A comprehensive proteogenomic pipeline for neoantigen discovery to advance personalized cancer immunotherapy.


Journal

Nature biotechnology
ISSN: 1546-1696
Titre abrégé: Nat Biotechnol
Pays: United States
ID NLM: 9604648

Informations de publication

Date de publication:
11 Oct 2024
Historique:
received: 04 12 2023
accepted: 04 09 2024
medline: 12 10 2024
pubmed: 12 10 2024
entrez: 11 10 2024
Statut: aheadofprint

Résumé

The accurate identification and prioritization of antigenic peptides is crucial for the development of personalized cancer immunotherapies. Publicly available pipelines to predict clinical neoantigens do not allow direct integration of mass spectrometry immunopeptidomics data, which can uncover antigenic peptides derived from various canonical and noncanonical sources. To address this, we present an end-to-end clinical proteogenomic pipeline, called NeoDisc, that combines state-of-the-art publicly available and in-house software for immunopeptidomics, genomics and transcriptomics with in silico tools for the identification, prediction and prioritization of tumor-specific and immunogenic antigens from multiple sources, including neoantigens, viral antigens, high-confidence tumor-specific antigens and tumor-specific noncanonical antigens. We demonstrate the superiority of NeoDisc in accurately prioritizing immunogenic neoantigens over recent prioritization pipelines. We showcase the various features offered by NeoDisc that enable both rule-based and machine-learning approaches for personalized antigen discovery and neoantigen cancer vaccine design. Additionally, we demonstrate how NeoDisc's multiomics integration identifies defects in the cellular antigen presentation machinery, which influence the heterogeneous tumor antigenic landscape.

Identifiants

pubmed: 39394480
doi: 10.1038/s41587-024-02420-y
pii: 10.1038/s41587-024-02420-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

De Mattos-Arruda, L. et al. Neoantigen prediction and computational perspectives towards clinical benefit: recommendations from the ESMO Precision Medicine Working Group. Ann. Oncol. 31, 978–990 (2020).
pubmed: 32610166 doi: 10.1016/j.annonc.2020.05.008
Chong, C., Coukos, G. & Bassani-Sternberg, M. Identification of tumor antigens with immunopeptidomics. Nat. Biotechnol. 40, 175–188 (2022).
pubmed: 34635837 doi: 10.1038/s41587-021-01038-8
Rieder, D. et al. nextNEOpi: a comprehensive pipeline for computational neoantigen prediction. Bioinformatics 38, 1131–1132 (2022).
pubmed: 34788790 doi: 10.1093/bioinformatics/btab759
Schenck, R. O., Lakatos, E., Gatenbee, C., Graham, T. A. & Anderson, A. R. A. NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline. BMC Bioinformatics 20, 264 (2019).
pubmed: 31117948 pmcid: 6532147 doi: 10.1186/s12859-019-2876-4
Tang, Y. et al. TruNeo: an integrated pipeline improves personalized true tumor neoantigen identification. BMC Bioinformatics 21, 532 (2020).
pubmed: 33208106 pmcid: 7672179 doi: 10.1186/s12859-020-03869-9
Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).
pubmed: 21436444 doi: 10.1126/science.1203486
Anagnostou, V. et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 7, 264–276 (2017).
pubmed: 28031159 doi: 10.1158/2159-8290.CD-16-0828
Garrido, F. MHC/HLA class I loss in cancer cells. Adv. Exp. Med. Biol. 1151, 15–78 (2019).
pubmed: 31140106 doi: 10.1007/978-3-030-17864-2_2
Vita, R. et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 47, D339–D343 (2019).
pubmed: 30357391 doi: 10.1093/nar/gky1006
Muller, M. et al. Machine learning methods and harmonized datasets improve immunogenic neoantigen prediction. Immunity 56, 2650–2663 (2023).
pubmed: 37816353 doi: 10.1016/j.immuni.2023.09.002
Harari, A. et al. A personalized neoantigen vaccine in combination with platinum-based chemotherapy induces a T-cell response coinciding with a complete response in endometrial carcinoma. Cancers 13, 5801 (2021).
pubmed: 34830955 pmcid: 8616532 doi: 10.3390/cancers13225801
Kurtzer, G. M., Sochat, V. & Bauer, M. W. Singularity: scientific containers for mobility of compute. PLoS ONE 12, e0177459 (2017).
pubmed: 28494014 pmcid: 5426675 doi: 10.1371/journal.pone.0177459
Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).
pubmed: 23396013 pmcid: 3833702 doi: 10.1038/nbt.2514
Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).
pubmed: 22300766 doi: 10.1101/gr.129684.111
Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10.11–11.10.33 (2013).
Samstein, R. M. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51, 202–206 (2019).
pubmed: 30643254 pmcid: 6365097 doi: 10.1038/s41588-018-0312-8
Wells, D. K. et al. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction. Cell 183, 818–834.e13 (2020).
pubmed: 33038342 pmcid: 7652061 doi: 10.1016/j.cell.2020.09.015
Gartner, J. J. et al. A machine learning model for ranking candidate HLA class I neoantigens based on known neoepitopes from multiple human tumor types. Nat. Cancer 2, 563–574 (2021).
pubmed: 34927080 pmcid: 8680775 doi: 10.1038/s43018-021-00197-6
Zhou, C. et al. pTuneos: prioritizing tumor neoantigens from next-generation sequencing data. Genome Med. 11, 67 (2019).
pubmed: 31666118 pmcid: 6822339 doi: 10.1186/s13073-019-0679-x
Hundal, J. et al. pVACtools: a computational toolkit to identify and visualize cancer neoantigens. Cancer Immunol. Res. 8, 409–420 (2020).
pubmed: 31907209 pmcid: 7056579 doi: 10.1158/2326-6066.CIR-19-0401
Hundal, J. et al. pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens. Genome Med. 8, 11 (2016).
pubmed: 26825632 pmcid: 4733280 doi: 10.1186/s13073-016-0264-5
Muller-Coan, B. G., Caetano, B. F. R., Pagano, J. S. & Elgui de Oliveira, D. Cancer progression goes viral: the role of oncoviruses in aggressiveness of malignancies. Trends Cancer 4, 485–498 (2018).
pubmed: 29937047 doi: 10.1016/j.trecan.2018.04.006
Sayers, E. W. et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 50, D20–D26 (2022).
pubmed: 34850941 doi: 10.1093/nar/gkab1112
Liu, Q., Shuai, M. & Xia, Y. Knockdown of EBV-encoded circRNA circRPMS1 suppresses nasopharyngeal carcinoma cell proliferation and metastasis through sponging multiple miRNAs. Cancer Manag. Res. 11, 8023–8031 (2019).
pubmed: 31695488 pmcid: 6717849 doi: 10.2147/CMAR.S218967
Arnaud, M. et al. Sensitive identification of neoantigens and cognate TCRs in human solid tumors. Nat. Biotechnol. 40, 656–660 (2021).
pubmed: 34782741 pmcid: 9110298 doi: 10.1038/s41587-021-01072-6
Li, Y. et al. MART-1-specific melanoma tumor-infiltrating lymphocytes maintaining CD28 expression have improved survival and expansion capability following antigenic restimulation in vitro. J. Immunol. 184, 452–465 (2010).
pubmed: 19949105 doi: 10.4049/jimmunol.0901101
Parkhurst, M. R. et al. Unique neoantigens arise from somatic mutations in patients with gastrointestinal cancers. Cancer Discov. 9, 1022–1035 (2019).
pubmed: 31164343 pmcid: 7138461 doi: 10.1158/2159-8290.CD-18-1494
Fijak, M. & Meinhardt, A. The testis in immune privilege. Immunol. Rev. 213, 66–81 (2006).
pubmed: 16972897 doi: 10.1111/j.1600-065X.2006.00438.x
Martin, A. D. et al. Re-examination of MAGE-A3 as a T-cell therapeutic target. J. Immunother. 44, 95–105 (2021).
pubmed: 33284140 doi: 10.1097/CJI.0000000000000348
Consortium, G. T. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).
doi: 10.1038/ng.2653
Muller, M., Gfeller, D., Coukos, G. & Bassani-Sternberg, M. ‘Hotspots’ of antigen presentation revealed by human leukocyte antigen ligandomics for neoantigen prioritization. Front. Immunol. 8, 1367 (2017).
pubmed: 29104575 pmcid: 5654951 doi: 10.3389/fimmu.2017.01367
Kraemer, A. I. et al. The immunopeptidome landscape associated with T cell infiltration, inflammation and immune editing in lung cancer. Nat. Cancer 4, 608–628 (2023).
pubmed: 37127787 pmcid: 10212769 doi: 10.1038/s43018-023-00548-5
Melief, C. J., van Hall, T., Arens, R., Ossendorp, F. & van der Burg, S. H. Therapeutic cancer vaccines. J. Clin. Invest. 125, 3401–3412 (2015).
pubmed: 26214521 pmcid: 4588240 doi: 10.1172/JCI80009
Rosalia, R. A. et al. Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T-cell activation. Eur. J. Immunol. 43, 2554–2565 (2013).
pubmed: 23836147 doi: 10.1002/eji.201343324
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
pubmed: 21376230 doi: 10.1016/j.cell.2011.02.013
Favero, F. et al. Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data. Ann. Oncol. 26, 64–70 (2015).
pubmed: 25319062 doi: 10.1093/annonc/mdu479
Kawaguchi, S., Higasa, K., Shimizu, M., Yamada, R. & Matsuda, F. HLA-HD: an accurate HLA typing algorithm for next-generation sequencing data. Hum. Mutat. 38, 788–797 (2017).
pubmed: 28419628 doi: 10.1002/humu.23230
McGranahan, N. et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171, 1259–1271.e11 (2017).
pubmed: 29107330 pmcid: 5720478 doi: 10.1016/j.cell.2017.10.001
Martinez-Jimenez, F. et al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20, 555–572 (2020).
pubmed: 32778778 doi: 10.1038/s41568-020-0290-x
Liu, Y. & Ye, F. Construction and integrated analysis of crosstalking ceRNAs networks in laryngeal squamous cell carcinoma. PeerJ 7, e7380 (2019).
pubmed: 31367490 pmcid: 6657684 doi: 10.7717/peerj.7380
Yuan, N. et al. Integrative analysis of lncRNAs and miRNAs with coding RNAs associated with ceRNA crosstalk network in triple negative breast cancer. Onco Targets Ther. 10, 5883–5897 (2017).
pubmed: 29276392 pmcid: 5731337 doi: 10.2147/OTT.S149308
de Wit, N. J., Weidle, U. H., Ruiter, D. J. & van Muijen, G. N. Expression profiling of MMA-1a and splice variant MMA-1b: new cancer/testis antigens identified in human melanoma. Int. J. Cancer 98, 547–553 (2002).
pubmed: 11920614 doi: 10.1002/ijc.10241
Wang, Y. et al. Long non-coding RNA DSCR8 acts as a molecular sponge for miR-485-5p to activate Wnt/β-catenin signal pathway in hepatocellular carcinoma. Cell Death Dis. 9, 851 (2018).
pubmed: 30154476 pmcid: 6113322 doi: 10.1038/s41419-018-0937-7
Arnaud, M., Coukos, G. & Harari, A. Towards next-generation TIL therapy: TILs enriched in neoepitope-specific T cells. Clin. Transl. Med. 13, e1174 (2023).
pubmed: 36629052 pmcid: 9832426 doi: 10.1002/ctm2.1174
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168 pmcid: 2705234 doi: 10.1093/bioinformatics/btp324
The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).
doi: 10.1038/s41586-020-1969-6
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
pubmed: 20644199 pmcid: 2928508 doi: 10.1101/gr.107524.110
DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).
pubmed: 21478889 pmcid: 3083463 doi: 10.1038/ng.806
Martin, M., Ebert, P. & Marschall, T. Read-based phasing and analysis of phased variants with WhatsHap. Methods Mol. Biol. 2590, 127–138 (2023).
pubmed: 36335496 doi: 10.1007/978-1-0716-2819-5_8
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Letouze, E. et al. Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis. Nat. Commun. 8, 1315 (2017).
pubmed: 29101368 pmcid: 5670220 doi: 10.1038/s41467-017-01358-x
Popic, V. et al. Fast and scalable inference of multi-sample cancer lineages. Genome Biol. 16, 91 (2015).
pubmed: 25944252 pmcid: 4501097 doi: 10.1186/s13059-015-0647-8
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. Bioinformatics 28, 2184–2185 (2012).
pubmed: 22743226 doi: 10.1093/bioinformatics/bts356
Van Loo, P. et al. Allele-specific copy number analysis of tumors. Proc. Natl Acad. Sci. USA 107, 16910–16915 (2010).
pubmed: 20837533 pmcid: 2947907 doi: 10.1073/pnas.1009843107
Gfeller, D. et al. Improved predictions of antigen presentation and TCR recognition with MixMHCpred2.2 and PRIME2.0 reveal potent SARS-CoV-2 CD8
pubmed: 36603583 pmcid: 9811684 doi: 10.1016/j.cels.2022.12.002
Racle, J. et al. Machine learning predictions of MHC-II specificities reveal alternative binding mode of class II epitopes. Immunity 56, 1359–1375 (2023).
pubmed: 37023751 doi: 10.1016/j.immuni.2023.03.009
Hatcher, E. L. et al. Virus Variation Resource—improved response to emergent viral outbreaks. Nucleic Acids Res. 45, D482–D490 (2017).
pubmed: 27899678 doi: 10.1093/nar/gkw1065
Huang, W., Li, L., Myers, J. R. & Marth, G. T. ART: a next-generation sequencing read simulator. Bioinformatics 28, 593–594 (2012).
pubmed: 22199392 doi: 10.1093/bioinformatics/btr708
Rogers, M. F., Shihab, H. A., Gaunt, T. R. & Campbell, C. CScape: a tool for predicting oncogenic single-point mutations in the cancer genome. Sci. Rep. 7, 11597 (2017).
pubmed: 28912487 pmcid: 5599557 doi: 10.1038/s41598-017-11746-4
Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).
pubmed: 28495876 doi: 10.1126/science.aal3321
Reynisson, B., Alvarez, B., Paul, S., Peters, B. & Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48, W449–W454 (2020).
pubmed: 32406916 pmcid: 7319546 doi: 10.1093/nar/gkaa379
Rasmussen, M. et al. Pan-specific prediction of peptide–MHC class I complex stability, a correlate of T cell immunogenicity. J. Immunol. 197, 1517–1524 (2016).
pubmed: 27402703 doi: 10.4049/jimmunol.1600582
Nielsen, M., Lundegaard, C., Lund, O. & Kesmir, C. The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 57, 33–41 (2005).
pubmed: 15744535 doi: 10.1007/s00251-005-0781-7
Stranzl, T., Larsen, M. V., Lundegaard, C. & Nielsen, M. NetCTLpan: pan-specific MHC class I pathway epitope predictions. Immunogenetics 62, 357–368 (2010).
pubmed: 20379710 pmcid: 2875469 doi: 10.1007/s00251-010-0441-4
Carithers, L. J. & Moore, H. M. The Genotype-Tissue Expression (GTEx) project. Biopreserv. Biobank. 13, 307–308 (2015).
pubmed: 26484569 pmcid: 4692118 doi: 10.1089/bio.2015.29031.hmm
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).
pubmed: 26476454 doi: 10.1093/nar/gkv1070
Luke, J. J., Bao, R., Sweis, R. F., Spranger, S. & Gajewski, T. F. Wnt/β-catenin pathway activation correlates with immune exclusion across human cancers. Clin. Cancer Res. 25, 3074–3083 (2019).
pubmed: 30635339 pmcid: 6522301 doi: 10.1158/1078-0432.CCR-18-1942
Spranger, S. et al. Density of immunogenic antigens does not explain the presence or absence of the T-cell-inflamed tumor microenvironment in melanoma. Proc. Natl Acad. Sci. USA 113, E7759–E7768 (2016).
pubmed: 27837020 pmcid: 5137753 doi: 10.1073/pnas.1609376113
Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).
pubmed: 23051804 pmcid: 3471674 doi: 10.1038/nbt.2377
Eng, J. K., Jahan, T. A. & Hoopmann, M. R. Comet: an open-source MS/MS sequence database search tool. Proteomics 13, 22–24 (2013).
pubmed: 23148064 doi: 10.1002/pmic.201200439
Chong, C. et al. Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes. Nat. Commun. 11, 1293 (2020).
pubmed: 32157095 pmcid: 7064602 doi: 10.1038/s41467-020-14968-9
Tsou, C. C. et al. DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat. Methods 12, 258–264 (2015).
pubmed: 25599550 pmcid: 4399776 doi: 10.1038/nmeth.3255
da Veiga Leprevost, F. et al. Philosopher: a versatile toolkit for shotgun proteomics data analysis. Nat. Methods 17, 869–870 (2020).
pubmed: 32669682 pmcid: 7509848 doi: 10.1038/s41592-020-0912-y
Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14, 513–520 (2017).
pubmed: 28394336 pmcid: 5409104 doi: 10.1038/nmeth.4256
Yu, F., Haynes, S. E. & Nesvizhskii, A. I. IonQuant enables accurate and sensitive label-free quantification with FDR-controlled match-between-runs. Mol. Cell. Proteomics 20, 100077 (2021).
pubmed: 33813065 pmcid: 8131922 doi: 10.1016/j.mcpro.2021.100077
Coordinators, N. R. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 44, D7–D19 (2016).
doi: 10.1093/nar/gkv1290
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).
pubmed: 20003500 pmcid: 2803857 doi: 10.1186/1471-2105-10-421
Racle, J. et al. Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes. Nat. Biotechnol. 37, 1283–1286 (2019).
pubmed: 31611696 doi: 10.1038/s41587-019-0289-6
Li, K., Vaudel, M., Zhang, B., Ren, Y. & Wen, B. PDV: an integrative proteomics data viewer. Bioinformatics 35, 1249–1251 (2019).
pubmed: 30169737 doi: 10.1093/bioinformatics/bty770
Chong, C. et al. High-throughput and sensitive immunopeptidomics platform reveals profound interferongamma-mediated remodeling of the human leukocyte antigen (HLA) ligandome. Mol. Cell. Proteomics 17, 533–548 (2018).
pubmed: 29242379 doi: 10.1074/mcp.TIR117.000383
Pak, H. et al. Sensitive immunopeptidomics by leveraging available large-scale multi-HLA spectral libraries, data-independent acquisition, and MS/MS prediction. Mol. Cell. Proteomics 20, 100080 (2021).
pubmed: 33845167 pmcid: 8724634 doi: 10.1016/j.mcpro.2021.100080
Genolet, R. et al. TCR sequencing and cloning methods for repertoire analysis and isolation of tumor-reactive TCRs. Cell Rep. Methods 3, 100459 (2023).
pubmed: 37159666 pmcid: 10163020 doi: 10.1016/j.crmeth.2023.100459
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).
doi: 10.1093/nar/gkab1038 pubmed: 34723319
Huber, F. et al. A comprehensive proteogenomic pipeline for neoantigen discovery to advance personalized cancer immunotherapy (source code). Zenodo https://doi.org/10.5281/zenodo.13354872 (2024).

Auteurs

Florian Huber (F)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
AGORA Cancer Research Center, Lausanne, Switzerland.
Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.

Marion Arnaud (M)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
AGORA Cancer Research Center, Lausanne, Switzerland.

Brian J Stevenson (BJ)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
AGORA Cancer Research Center, Lausanne, Switzerland.
SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, Switzerland.

Justine Michaux (J)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
AGORA Cancer Research Center, Lausanne, Switzerland.
Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.

Fabrizio Benedetti (F)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
AGORA Cancer Research Center, Lausanne, Switzerland.

Jonathan Thevenet (J)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.

Sara Bobisse (S)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
AGORA Cancer Research Center, Lausanne, Switzerland.

Johanna Chiffelle (J)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
AGORA Cancer Research Center, Lausanne, Switzerland.

Talita Gehert (T)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
AGORA Cancer Research Center, Lausanne, Switzerland.

Markus Müller (M)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
AGORA Cancer Research Center, Lausanne, Switzerland.
SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, Switzerland.

HuiSong Pak (H)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
AGORA Cancer Research Center, Lausanne, Switzerland.
Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.

Anne I Krämer (AI)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
AGORA Cancer Research Center, Lausanne, Switzerland.
Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.

Emma Ricart Altimiras (ER)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
AGORA Cancer Research Center, Lausanne, Switzerland.
Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.

Julien Racle (J)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
AGORA Cancer Research Center, Lausanne, Switzerland.
SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, Switzerland.

Marie Taillandier-Coindard (M)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
AGORA Cancer Research Center, Lausanne, Switzerland.
Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.

Katja Muehlethaler (K)

Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.

Aymeric Auger (A)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
AGORA Cancer Research Center, Lausanne, Switzerland.

Damien Saugy (D)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
AGORA Cancer Research Center, Lausanne, Switzerland.

Baptiste Murgues (B)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
AGORA Cancer Research Center, Lausanne, Switzerland.

Abdelkader Benyagoub (A)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.

David Gfeller (D)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
AGORA Cancer Research Center, Lausanne, Switzerland.
SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, Switzerland.

Denarda Dangaj Laniti (DD)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
AGORA Cancer Research Center, Lausanne, Switzerland.

Lana Kandalaft (L)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
AGORA Cancer Research Center, Lausanne, Switzerland.
Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.

Blanca Navarro Rodrigo (BN)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.

Hasna Bouchaab (H)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Department of Medical Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.

Stephanie Tissot (S)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.

George Coukos (G)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
AGORA Cancer Research Center, Lausanne, Switzerland.

Alexandre Harari (A)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
AGORA Cancer Research Center, Lausanne, Switzerland.

Michal Bassani-Sternberg (M)

Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland. michal.bassani@chuv.ch.
Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland. michal.bassani@chuv.ch.
AGORA Cancer Research Center, Lausanne, Switzerland. michal.bassani@chuv.ch.
Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland. michal.bassani@chuv.ch.

Classifications MeSH