.2012
Fu, J., Liu, F., Qin, W., Xu, Q. & Yu, C. Individual-level identification of gene expression associated with volume differences among neocortical areas. Cereb. Cortex 30, 3655–3666 (2020).
pubmed: 32186704
doi: 10.1093/cercor/bhz333
Richiardi, J. et al. Correlated gene expression supports synchronous activity in brain networks. Science (1979) 348, 1241–1244 (2015).
Wang, G. Z. et al. Correspondence between resting-state activity and brain gene expression. Neuron 88, 659–666 (2015).
pubmed: 26590343
pmcid: 4694561
doi: 10.1016/j.neuron.2015.10.022
Maes, H. H. M. et al. Genetic and environmental variation in continuous phenotypes in the ABCD Study®. Behav. Genet. 53, 1–24 (2023).
pubmed: 36357558
doi: 10.1007/s10519-022-10123-w
Masouleh, S. K. et al. Influence of processing pipeline on cortical thickness measurement. Cereb. Cortex 30, 5014–5027 (2020).
doi: 10.1093/cercor/bhaa097
Han, X. et al. Reliability of MRI-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade and manufacturer. Neuroimage 32, 180–194 (2006).
pubmed: 16651008
doi: 10.1016/j.neuroimage.2006.02.051
Blumenthal, J. D., Zijdenbos, A., Molloy, E. & Giedd, J. N. Motion artifact in magnetic resonance imaging: implications for automated analysis. Neuroimage 16, 89–92 (2002).
pubmed: 11969320
doi: 10.1006/nimg.2002.1076
Alexander-Bloch, A. et al. Subtle in-scanner motion biases automated measurement of brain anatomy from in vivo MRI. Hum. Brain Mapp. 37, 2385–2397 (2016).
pubmed: 27004471
pmcid: 5110234
doi: 10.1002/hbm.23180
Rosen, A. F. G. et al. Quantitative assessment of structural image quality. Neuroimage 169, 407–418 (2018).
pubmed: 29278774
doi: 10.1016/j.neuroimage.2017.12.059
Ad-Dab’bagh, Y. et al. The CIVET image-processing environment: a fully automated comprehensive pipeline for anatomcal neuroimaging research. in Proceedings of the 12th Annual Meeting of the Organization for Human Brain Mapping (ed. Corbetta, M.) (2006).
Collins, D., Neelin, P., Peters, T. & Evans, A. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J. Comput Assist Tomogr. 18, 192–205 (1994).
pubmed: 8126267
doi: 10.1097/00004728-199403000-00005
Sled, J. G., Zijdenbos, A. P. & Evans, A. C. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17, 87–97 (1998).
pubmed: 9617910
doi: 10.1109/42.668698
Zijdenbos, A. P., Forghani, R. & Evans, A. C. Automatic ‘pipeline’ analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans. Med. Imaging 21, 1280–1291 (2002).
pubmed: 12585710
doi: 10.1109/TMI.2002.806283
Kim, J. S. et al. Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 27, 210–221 (2005).
pubmed: 15896981
doi: 10.1016/j.neuroimage.2005.03.036
MacDonald, D., Kabani, N., Avis, D., & Evans, A. C. Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12, 340–356 (2000).
pubmed: 10944416
doi: 10.1006/nimg.1999.0534
Robbins, S., Evans, A. C., Collins, D. L. & Whitesides, S. Tuning and comparing spatial normalization methods. Med. Image Anal. 8, 311–323 (2004).
pubmed: 15450225
doi: 10.1016/j.media.2004.06.009
Collins, D. L., Holmes, C. J., Peters, T. M. & Evans, A. C. Automatic 3-D model-based neuroanatomical segmentation. Hum. Brain Mapp. 3, 190–208 (1995).
doi: 10.1002/hbm.460030304
Lerch, J. & Evans, A. Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage 24, 163–173 (2005).
pubmed: 15588607
doi: 10.1016/j.neuroimage.2004.07.045
Collins, D., Zijdenbos, A., Barre, W. & Evans, A. ANIMAL-INSECT: improved cortical structure segmentation. in Proceedings of the Annual Conference on Information Processing in Medical Imaging (IPMI) 210–223 (Springer, 1999).
Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).
pubmed: 16530430
doi: 10.1016/j.neuroimage.2006.01.021
Romero-Garcia, R., Atienza, M., Clemmensen, L. H. & Cantero, J. L. NeuroImage Effects of network resolution on topological properties of human neocortex. Neuroimage 59, 3522–3532 (2012).
pubmed: 22094643
doi: 10.1016/j.neuroimage.2011.10.086
R. Core Team. R: A Language And Environment For Statistical Computing (2020).
Boker, S., Neale, M., Maes, H., Wilde, M. & Spiegel, M. OpenMx: an open source extended structural equation modeling framework. Psychometrika 76, 306–317 (2011).
pubmed: 23258944
pmcid: 3525063
doi: 10.1007/s11336-010-9200-6
Neale, M. C. et al. OpenMx 2.0: extended structural equation and statistical modeling. Psychometrika 81, 535–549 (2016).
pubmed: 25622929
doi: 10.1007/s11336-014-9435-8
Neale, M. & McArdle, J. Structured latent growth curves for twin data. Twin Res. 3, 165–177 (2000).
pubmed: 11035490
doi: 10.1375/twin.3.3.165
McArdle, J. J. et al. Structural modeling of dynamic changes in memory and brain structure using longitudinal data from the normative aging study. J. Gerontol. B Psychol. Sci. Soc. Sci. 59, P294–P304 (2004).
pubmed: 15576857
doi: 10.1093/geronb/59.6.P294
Mcardle, A. J. J. & Epstein, D. Latent growth curves within developmental structural equation models. Child Dev. 58, 110–133 (2013).
doi: 10.2307/1130295
Mehta, P. & West, S. Putting the individual back into individual growth curves. Psychol. Methods 5, 23–43 (2000).
pubmed: 10937321
doi: 10.1037/1082-989X.5.1.23
Neale, M. M. C. & Cardon, L. R. L. Methodology for Genetic Studies of Twins and Families. Methodology for Genetic Studies of Twins and Families (Kluver, 1992).
Dominicus, A., Skrondal, A., Gjessing, H. K., Pedersen, N. L. & Palmgren, J. Likelihood ratio tests in behavioral genetics: problems and solutions. Behav. Genet. 36, 331–340 (2006).
pubmed: 16474914
doi: 10.1007/s10519-005-9034-7
Visscher, P. M. Power of the classical twin design revisited. Twin Res. 7, 505–512 (2004).
pubmed: 15527666
doi: 10.1375/1369052042335250
Liu, F., Choi, D., Xie, L. & Roeder, K. Global spectral clustering in dynamic networks. Proc. Natl Acad. Sci. USA 115, 927–932 (2018).
pubmed: 29339482
pmcid: 5798376
doi: 10.1073/pnas.1718449115
Lee, D. & Seung, H. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999).
pubmed: 10548103
doi: 10.1038/44565
Brunet, J. P., Tamayo, P., Golub, T. R. & Mesirov, J. P. Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl Acad. Sci. USA 101, 4164–4169 (2004).
pubmed: 15016911
pmcid: 384712
doi: 10.1073/pnas.0308531101
Kao, C. H. et al. Functional brain network reconfiguration during learning in a dynamic environment. Nat. Commun. 11, 1–13 (2020).
doi: 10.1038/s41467-020-15442-2
Sotiras, A., Resnick, S. M. & Davatzikos, C. Finding imaging patterns of structural covariance via Non-Negative Matrix Factorization. Neuroimage 108, 1–16 (2015).
pubmed: 25497684
doi: 10.1016/j.neuroimage.2014.11.045
Phalen, H., Coffman, B. A., Ghuman, A., Sejdić, E. & Salisbury, D. F. Non-negative matrix factorization reveals resting-state cortical alpha network abnormalities in the first-episode schizophrenia spectrum. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 961–970 (2020).
pubmed: 31451387
Gaujoux, R. & Seoighe, C. A flexible R package for nonnegative matrix factorization. BMC Bioinform. 11, 367 (2010).
doi: 10.1186/1471-2105-11-367
Boutsidis, C. & Gallopoulos, E. SVD based initialization: A head start for nonnegative matrix factorization. Pattern Recognit. 41, 1350–1362 (2008).
doi: 10.1016/j.patcog.2007.09.010
Berry, M. W., Browne, M., Langville, A. N., Pauca, V. P. & Plemmons, R. J. Algorithms and applications for approximate nonnegative matrix factorization. Comput Stat. Data Anal. 52, 155–173 (2007).
doi: 10.1016/j.csda.2006.11.006
Hutchins, L. N., Murphy, S. M., Singh, P. & Graber, J. H. Position-dependent motif characterization using non-negative matrix factorization. Bioinformatics 24, 2684–2690 (2008).
pubmed: 18852176
pmcid: 2639279
doi: 10.1093/bioinformatics/btn526
Csárdi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 1695, 1695 (2006).
Barrat, A., Barthé Lemy †, M., Pastor-Satorras, R. & Vespignani, A. The Architecture of Complex Weighted Networks. www.iata.org (2004).
Foster, J. G., Foster, D. V., Grassberger, P. & Paczuski, M. Edge direction and the structure of networks. Proc. Natl Acad. Sci. USA 107, 10815–10820 (2010).
pubmed: 20505119
pmcid: 2890716
doi: 10.1073/pnas.0912671107
Newman, M. E. J. Assortative Mixing in Networks. Phys. Rev. Lett. 89, 208701 (2002).
pubmed: 12443515
doi: 10.1103/PhysRevLett.89.208701
Bassett, D. S. et al. Hierarchical organization of human cortical networks in health and Schizophrenia. J. Neurosci. 28, 9239–9248 (2008).
pubmed: 18784304
pmcid: 2878961
doi: 10.1523/JNEUROSCI.1929-08.2008
Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).
pubmed: 22996553
pmcid: 4243026
doi: 10.1038/nature11405
Arloth, J., Bader, D. M., Röh, S. & Altmann, A. Re-Annotator: annotation pipeline for microarray probe sequences. PLoS ONE 10, 1–13 (2015).
doi: 10.1371/journal.pone.0139516
Quackenbush, J. Microarray data normalization and transformation. Nat. Genet. 32, 496–501 (2002).
pubmed: 12454644
doi: 10.1038/ng1032
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).
pubmed: 25867923
pmcid: 4430369
doi: 10.1038/nbt.3192
Barshan, E., Ghodsi, A., Azimifar, Z. & Zolghadri Jahromi, M. Supervised principal component analysis: visualization, classification and regression on subspaces and submanifolds. Pattern Recognit. 44, 1357–1371 (2011).
doi: 10.1016/j.patcog.2010.12.015
Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).
pubmed: 30944313
pmcid: 6447622
doi: 10.1038/s41467-019-09234-6
Morgan, S. E., Seidlitz, J., Whitaker, K. J., Romero-garcia, R. & Clifton, N. E. Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of schizophrenia-related genes. Proc. Natl Acad. Sci. USA 116, 9604–9609 (2019).
pubmed: 31004051
pmcid: 6511038
doi: 10.1073/pnas.1820754116
Bader, G. & Hogue, C. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 4, 2 (2003).
doi: 10.1186/1471-2105-4-2
Seidlitz, J. et al. Transcriptomic and cellular decoding of regional brain vulnerability to neurogenetic disorders. Nat. Commun. 11, 1–14 (2020).
Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2016).
pubmed: 26687838
doi: 10.1016/j.neuron.2015.11.013
Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).
pubmed: 29227469
doi: 10.1038/nbt.4038
Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017).
pubmed: 28846088
pmcid: 5623139
doi: 10.1038/nmeth.4407
Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level. Proc. Natl Acad. Sci. USA 112, 7285–7290 (2015).
pubmed: 26060301
pmcid: 4466750
doi: 10.1073/pnas.1507125112
Schmitt, J. E., Alexander-Bloch, A., Sleiditz, J., Raznahan, A. & Neale, M. C. Data From: the genetics of spatiotemporal variation in cortical thickness in youth [dataset]. Dryad https://doi.org/10.5061/dryad.7h44j103r (2024).