A comprehensive proteogenomic pipeline for neoantigen discovery to advance personalized cancer immunotherapy.
Journal
Nature biotechnology
ISSN: 1546-1696
Titre abrégé: Nat Biotechnol
Pays: United States
ID NLM: 9604648
Informations de publication
Date de publication:
11 Oct 2024
11 Oct 2024
Historique:
received:
04
12
2023
accepted:
04
09
2024
medline:
12
10
2024
pubmed:
12
10
2024
entrez:
11
10
2024
Statut:
aheadofprint
Résumé
The accurate identification and prioritization of antigenic peptides is crucial for the development of personalized cancer immunotherapies. Publicly available pipelines to predict clinical neoantigens do not allow direct integration of mass spectrometry immunopeptidomics data, which can uncover antigenic peptides derived from various canonical and noncanonical sources. To address this, we present an end-to-end clinical proteogenomic pipeline, called NeoDisc, that combines state-of-the-art publicly available and in-house software for immunopeptidomics, genomics and transcriptomics with in silico tools for the identification, prediction and prioritization of tumor-specific and immunogenic antigens from multiple sources, including neoantigens, viral antigens, high-confidence tumor-specific antigens and tumor-specific noncanonical antigens. We demonstrate the superiority of NeoDisc in accurately prioritizing immunogenic neoantigens over recent prioritization pipelines. We showcase the various features offered by NeoDisc that enable both rule-based and machine-learning approaches for personalized antigen discovery and neoantigen cancer vaccine design. Additionally, we demonstrate how NeoDisc's multiomics integration identifies defects in the cellular antigen presentation machinery, which influence the heterogeneous tumor antigenic landscape.
Identifiants
pubmed: 39394480
doi: 10.1038/s41587-024-02420-y
pii: 10.1038/s41587-024-02420-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
De Mattos-Arruda, L. et al. Neoantigen prediction and computational perspectives towards clinical benefit: recommendations from the ESMO Precision Medicine Working Group. Ann. Oncol. 31, 978–990 (2020).
pubmed: 32610166
doi: 10.1016/j.annonc.2020.05.008
Chong, C., Coukos, G. & Bassani-Sternberg, M. Identification of tumor antigens with immunopeptidomics. Nat. Biotechnol. 40, 175–188 (2022).
pubmed: 34635837
doi: 10.1038/s41587-021-01038-8
Rieder, D. et al. nextNEOpi: a comprehensive pipeline for computational neoantigen prediction. Bioinformatics 38, 1131–1132 (2022).
pubmed: 34788790
doi: 10.1093/bioinformatics/btab759
Schenck, R. O., Lakatos, E., Gatenbee, C., Graham, T. A. & Anderson, A. R. A. NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline. BMC Bioinformatics 20, 264 (2019).
pubmed: 31117948
pmcid: 6532147
doi: 10.1186/s12859-019-2876-4
Tang, Y. et al. TruNeo: an integrated pipeline improves personalized true tumor neoantigen identification. BMC Bioinformatics 21, 532 (2020).
pubmed: 33208106
pmcid: 7672179
doi: 10.1186/s12859-020-03869-9
Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).
pubmed: 21436444
doi: 10.1126/science.1203486
Anagnostou, V. et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 7, 264–276 (2017).
pubmed: 28031159
doi: 10.1158/2159-8290.CD-16-0828
Garrido, F. MHC/HLA class I loss in cancer cells. Adv. Exp. Med. Biol. 1151, 15–78 (2019).
pubmed: 31140106
doi: 10.1007/978-3-030-17864-2_2
Vita, R. et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 47, D339–D343 (2019).
pubmed: 30357391
doi: 10.1093/nar/gky1006
Muller, M. et al. Machine learning methods and harmonized datasets improve immunogenic neoantigen prediction. Immunity 56, 2650–2663 (2023).
pubmed: 37816353
doi: 10.1016/j.immuni.2023.09.002
Harari, A. et al. A personalized neoantigen vaccine in combination with platinum-based chemotherapy induces a T-cell response coinciding with a complete response in endometrial carcinoma. Cancers 13, 5801 (2021).
pubmed: 34830955
pmcid: 8616532
doi: 10.3390/cancers13225801
Kurtzer, G. M., Sochat, V. & Bauer, M. W. Singularity: scientific containers for mobility of compute. PLoS ONE 12, e0177459 (2017).
pubmed: 28494014
pmcid: 5426675
doi: 10.1371/journal.pone.0177459
Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).
pubmed: 23396013
pmcid: 3833702
doi: 10.1038/nbt.2514
Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).
pubmed: 22300766
doi: 10.1101/gr.129684.111
Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10.11–11.10.33 (2013).
Samstein, R. M. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51, 202–206 (2019).
pubmed: 30643254
pmcid: 6365097
doi: 10.1038/s41588-018-0312-8
Wells, D. K. et al. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction. Cell 183, 818–834.e13 (2020).
pubmed: 33038342
pmcid: 7652061
doi: 10.1016/j.cell.2020.09.015
Gartner, J. J. et al. A machine learning model for ranking candidate HLA class I neoantigens based on known neoepitopes from multiple human tumor types. Nat. Cancer 2, 563–574 (2021).
pubmed: 34927080
pmcid: 8680775
doi: 10.1038/s43018-021-00197-6
Zhou, C. et al. pTuneos: prioritizing tumor neoantigens from next-generation sequencing data. Genome Med. 11, 67 (2019).
pubmed: 31666118
pmcid: 6822339
doi: 10.1186/s13073-019-0679-x
Hundal, J. et al. pVACtools: a computational toolkit to identify and visualize cancer neoantigens. Cancer Immunol. Res. 8, 409–420 (2020).
pubmed: 31907209
pmcid: 7056579
doi: 10.1158/2326-6066.CIR-19-0401
Hundal, J. et al. pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens. Genome Med. 8, 11 (2016).
pubmed: 26825632
pmcid: 4733280
doi: 10.1186/s13073-016-0264-5
Muller-Coan, B. G., Caetano, B. F. R., Pagano, J. S. & Elgui de Oliveira, D. Cancer progression goes viral: the role of oncoviruses in aggressiveness of malignancies. Trends Cancer 4, 485–498 (2018).
pubmed: 29937047
doi: 10.1016/j.trecan.2018.04.006
Sayers, E. W. et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 50, D20–D26 (2022).
pubmed: 34850941
doi: 10.1093/nar/gkab1112
Liu, Q., Shuai, M. & Xia, Y. Knockdown of EBV-encoded circRNA circRPMS1 suppresses nasopharyngeal carcinoma cell proliferation and metastasis through sponging multiple miRNAs. Cancer Manag. Res. 11, 8023–8031 (2019).
pubmed: 31695488
pmcid: 6717849
doi: 10.2147/CMAR.S218967
Arnaud, M. et al. Sensitive identification of neoantigens and cognate TCRs in human solid tumors. Nat. Biotechnol. 40, 656–660 (2021).
pubmed: 34782741
pmcid: 9110298
doi: 10.1038/s41587-021-01072-6
Li, Y. et al. MART-1-specific melanoma tumor-infiltrating lymphocytes maintaining CD28 expression have improved survival and expansion capability following antigenic restimulation in vitro. J. Immunol. 184, 452–465 (2010).
pubmed: 19949105
doi: 10.4049/jimmunol.0901101
Parkhurst, M. R. et al. Unique neoantigens arise from somatic mutations in patients with gastrointestinal cancers. Cancer Discov. 9, 1022–1035 (2019).
pubmed: 31164343
pmcid: 7138461
doi: 10.1158/2159-8290.CD-18-1494
Fijak, M. & Meinhardt, A. The testis in immune privilege. Immunol. Rev. 213, 66–81 (2006).
pubmed: 16972897
doi: 10.1111/j.1600-065X.2006.00438.x
Martin, A. D. et al. Re-examination of MAGE-A3 as a T-cell therapeutic target. J. Immunother. 44, 95–105 (2021).
pubmed: 33284140
doi: 10.1097/CJI.0000000000000348
Consortium, G. T. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).
doi: 10.1038/ng.2653
Muller, M., Gfeller, D., Coukos, G. & Bassani-Sternberg, M. ‘Hotspots’ of antigen presentation revealed by human leukocyte antigen ligandomics for neoantigen prioritization. Front. Immunol. 8, 1367 (2017).
pubmed: 29104575
pmcid: 5654951
doi: 10.3389/fimmu.2017.01367
Kraemer, A. I. et al. The immunopeptidome landscape associated with T cell infiltration, inflammation and immune editing in lung cancer. Nat. Cancer 4, 608–628 (2023).
pubmed: 37127787
pmcid: 10212769
doi: 10.1038/s43018-023-00548-5
Melief, C. J., van Hall, T., Arens, R., Ossendorp, F. & van der Burg, S. H. Therapeutic cancer vaccines. J. Clin. Invest. 125, 3401–3412 (2015).
pubmed: 26214521
pmcid: 4588240
doi: 10.1172/JCI80009
Rosalia, R. A. et al. Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T-cell activation. Eur. J. Immunol. 43, 2554–2565 (2013).
pubmed: 23836147
doi: 10.1002/eji.201343324
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
pubmed: 21376230
doi: 10.1016/j.cell.2011.02.013
Favero, F. et al. Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data. Ann. Oncol. 26, 64–70 (2015).
pubmed: 25319062
doi: 10.1093/annonc/mdu479
Kawaguchi, S., Higasa, K., Shimizu, M., Yamada, R. & Matsuda, F. HLA-HD: an accurate HLA typing algorithm for next-generation sequencing data. Hum. Mutat. 38, 788–797 (2017).
pubmed: 28419628
doi: 10.1002/humu.23230
McGranahan, N. et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171, 1259–1271.e11 (2017).
pubmed: 29107330
pmcid: 5720478
doi: 10.1016/j.cell.2017.10.001
Martinez-Jimenez, F. et al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20, 555–572 (2020).
pubmed: 32778778
doi: 10.1038/s41568-020-0290-x
Liu, Y. & Ye, F. Construction and integrated analysis of crosstalking ceRNAs networks in laryngeal squamous cell carcinoma. PeerJ 7, e7380 (2019).
pubmed: 31367490
pmcid: 6657684
doi: 10.7717/peerj.7380
Yuan, N. et al. Integrative analysis of lncRNAs and miRNAs with coding RNAs associated with ceRNA crosstalk network in triple negative breast cancer. Onco Targets Ther. 10, 5883–5897 (2017).
pubmed: 29276392
pmcid: 5731337
doi: 10.2147/OTT.S149308
de Wit, N. J., Weidle, U. H., Ruiter, D. J. & van Muijen, G. N. Expression profiling of MMA-1a and splice variant MMA-1b: new cancer/testis antigens identified in human melanoma. Int. J. Cancer 98, 547–553 (2002).
pubmed: 11920614
doi: 10.1002/ijc.10241
Wang, Y. et al. Long non-coding RNA DSCR8 acts as a molecular sponge for miR-485-5p to activate Wnt/β-catenin signal pathway in hepatocellular carcinoma. Cell Death Dis. 9, 851 (2018).
pubmed: 30154476
pmcid: 6113322
doi: 10.1038/s41419-018-0937-7
Arnaud, M., Coukos, G. & Harari, A. Towards next-generation TIL therapy: TILs enriched in neoepitope-specific T cells. Clin. Transl. Med. 13, e1174 (2023).
pubmed: 36629052
pmcid: 9832426
doi: 10.1002/ctm2.1174
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168
pmcid: 2705234
doi: 10.1093/bioinformatics/btp324
The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).
doi: 10.1038/s41586-020-1969-6
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
pubmed: 20644199
pmcid: 2928508
doi: 10.1101/gr.107524.110
DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).
pubmed: 21478889
pmcid: 3083463
doi: 10.1038/ng.806
Martin, M., Ebert, P. & Marschall, T. Read-based phasing and analysis of phased variants with WhatsHap. Methods Mol. Biol. 2590, 127–138 (2023).
pubmed: 36335496
doi: 10.1007/978-1-0716-2819-5_8
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Letouze, E. et al. Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis. Nat. Commun. 8, 1315 (2017).
pubmed: 29101368
pmcid: 5670220
doi: 10.1038/s41467-017-01358-x
Popic, V. et al. Fast and scalable inference of multi-sample cancer lineages. Genome Biol. 16, 91 (2015).
pubmed: 25944252
pmcid: 4501097
doi: 10.1186/s13059-015-0647-8
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. Bioinformatics 28, 2184–2185 (2012).
pubmed: 22743226
doi: 10.1093/bioinformatics/bts356
Van Loo, P. et al. Allele-specific copy number analysis of tumors. Proc. Natl Acad. Sci. USA 107, 16910–16915 (2010).
pubmed: 20837533
pmcid: 2947907
doi: 10.1073/pnas.1009843107
Gfeller, D. et al. Improved predictions of antigen presentation and TCR recognition with MixMHCpred2.2 and PRIME2.0 reveal potent SARS-CoV-2 CD8
pubmed: 36603583
pmcid: 9811684
doi: 10.1016/j.cels.2022.12.002
Racle, J. et al. Machine learning predictions of MHC-II specificities reveal alternative binding mode of class II epitopes. Immunity 56, 1359–1375 (2023).
pubmed: 37023751
doi: 10.1016/j.immuni.2023.03.009
Hatcher, E. L. et al. Virus Variation Resource—improved response to emergent viral outbreaks. Nucleic Acids Res. 45, D482–D490 (2017).
pubmed: 27899678
doi: 10.1093/nar/gkw1065
Huang, W., Li, L., Myers, J. R. & Marth, G. T. ART: a next-generation sequencing read simulator. Bioinformatics 28, 593–594 (2012).
pubmed: 22199392
doi: 10.1093/bioinformatics/btr708
Rogers, M. F., Shihab, H. A., Gaunt, T. R. & Campbell, C. CScape: a tool for predicting oncogenic single-point mutations in the cancer genome. Sci. Rep. 7, 11597 (2017).
pubmed: 28912487
pmcid: 5599557
doi: 10.1038/s41598-017-11746-4
Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).
pubmed: 28495876
doi: 10.1126/science.aal3321
Reynisson, B., Alvarez, B., Paul, S., Peters, B. & Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48, W449–W454 (2020).
pubmed: 32406916
pmcid: 7319546
doi: 10.1093/nar/gkaa379
Rasmussen, M. et al. Pan-specific prediction of peptide–MHC class I complex stability, a correlate of T cell immunogenicity. J. Immunol. 197, 1517–1524 (2016).
pubmed: 27402703
doi: 10.4049/jimmunol.1600582
Nielsen, M., Lundegaard, C., Lund, O. & Kesmir, C. The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 57, 33–41 (2005).
pubmed: 15744535
doi: 10.1007/s00251-005-0781-7
Stranzl, T., Larsen, M. V., Lundegaard, C. & Nielsen, M. NetCTLpan: pan-specific MHC class I pathway epitope predictions. Immunogenetics 62, 357–368 (2010).
pubmed: 20379710
pmcid: 2875469
doi: 10.1007/s00251-010-0441-4
Carithers, L. J. & Moore, H. M. The Genotype-Tissue Expression (GTEx) project. Biopreserv. Biobank. 13, 307–308 (2015).
pubmed: 26484569
pmcid: 4692118
doi: 10.1089/bio.2015.29031.hmm
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).
pubmed: 26476454
doi: 10.1093/nar/gkv1070
Luke, J. J., Bao, R., Sweis, R. F., Spranger, S. & Gajewski, T. F. Wnt/β-catenin pathway activation correlates with immune exclusion across human cancers. Clin. Cancer Res. 25, 3074–3083 (2019).
pubmed: 30635339
pmcid: 6522301
doi: 10.1158/1078-0432.CCR-18-1942
Spranger, S. et al. Density of immunogenic antigens does not explain the presence or absence of the T-cell-inflamed tumor microenvironment in melanoma. Proc. Natl Acad. Sci. USA 113, E7759–E7768 (2016).
pubmed: 27837020
pmcid: 5137753
doi: 10.1073/pnas.1609376113
Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).
pubmed: 23051804
pmcid: 3471674
doi: 10.1038/nbt.2377
Eng, J. K., Jahan, T. A. & Hoopmann, M. R. Comet: an open-source MS/MS sequence database search tool. Proteomics 13, 22–24 (2013).
pubmed: 23148064
doi: 10.1002/pmic.201200439
Chong, C. et al. Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes. Nat. Commun. 11, 1293 (2020).
pubmed: 32157095
pmcid: 7064602
doi: 10.1038/s41467-020-14968-9
Tsou, C. C. et al. DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat. Methods 12, 258–264 (2015).
pubmed: 25599550
pmcid: 4399776
doi: 10.1038/nmeth.3255
da Veiga Leprevost, F. et al. Philosopher: a versatile toolkit for shotgun proteomics data analysis. Nat. Methods 17, 869–870 (2020).
pubmed: 32669682
pmcid: 7509848
doi: 10.1038/s41592-020-0912-y
Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14, 513–520 (2017).
pubmed: 28394336
pmcid: 5409104
doi: 10.1038/nmeth.4256
Yu, F., Haynes, S. E. & Nesvizhskii, A. I. IonQuant enables accurate and sensitive label-free quantification with FDR-controlled match-between-runs. Mol. Cell. Proteomics 20, 100077 (2021).
pubmed: 33813065
pmcid: 8131922
doi: 10.1016/j.mcpro.2021.100077
Coordinators, N. R. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 44, D7–D19 (2016).
doi: 10.1093/nar/gkv1290
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).
pubmed: 20003500
pmcid: 2803857
doi: 10.1186/1471-2105-10-421
Racle, J. et al. Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes. Nat. Biotechnol. 37, 1283–1286 (2019).
pubmed: 31611696
doi: 10.1038/s41587-019-0289-6
Li, K., Vaudel, M., Zhang, B., Ren, Y. & Wen, B. PDV: an integrative proteomics data viewer. Bioinformatics 35, 1249–1251 (2019).
pubmed: 30169737
doi: 10.1093/bioinformatics/bty770
Chong, C. et al. High-throughput and sensitive immunopeptidomics platform reveals profound interferongamma-mediated remodeling of the human leukocyte antigen (HLA) ligandome. Mol. Cell. Proteomics 17, 533–548 (2018).
pubmed: 29242379
doi: 10.1074/mcp.TIR117.000383
Pak, H. et al. Sensitive immunopeptidomics by leveraging available large-scale multi-HLA spectral libraries, data-independent acquisition, and MS/MS prediction. Mol. Cell. Proteomics 20, 100080 (2021).
pubmed: 33845167
pmcid: 8724634
doi: 10.1016/j.mcpro.2021.100080
Genolet, R. et al. TCR sequencing and cloning methods for repertoire analysis and isolation of tumor-reactive TCRs. Cell Rep. Methods 3, 100459 (2023).
pubmed: 37159666
pmcid: 10163020
doi: 10.1016/j.crmeth.2023.100459
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).
doi: 10.1093/nar/gkab1038
pubmed: 34723319
Huber, F. et al. A comprehensive proteogenomic pipeline for neoantigen discovery to advance personalized cancer immunotherapy (source code). Zenodo https://doi.org/10.5281/zenodo.13354872 (2024).