Petrous bones versus tooth cementum for genetic analysis of aged skeletal remains.
Missing person identification
Petrous bone
STR typing
Sampling strategy
Skeletal remains
Tooth cementum
Journal
International journal of legal medicine
ISSN: 1437-1596
Titre abrégé: Int J Legal Med
Pays: Germany
ID NLM: 9101456
Informations de publication
Date de publication:
12 Oct 2024
12 Oct 2024
Historique:
received:
13
08
2024
accepted:
28
09
2024
medline:
12
10
2024
pubmed:
12
10
2024
entrez:
11
10
2024
Statut:
aheadofprint
Résumé
A proper sampling strategy is important to obtain sufficient DNA for successful identification of aged skeletal remains. The petrous bone is the highest DNA-yielding bone in the human body. Because DNA extraction from the petrous bone is very destructive, the demand for other DNA sources is significant. When investigating aged skeletal remains, teeth are usually preserved, and recent studies have shown that DNA in teeth can be best preserved in the dental cementum that surrounds the surface of the tooth root. To extract DNA from the surface of the tooth root, a nondestructive method without grinding was used. Petrous bones and teeth from 60 archaeological adult skeletons were analyzed. The DNA yield, degree of DNA degradation, and STR typing success were compared, and the results showed higher DNA yield and higher amplification success in petrous bones, despite higher degradation of petrous bones' DNA. The greater success of petrous bones is associated with poorly preserved DNA in a quarter of the teeth analyzed. When teeth with badly preserved DNA were excluded from the statistical analysis, no differences in the success of STR loci amplification were observed even if DNA yield was higher in petrous bones, which can be explained by greater degradation of petrous bones' DNA. When teeth are well preserved, they can be used for genetically analyzing aged skeletal remains instead of petrous bones, and a rapid nondestructive extraction method can be applied to shorten the identification process and to physically preserve the biological specimen.
Identifiants
pubmed: 39394478
doi: 10.1007/s00414-024-03346-5
pii: 10.1007/s00414-024-03346-5
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Javna Agencija za Raziskovalno Dejavnost RS
ID : J3-3080
Informations de copyright
© 2024. The Author(s).
Références
Gamba C, Jones ER, Teasdale MD, McLaughlin RL, Gonzalez-Fortes G, Mattiangeli V et al (2014) Genome flux and stasis in a five millennium transect of European prehistory. Nat Commun 5:5257
doi: 10.1038/ncomms6257
pubmed: 25334030
Haarkötter C, Vinueza-Espinosa DC, Gálvez X, Saiz M, Medina-Lozano MI, Lorente JA et al (2023) A comparison between petrous bone and tooth, femur and tibia DNA analysis from degraded skeletal remains. Electrophoresis 44:1559–1568
doi: 10.1002/elps.202300097
pubmed: 37469183
Parker C, Rohrlach AB, Friederich S, Nagel S, Meyer M, Krause J et al (2020) A systematic investigation of human DNA preservation in medieval skeletons. Sci Rep 10:18225. https://doi.org/10.1038/s41598-020-75163-w
doi: 10.1038/s41598-020-75163-w
pubmed: 33106554
pmcid: 7588426
Pilli E, Vai S, Caruso M, D’Errico G, Berti A, Caramelli D (2018) Neither femur nor tooth: Petrous bone for identifying archaeological bone samples via forensic approach. Forensic Sci Int 283:144–149
doi: 10.1016/j.forsciint.2017.12.023
pubmed: 29301114
Pinhasi R, Fernandes D, Sirak K, Novak M, Connell S, Alpaslan-Roodenberg S et al (2015) Optimal ancient DNA yields from the inner ear part of the human petrous bone. PLoS ONE 10:e0129102
doi: 10.1371/journal.pone.0129102
pubmed: 26086078
pmcid: 4472748
Rasmussen M, Anzick SL, Waters MR, Skoglund P, DeGiorgio M, Stafford TW Jr et al (2014) The genome of a Late Pleistocene human from a Clovis burial site in western Montana. Nature 506:225–229
doi: 10.1038/nature13025
pubmed: 24522598
pmcid: 4878442
Sirak KA, Fernandes DM, Cheronet O, Novak M, Gamarra B, Balassa T et al (2007) A minimally-invasive method for sampling human petrous bones from the cranial base for ancient DNA analysis. Biotechniques 62:283–289
doi: 10.2144/000114558
Zupanič Pajnič I, Geršak ŽM, Leskovar T, Črešnar M (2023) Kinship analysis of 5th- to 6th-century skeletons of Romanized indigenous people from the Bled-Pristava archaeological site. Forensic Sci Int Genetics 65:102886. https://doi.org/10.1016/j.fsigen.2023.102886
doi: 10.1016/j.fsigen.2023.102886
Zupanič Pajnič I, Mlinšek T, Počivavšek T, Leskovar T (2023) Genetic sexing of subadult skeletal remains. Sci Rep 13:20463. https://doi.org/10.1038/s41598-023-47836-9
doi: 10.1038/s41598-023-47836-9
pubmed: 37993531
pmcid: 10665466
Gaudio D, Fernandes DM, Schmit R, Cheronet O, Mazzarelli D, Mattia M et al (2019) Genome-wide DNA from degraded petrous bones and the assessment of sex and probable geographic origins of forensic cases. Sci Rep 9:8226. https://doi.org/10.1038/s41598-019-44638-w
doi: 10.1038/s41598-019-44638-w
pubmed: 31160682
pmcid: 6547751
Zupanič Pajnič I, Petaros A, Balažic J, Geršak K (2016) Searching for the mother missed since the Second World War. J Forensic Legal Med 44:138–142
doi: 10.1016/j.jflm.2016.10.015
Pinhasi R, Fernandes DM, Sirak K, Cheronet O (2019) Isolating the human cochlea to generate bone powder for ancient DNA analysis. Nat Protoc 14:1194–1205
doi: 10.1038/s41596-019-0137-7
pubmed: 30842617
Golob A, Kravanja P, Concato M, Leskovar T, Zupanič PI (2024) Searching for alternative high DNA-yielding bone types for DNA analysis of aged skeletal remains. Forensic Sci Int 362:112184. https://doi.org/10.1016/j.forsciint.2024.112184
doi: 10.1016/j.forsciint.2024.112184
pubmed: 39098141
Damgaard PB, Margaryan A, Schroeder H, Orlando L, Willerslev E, Allentoft E (2015) Improving access to endogenous DNA in ancient bones and teeth. Sci Reports 5:11184
Hansen HB, Damgaard PB, Margaryan A, Stenderup J, Lynnerup N, Willerslev E et al (2017) Comparing Ancient DNA Preservation in Petrous Bone and Tooth Cementum. PLoS ONE 12:e0170940
doi: 10.1371/journal.pone.0170940
pubmed: 28129388
pmcid: 5271384
Correa H, Carneiro L, Yoshitake N, Carneiro A, Bizo G (2019) Powder-free DNA extraction from post-mortem teeth. J Forensic Res 10:448. https://doi.org/10.13140/RG.2.2.21490.66242
doi: 10.13140/RG.2.2.21490.66242
Zupanič PI (2021) Identification of a Slovenian prewar elite couple killed in the Second World War. Forensic Sci Int 327:110994. https://doi.org/10.1016/j.forsciint.2021.110994
doi: 10.1016/j.forsciint.2021.110994
Adler CJ, Haak W, Donlon D, Cooper A (2011) Survival and recovery of DNA from ancient teeth and bones. J Archaeol Sci 38:956–964
doi: 10.1016/j.jas.2010.11.010
Cafiero C, Re A, Stigliano E, Bassotti E, Moroni R, Grippaudo C (2019) Optimization of DNA extraction from dental remains. Electrophoresis 40:1820–1823
doi: 10.1002/elps.201900142
pubmed: 31111969
pmcid: 6771583
Meyer M, Wiese M, Bruchhaus H, Claussen M, Klein A (2000) Extraction and amplification of authentic DNA from ancient human remains. Forensic Sci Int 113:87–90
doi: 10.1016/S0379-0738(00)00220-6
pubmed: 10978606
Correa HSD, Pedro FLM, Volpato LER, Pereira TM, Filho GS, Borges AH (2017) Forensic DNA typing from teeth using demineralized root tips. Forensic Sci Int 280:164–168
doi: 10.1016/j.forsciint.2017.10.003
pubmed: 29059547
Higgins D, Jeremy JA (2013) Teeth as a source of DNA for forensic identification of human remain: A Review. Sci and Justice 53:433–441
doi: 10.1016/j.scijus.2013.06.001
Yamamoto T, Hasegawa T, Hongo H, Amizuka N (2016) Histology of human cementum: its structure, function, and development. Jpn Dent Sci Rev 52:63–74
doi: 10.1016/j.jdsr.2016.04.002
pubmed: 28408958
pmcid: 5390338
Zander HA, Hürzeler B (1958) Continuous cementum apposition. J Dent Res 37:1035–1044
doi: 10.1177/00220345580370060301
pubmed: 13611117
Nitzan DW, Michaeli Y, Weinreb M, Azaz B (1986) The effect of aging on tooth morphology: a study on impacted teeth. Oral Surg Oral Med Oral Pathol 61:54–60
doi: 10.1016/0030-4220(86)90203-3
pubmed: 3456141
Harney E, Cheronet O, Fernandes DM, Sirak K, Mah M, Bernardos R et al (2021) A minimally destructive protocol for DNA extraction from ancient teeth. Genome Res 31:472–483
doi: 10.1101/gr.267534.120
pubmed: 33579752
pmcid: 7919446
Zupanič Pajnič I (2016) Extraction of DNA from human skeletal material. In: Goodwin W (ed) Forensic DNA typing protocols, methods in molecular biology, vol 1420. Springer Science & Business Media, LLC, New York, pp 89–108
Qiagen Companies (2021) EZ1&2 DNA investigator kit handbook. Hilden
Pääbo S, Poinar H, Serre D, Jaenicke-Després V, Hebler J, Rohland N et al (2004) Genetic Analyses from Ancient DNA. Annu Rev Genet 38:645–679
doi: 10.1146/annurev.genet.37.110801.143214
pubmed: 15568989
Parson W, Gusmão L, Hares DR, Irwin JA, Mayr WR, Morling N et al (2014) DNA Commission of the International Society for Forensic Genetics: Revised and extended guidelines for mitochondrial DNA typing. Forensic Sci Int Genet 13:134–142
doi: 10.1016/j.fsigen.2014.07.010
pubmed: 25117402
Rohland N, Hofreiter M (2007) Ancient DNA extraction from bones and teeth. Nat Protoc 2:1756–1762
doi: 10.1038/nprot.2007.247
pubmed: 17641642
Promega Corporation (2022) PowerQuant System Technical Manual. Madison, WI
Zupanič Pajnič I, Leskovar T, Črešnar M (2023) Improving kinship probability in analysis of ancient skeletons using identity SNPs and MPS technology. Int J Legal Med 137:1007–1015. https://doi.org/10.1007/s00414-023-03003-3
doi: 10.1007/s00414-023-03003-3
pubmed: 37127762
Promega Corporation (2021) PowerPlex ESI 17 fast system for use on the applied biosystems genetic analyzers. Madison
Carpenter J, Bithell J (2000) Bootstrap con"dence intervals: when, which, what? A practical guide for medical statisticians. Statist Med 19:1141–1164
doi: 10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
DiCiccio TJ, Efron B (1996) Bootstrap Confidence Intervals. Stat Sci 11:189–228
doi: 10.1214/ss/1032280214
Gardner MJ, Altman DG (1986) Confidence intervals rather than P values: estimation rather than hypothesis testing. Br Med J 292:746–750
doi: 10.1136/bmj.292.6522.746
Ewing MM, Thompson JM, McLaren RS, Purpero VM, Thomas KJ, Dobrowski PA et al (2016) Human DNA quantifcation and sample assessment: developmental validation of the PowerQuant system. Forensic Sci Int Genet 23:166–177
doi: 10.1016/j.fsigen.2016.04.007
pubmed: 27206225
Parsons TJ, Huel RML, Bajunović Z, Rizvić A (2019) Large scale DNA identification: The ICMP experience. Forensic Sci Int Genet 38:236–244
doi: 10.1016/j.fsigen.2018.11.008
pubmed: 30469017
Austin RM, Sholts SB, Williams L, Kistler L, Hofman CA (2019) Opinion: to curate the molecular past, museums need a carefully considered set of best practices. Proc Natl Acad Sci U S A 116:1471–1474
doi: 10.1073/pnas.1822038116
pubmed: 30696775
pmcid: 6358678
Hofreiter M (2012) Nondestructive DNA extraction from museum specimens. In: Shapiro B, Hofreiter M (eds) Ancient DNA: methods and protocols. Springer, New York, pp 93–100
doi: 10.1007/978-1-61779-516-9_13
Jørkov ML, Heinemeier J, Lynnerup N (2009) The petrous bone–a new sampling site for identifying early dietary patterns in stable isotopic studies. Am J Phys Anthropol 138:199–209
doi: 10.1002/ajpa.20919
pubmed: 18773469
Ponce de León MS, Koesbardiati T, Weissmann JD, Milella M, Reyna-Blanco CS, Suwa G, Kondo O, Malaspinas A-S, White TD, Zollikofer CPE et al (2018) Human bony labyrinth is an indicator of population history and dispersal from Africa. Proc Natl Acad Sci U S A 115:4128–4133
doi: 10.1073/pnas.1717873115
pubmed: 29610337
pmcid: 5910833
Alpaslan-Roodenberg S, Anthony D, Babiker H, Banffy E, Booth T, Capone P et al (2021) Ethics of DNA research on human remains: five globally applicable guidelines. Nature 599:41–46
doi: 10.1038/s41586-021-04008-x
pubmed: 34671160
pmcid: 7612683
Gilbert M, Hansen A, Willerslev E, Turner-Walker G, Collins M (2006) Insights into the processes behind the contamination of degraded human teeth and bone samples with exogenous sources of DNA. Int J Ostoarchaeol 16:156–164
doi: 10.1002/oa.832