Clinical and subclinical acute brain injury caused by invasive cardiovascular procedures.


Journal

Nature reviews. Cardiology
ISSN: 1759-5010
Titre abrégé: Nat Rev Cardiol
Pays: England
ID NLM: 101500075

Informations de publication

Date de publication:
11 Oct 2024
Historique:
accepted: 23 08 2024
medline: 12 10 2024
pubmed: 12 10 2024
entrez: 11 10 2024
Statut: aheadofprint

Résumé

Over the past 50 years, the number and invasiveness of percutaneous cardiovascular procedures globally have increased substantially. However, cardiovascular interventions are inherently associated with a risk of acute brain injury, both periprocedurally and postprocedurally, which impairs medical outcomes and increases health-care costs. Current international clinical guidelines generally do not cover the area of acute brain injury related to cardiovascular invasive procedures. In this international Consensus Statement, we compile the available knowledge (including data on prevalence, pathophysiology, risk factors, clinical presentation and management) to formulate consensus recommendations on the prevention, diagnosis and treatment of acute brain injury caused by cardiovascular interventions. We also identify knowledge gaps and possible future directions in clinical research into acute brain injury related to cardiovascular interventions.

Identifiants

pubmed: 39394524
doi: 10.1038/s41569-024-01076-0
pii: 10.1038/s41569-024-01076-0
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. Springer Nature Limited.

Références

Indja, B., Woldendorp, K., Vallely, M. P. & Grieve, S. M. Silent brain infarcts following cardiac procedures: a systematic review and meta-analysis. J. Am. Heart Assoc. 8, e010920 (2019).
pubmed: 31017035 pmcid: 6512106 doi: 10.1161/JAHA.118.010920
Gress, D. R. The problem with asymptomatic cerebral embolic complications in vascular procedures: what if they are not asymptomatic? J. Am. Coll. Cardiol. 60, 1614–1616 (2012).
pubmed: 22999732 doi: 10.1016/j.jacc.2012.06.037
Eckardt, L. et al. Updated survey on interventional electrophysiology: 5-year follow-up of infrastructure, procedures, and training positions in Germany. JACC Clin. Electrophysiol. 4, 820–827 (2018).
pubmed: 29929676 doi: 10.1016/j.jacep.2018.01.001
Scott, M. et al. Contemporary trends in cardiac electrophysiology procedures in the United States, and impact of a global pandemic. Heart Rhythm O2 4, 193–199 (2023).
pubmed: 36569386 doi: 10.1016/j.hroo.2022.12.005
Konstantinidis, N. V. et al. Temporal trends in chronic total occlusion interventions in Europe. Circ. Cardiovasc. Interv. 11, e006229 (2018).
pubmed: 30354635 doi: 10.1161/CIRCINTERVENTIONS.117.006229
Evered, L. A., Silbert, B. S., Scott, D. A., Maruff, P. & Ames, D. Prevalence of dementia 7.5 years after coronary artery bypass graft surgery. Anesthesiology 125, 62–71 (2016).
pubmed: 27127919 doi: 10.1097/ALN.0000000000001143
Newman, M. F. et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N. Engl. J. Med. 344, 395–402 (2001).
pubmed: 11172175 doi: 10.1056/NEJM200102083440601
Jacobson, K. M., Hall Long, K., McMurtry, E. K., Naessens, J. M. & Rihal, C. S. The economic burden of complications during percutaneous coronary intervention. Qual. Saf. Health Care 16, 154–159 (2007).
pubmed: 17403766 pmcid: 2653156 doi: 10.1136/qshc.2006.019331
Bode, K., Ueberham, L., Gawlik, S., Hindricks, G. & Bollmann, A. Inguinal vascular complications after ablation of atrial fibrillation: an economic impact assessment. Europace 21, 91–98 (2019).
pubmed: 29901719 doi: 10.1093/europace/euy132
Powers, W. J. et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 50, e344–e418 (2019).
pubmed: 31662037 doi: 10.1161/STR.0000000000000211
Greenberg, S. M. et al. 2022 Guideline for the management of patients with spontaneous intracerebral hemorrhage: a guideline from the American Heart Association/American Stroke Association. Stroke 53, e282–e361 (2022).
pubmed: 35579034 doi: 10.1161/STR.0000000000000407
Berge, E. et al. European Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke. Eur. Stroke J. 6, I–LXII (2021).
pubmed: 33817340 pmcid: 7995316 doi: 10.1177/2396987321989865
Steiner, T. et al. European Stroke Organisation (ESO) guidelines for the management of spontaneous intracerebral hemorrhage. Int. J. Stroke 9, 840–855 (2014).
pubmed: 25156220 doi: 10.1111/ijs.12309
Steiner, T. et al. European Stroke Organization guidelines for the management of intracranial aneurysms and subarachnoid haemorrhage. Cerebrovasc. Dis. 35, 93–112 (2013).
pubmed: 23406828 doi: 10.1159/000346087
OCEBM Levels of Evidence Working Group. The Oxford Levels of Evidence 2. https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence (2011).
Cook, S. et al. Percutaneous coronary interventions in Europe 1992–2003. EuroIntervention 1, 374–379 (2006).
pubmed: 19755208
Barbato, E. et al. Mapping interventional cardiology in Europe: the European Association of Percutaneous Cardiovascular Interventions (EAPCI) Atlas Project. Eur. Heart J. 41, 2579–2588 (2020).
pubmed: 32584388 doi: 10.1093/eurheartj/ehaa475
Raatikainen, M. J. et al. Current trends in the use of cardiac implantable electronic devices and interventional electrophysiological procedures in the European Society of Cardiology member countries: 2015 report from the European Heart Rhythm Association. Europace 17, iv1–iv72 (2015).
pubmed: 26286028 doi: 10.1093/europace/euv265
Durko, A. P. et al. Annual number of candidates for transcatheter aortic valve implantation per country: current estimates and future projections. Eur. Heart J. 39, 2635–2642 (2018).
pubmed: 29546396 doi: 10.1093/eurheartj/ehy107
Farooqi, M. et al. Trends in surgical and catheter interventions for isolated congenital shunt lesions in the UK and Ireland. Heart 105, 1103–1108 (2019).
pubmed: 30772822 doi: 10.1136/heartjnl-2018-314428
Venkitachalam, L. et al. Twenty-year evolution of percutaneous coronary intervention and its impact on clinical outcomes: a report from the National Heart, Lung, and Blood Institute-sponsored, multicenter 1985-1986 PTCA and 1997-2006 Dynamic Registries. Circ. Cardiovasc. Interv. 2, 6–13 (2009).
pubmed: 20031687 doi: 10.1161/CIRCINTERVENTIONS.108.825323
Tirziu, D. et al. Cerebral embolic risk in coronary and structural heart interventions: clinical evidence. J. Soc. Cardiovasc. Angiogr. Interv. 2, 100631 (2023).
pubmed: 39130705 pmcid: 11307836
Lansky, A. J. et al. Proposed standardized neurological endpoints for cardiovascular clinical trials: an academic research consortium initiative. J. Am. Coll. Cardiol. 69, 679–691 (2017).
pubmed: 28183511 doi: 10.1016/j.jacc.2016.11.045
VARC-3 Writing Committee. Valve Academic Research Consortium 3: updated endpoint definitions for aortic valve clinical research. Eur. Heart J. 42, 1825–1857 (2021).
doi: 10.1093/eurheartj/ehaa799
Meinel, T. R., Kaesmacher, J., Roten, L. & Fischer, U. Covert brain infarction: towards precision medicine in research, diagnosis, and therapy for a silent pandemic. Stroke 51, 2597–2606 (2020).
pubmed: 32646332 doi: 10.1161/STROKEAHA.120.030686
Vermeer, S. E. et al. Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study. Stroke 34, 1126–1129 (2003).
pubmed: 12690219 doi: 10.1161/01.STR.0000068408.82115.D2
Haeusler, K. G. et al. MRI-detected brain lesions and cognitive function in patients with atrial fibrillation undergoing left atrial catheter ablation in the randomized AXAFA-AFNET 5 trial. Circulation 145, 906–915 (2022).
pubmed: 35135308 doi: 10.1161/CIRCULATIONAHA.121.056320
Woldendorp, K. et al. Silent brain infarcts and early cognitive outcomes after transcatheter aortic valve implantation: a systematic review and meta-analysis. Eur. Heart J. 42, 1004–1015 (2021).
pubmed: 33517376 doi: 10.1093/eurheartj/ehab002
Osman, O., De Guio, F., Chabriat, H. & Jouvent, E. Why are only some subcortical ischemic lesions on diffusion magnetic resonance imaging associated with stroke symptoms in small vessel disease? Stroke 49, 1920–1923 (2018).
pubmed: 29986933 doi: 10.1161/STROKEAHA.118.021342
Likosky, D. S. et al. Determination of etiologic mechanisms of strokes secondary to coronary artery bypass graft surgery. Stroke 34, 2830–2834 (2003).
pubmed: 14605327 doi: 10.1161/01.STR.0000098650.12386.B3
Filsoufi, F., Rahmanian, P. B., Castillo, J. G., Bronster, D. & Adams, D. H. Incidence, topography, predictors and long-term survival after stroke in patients undergoing coronary artery bypass grafting. Ann. Thorac. Surg. 85, 862–870 (2008).
pubmed: 18291158 doi: 10.1016/j.athoracsur.2007.10.060
Massaro, A. et al. Pathogenesis and risk factors for cerebral infarct after surgical aortic valve replacement. Stroke 47, 2130–2132 (2016).
pubmed: 27382005 pmcid: 4961589 doi: 10.1161/STROKEAHA.116.013970
Roach, G. W. et al. Adverse cerebral outcomes after coronary bypass surgery. Multicenter study of perioperative ischemia research group and the ischemia research and education foundation investigators. N. Engl. J. Med. 335, 1857–1863 (1996).
pubmed: 8948560 doi: 10.1056/NEJM199612193352501
Gaudino, M. et al. Early versus delayed stroke after cardiac surgery: a systematic review and meta-analysis. J. Am. Heart Assoc. 8, e012447 (2019).
pubmed: 31215306 pmcid: 6662344 doi: 10.1161/JAHA.119.012447
Alkhouli, M., Alqahtani, F., Tarabishy, A., Sandhu, G. & Rihal, C. S. Incidence, predictors, and outcomes of acute ischemic stroke following percutaneous coronary intervention. JACC Cardiovasc. Interv. 12, 1497–1506 (2019).
pubmed: 31395220 doi: 10.1016/j.jcin.2019.04.015
Kwok, C. S. et al. Stroke following percutaneous coronary intervention: type-specific incidence, outcomes and determinants seen by the British Cardiovascular Intervention Society 2007–12. Eur. Heart J. 36, 1618–1628 (2015).
pubmed: 25896077 doi: 10.1093/eurheartj/ehv113
Hamon, M., Baron, J. C., Viader, F. & Hamon, M. Periprocedural stroke and cardiac catheterization. Circulation 118, 678–683 (2008).
pubmed: 18678784 doi: 10.1161/CIRCULATIONAHA.108.784504
Cho, S. M., Deshpande, A., Pasupuleti, V., Hernandez, A. V. & Uchino, K. Radiographic and clinical brain infarcts in cardiac and diagnostic procedures: a systematic review and meta-analysis. Stroke 48, 2753–2759 (2017).
pubmed: 28916673 doi: 10.1161/STROKEAHA.117.017541
Mahaffey, K. W. et al. Meta-analysis of intracranial hemorrhage in acute coronary syndromes: incidence, predictors, and clinical outcomes. J. Am. Heart Assoc. 4, e001512 (2015).
pubmed: 26089177 pmcid: 4599523 doi: 10.1161/JAHA.114.001512
Lee, P. H. et al. Intracranial bleeding after percutaneous coronary intervention: time-dependent incidence, predictors, and impact on mortality. J. Am. Heart Assoc. 10, e019637 (2021).
pubmed: 34323117 pmcid: 8475680 doi: 10.1161/JAHA.120.019637
Virani, S. S. et al. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation 143, e254–e743 (2021).
pubmed: 33501848 doi: 10.1161/CIR.0000000000000950
Bowdish, M. E. et al. STS adult cardiac surgery database: 2021 update on outcomes, quality, and research. Ann. Thorac. Surg. 111, 1770–1780 (2021).
pubmed: 33794156 doi: 10.1016/j.athoracsur.2021.03.043
Al-Hijji, M. A. et al. Safety and risk of major complications with diagnostic cardiac catheterization. Circ. Cardiovasc. Interv. 12, e007791 (2019).
pubmed: 31284736 doi: 10.1161/CIRCINTERVENTIONS.119.007791
Bundhun, P. K., Janoo, G. & Chen, M. H. Bleeding events associated with fibrinolytic therapy and primary percutaneous coronary intervention in patients with STEMI: a systematic review and meta-analysis of randomized controlled trials. Medicine 95, e3877 (2016).
pubmed: 27281102 pmcid: 4907680 doi: 10.1097/MD.0000000000003877
Giustino, G. et al. Characterization of the average daily ischemic and bleeding risk after primary PCI for STEMI. J. Am. Coll. Cardiol. 70, 1846–1857 (2017).
pubmed: 28982497 doi: 10.1016/j.jacc.2017.08.018
Armstrong, P. W. et al. Fibrinolysis or primary PCI in ST-segment elevation myocardial infarction. N. Engl. J. Med. 368, 1379–1387 (2013).
pubmed: 23473396 doi: 10.1056/NEJMoa1301092
Didier, R. et al. Cerebrovascular accidents after percutaneous coronary interventions from 2002 to 2014: incidence, outcomes, and associated variables. Am. Heart J. 172, 80–87 (2016).
pubmed: 26856219 doi: 10.1016/j.ahj.2015.10.019
Vu, H. T. T. et al. Novel insights into clinical characteristics and in-hospital outcomes of patients undergoing percutaneous coronary intervention in Vietnam. Int. J. Cardiol. Heart Vasc. 31, 100626 (2020).
pubmed: 32944609 pmcid: 7481132
Shoji, S. et al. Stroke after percutaneous coronary intervention in the era of transradial intervention. Circ. Cardiovasc. Interv. 11, e006761 (2018).
pubmed: 30545258 doi: 10.1161/CIRCINTERVENTIONS.118.006761
Papapostolou, S. et al. Effect of age on clinical outcomes in elderly patients (>80 years) undergoing percutaneous coronary intervention: insights from a multi-centre Australian PCI registry. Heart Lung Circ. 30, 1002–1013 (2021).
pubmed: 33478864 doi: 10.1016/j.hlc.2020.12.003
Nagy-Balo, E. et al. Transcranial measurement of cerebral microembolic signals during pulmonary vein isolation: a comparison of two ablation techniques. Circ. Arrhythm. Electrophysiol. 6, 473–480 (2013).
pubmed: 23580744 doi: 10.1161/CIRCEP.112.971747
Demolin, J. M. et al. Soft thrombus formation in radiofrequency catheter ablation. Pacing Clin. Electrophysiol. 25, 1219–1222 (2002).
pubmed: 12358173 doi: 10.1046/j.1460-9592.2002.01219.x
Khairy, P. et al. Lower incidence of thrombus formation with cryoenergy versus radiofrequency catheter ablation. Circulation 107, 2045–2050 (2003).
pubmed: 12668527 doi: 10.1161/01.CIR.0000058706.82623.A1
Takami, M. et al. Techniques for reducing air bubble intrusion into the left atrium during radiofrequency catheter and cryoballoon ablation procedures: an ex vivo study with a high-resolution camera. Heart Rhythm 16, 128–139 (2019).
pubmed: 30075279 doi: 10.1016/j.hrthm.2018.07.038
Belalcazar, A. Safety and efficacy aspects of pulsed field ablation catheters as a function of electrode proximity to blood and energy delivery method. Heart Rhythm O2 2, 560–569 (2021).
pubmed: 34988500 pmcid: 8703144 doi: 10.1016/j.hroo.2021.10.004
Lasek-Bal, A. et al. Cerebral microembolism during atrial fibrillation ablation can result from the technical aspects and mostly does not cause permanent neurological deficit. Arch. Med. Sci. 16, 1288–1294 (2020).
pubmed: 33224327 pmcid: 7667434 doi: 10.5114/aoms.2020.94747
Calvert, P. et al. Silent cerebral lesions following catheter ablation for atrial fibrillation: a state-of-the-art review. Europace 25, euad151 (2023).
pubmed: 37306314 pmcid: 10259069 doi: 10.1093/europace/euad151
Bendszus, M. & Stoll, G. Silent cerebral ischaemia: hidden fingerprints of invasive medical procedures. Lancet Neurol. 5, 364–372 (2006).
pubmed: 16545753 doi: 10.1016/S1474-4422(06)70412-4
Kato, N. et al. Brain magnetic resonance imaging and cognitive alterations after ablation in patients with atrial fibrillation. Sci. Rep. 11, 18995 (2021).
pubmed: 34556757 pmcid: 8460624 doi: 10.1038/s41598-021-98484-w
Verma, A. et al. Evaluation and reduction of asymptomatic cerebral embolism in ablation of atrial fibrillation, but high prevalence of chronic silent infarction: results of the evaluation of reduction of asymptomatic cerebral embolism trial. Circ. Arrhythm. Electrophysiol. 6, 835–842 (2013).
pubmed: 23983245 doi: 10.1161/CIRCEP.113.000612
Turagam, M. K. et al. PV isolation using a spherical array PFA catheter: application repetition and lesion durability (PULSE-EU Study). JACC Clin. Electrophysiol. 9, 638–648 (2023).
pubmed: 36828771 doi: 10.1016/j.jacep.2023.01.009
von Bary, C. et al. Clinical impact of the microembolic signal burden during catheter ablation for atrial fibrillation: just a lot of noise? J. Ultrasound Med. 37, 1091–1101 (2018).
doi: 10.1002/jum.14447
Thakur, R. K., Klein, G. J., Yee, R. & Zardini, M. Embolic complications after radiofrequency catheter ablation. Am. J. Cardiol. 74, 278–279 (1994).
pubmed: 8037136 doi: 10.1016/0002-9149(94)90373-5
Berger, W. R. et al. Persistent atrial fibrillation: a systematic review and meta-analysis of invasive strategies. Int. J. Cardiol. 278, 137–143 (2019).
pubmed: 30553497 doi: 10.1016/j.ijcard.2018.11.127
Lakkireddy, D. et al. Safety/efficacy of DOAC versus aspirin for reduction of risk of cerebrovascular events following VT ablation. JACC Clin. Electrophysiol. 7, 1493–1501 (2021).
pubmed: 34393085 doi: 10.1016/j.jacep.2021.07.010
Kusano, K. et al. The Japanese catheter ablation registry (J-AB): a prospective nationwide multicenter registry in Japan. Annual report in 2018. J. Arrhythm. 36, 953–961 (2020).
pubmed: 33335609 pmcid: 7733576 doi: 10.1002/joa3.12445
Yokoyama, Y. et al. Complications associated with catheter ablation in patients with atrial fibrillation: a report from the JROAD-DPC atudy. J. Am. Heart Assoc. 10, e019701 (2021).
pubmed: 34041920 pmcid: 8483553 doi: 10.1161/JAHA.120.019701
Ngo, L. et al. Institutional variation in 30-day complications following catheter ablation of atrial fibrillation. J. Am. Heart Assoc. 11, e022009 (2022).
pubmed: 35156395 pmcid: 9245833 doi: 10.1161/JAHA.121.022009
Ngo, L. et al. Longitudinal risk of death, hospitalizations for atrial fibrillation, and cardiovascular events following catheter ablation of atrial fibrillation: a cohort study. Eur. Heart J. Qual. Care Clin. Outcomes 9, 150–160 (2023).
pubmed: 35700131 doi: 10.1093/ehjqcco/qcac024
Keegan, R. et al. The first Latin American catheter ablation registry. Europace 17, 794–800 (2015).
pubmed: 25616407 doi: 10.1093/europace/euu322
Holmes, D. R. Jr et al. Left atrial appendage occlusion. EuroIntervention 18, e1038–e1065 (2023).
pubmed: 36760206 pmcid: 9909459 doi: 10.4244/EIJ-D-22-00627
Viles-Gonzalez, J. F. et al. The clinical impact of incomplete left atrial appendage closure with the Watchman device in patients with atrial fibrillation: a PROTECT AF (Percutaneous Closure of the Left Atrial Appendage Versus Warfarin Therapy for Prevention of Stroke in Patients With Atrial Fibrillation) substudy. J. Am. Coll. Cardiol. 59, 923–929 (2012).
pubmed: 22381428 doi: 10.1016/j.jacc.2011.11.028
Alkhouli, M. et al. Clinical impact of residual leaks following left atrial appendage occlusion: insights from the NCDR LAAO registry. JACC Clin. Electrophysiol. 8, 766–778 (2022).
pubmed: 35387751 pmcid: 9233062 doi: 10.1016/j.jacep.2022.03.001
Raphael, C. E. et al. Residual leaks following percutaneous left atrial appendage occlusion: assessment and management implications. EuroIntervention 13, 1218–1225 (2017).
pubmed: 28691914 doi: 10.4244/EIJ-D-17-00469
Alkhouli, M. et al. Incidence, characteristics and management of persistent peri-device flow after percutaneous left atrial appendage occlusion. Struct. Heart 3, 491–498 (2019).
doi: 10.1080/24748706.2019.1663381
Samaras, A. et al. Residual leaks following percutaneous left atrial appendage occlusion and outcomes: a meta-analysis. Eur. Heart J. 45, 214–229 (2024).
pubmed: 38088437 doi: 10.1093/eurheartj/ehad828
Sedaghat, A. et al. Device-related thrombus after left atrial appendage closure: data on thrombus characteristics, treatment strategies, and clinical outcomes from the EUROC-DRT-registry. Circ. Cardiovasc. Interv. 14, e010195 (2021).
pubmed: 34003661 doi: 10.1161/CIRCINTERVENTIONS.120.010195
Korsholm, K., Jensen, J. M., Norgaard, B. L. & Nielsen-Kudsk, J. E. Detection of device-related thrombosis following left atrial appendage occlusion: a comparison between cardiac computed tomography and transesophageal echocardiography. Circ. Cardiovasc. Interv. 12, e008112 (2019).
pubmed: 31514523 doi: 10.1161/CIRCINTERVENTIONS.119.008112
Iriart, X. et al. Clinical implications of CT-detected hypoattenuation thickening on left atrial appendage occlusion devices. Radiology 308, e230462 (2023).
pubmed: 37668517 doi: 10.1148/radiol.230462
Dukkipati, S. R. et al. Device-related thrombus after left atrial appendage closure: incidence, predictors, and outcomes. Circulation 138, 874–885 (2018).
pubmed: 29752398 doi: 10.1161/CIRCULATIONAHA.118.035090
Pracon, R. et al. Device thrombosis after percutaneous left atrial appendage occlusion is related to patient and procedural characteristics but not to duration of postimplantation dual antiplatelet therapy. Circ. Cardiovasc. Interv. 11, e005997 (2018).
pubmed: 29463510 doi: 10.1161/CIRCINTERVENTIONS.117.005997
Simard, T. J., Hibbert, B., Alkhouli, M. A., Abraham, N. S. & Holmes, D. R. Jr. Device-related thrombus following left atrial appendage occlusion. EuroIntervention 18, 224–232 (2022).
pubmed: 35440430 doi: 10.4244/EIJ-D-21-01010
Simard, T. et al. Predictors of device-related thrombus following percutaneous left atrial appendage occlusion. J. Am. Coll. Cardiol. 78, 297–313 (2021).
pubmed: 34294267 doi: 10.1016/j.jacc.2021.04.098
Fauchier, L. et al. Device-related thrombosis after percutaneous left atrial appendage occlusion for atrial fibrillation. J. Am. Coll. Cardiol. 71, 1528–1536 (2018).
pubmed: 29622159 doi: 10.1016/j.jacc.2018.01.076
Sedaghat, A. et al. Thrombus formation after left atrial appendage occlusion with the amplatzer amulet device. JACC Clin. Electrophysiol. 3, 71–75 (2017).
pubmed: 29759698 doi: 10.1016/j.jacep.2016.05.006
Whitlock, R. P. et al. Left atrial appendage occlusion during cardiac surgery to prevent stroke. N. Engl. J. Med. 384, 2081–2091 (2021).
pubmed: 33999547 doi: 10.1056/NEJMoa2101897
Kanderian, A. S., Gillinov, A. M., Pettersson, G. B., Blackstone, E. & Klein, A. L. Success of surgical left atrial appendage closure: assessment by transesophageal echocardiography. J. Am. Coll. Cardiol. 52, 924–929 (2008).
pubmed: 18772063 doi: 10.1016/j.jacc.2008.03.067
Nguyen, A. et al. Peridevice leak after left atrial appendage closure: incidence, risk factors, and clinical impact. Can. J. Cardiol. 35, 405–412 (2019).
pubmed: 30935631 doi: 10.1016/j.cjca.2018.12.022
Alkhouli, M. et al. Incidence and clinical impact of device-related thrombus following percutaneous left atrial appendage occlusion: a meta-analysis. JACC Clin. Electrophysiol. 4, 1629–1637 (2018).
pubmed: 30573129 doi: 10.1016/j.jacep.2018.09.007
Zhang, S. et al. An updated meta-analysis of device related thrombus following left atrial appendage closure in patients with atrial fibrillation. Front. Cardiovasc. Med. 9, 1088782 (2022).
pubmed: 36620640 pmcid: 9816128 doi: 10.3389/fcvm.2022.1088782
Vij, V. et al. Symptomatic vs. non-symptomatic device-related thrombus after LAAC: a sub-analysis from the multicenter EUROC-DRT registry. Clin. Res. Cardiol. 112, 1790–1799 (2023).
pubmed: 37294311 pmcid: 10697873 doi: 10.1007/s00392-023-02237-w
Gheorghe, L. et al. Complications following percutaneous mitral valve repair. Front. Cardiovasc. Med. 6, 146 (2019).
pubmed: 31681798 pmcid: 6813564 doi: 10.3389/fcvm.2019.00146
Pagnesi, M. et al. Cerebral embolic risk during transcatheter mitral valve interventions: an unaddressed and unmet clinical need? JACC Cardiovasc. Interv. 11, 517–528 (2018).
pubmed: 29566796 doi: 10.1016/j.jcin.2017.12.018
Guerrero, M. et al. Transcatheter mitral valve replacement in native mitral valve disease with severe mitral annular calcification: results from the first multicenter global registry. JACC Cardiovasc. Interv. 9, 1361–1371 (2016).
pubmed: 27388824 doi: 10.1016/j.jcin.2016.04.022
Guerrero, M. et al. Thirty-day outcomes of transcatheter mitral valve replacement for degenerated mitral bioprostheses (Valve-in-Valve), failed surgical rings (Valve-in-Ring), and native valve with severe mitral annular calcification (Valve-in-Mitral Annular Calcification) in the United States: data from the Society of Thoracic Surgeons/American College of Cardiology/Transcatheter Valve Therapy Registry. Circ. Cardiovasc. Interv. 13, e008425 (2020).
pubmed: 32138529 doi: 10.1161/CIRCINTERVENTIONS.119.008425
Kahlert, P. et al. Cerebral embolization during transcatheter aortic valve implantation: a transcranial Doppler study. Circulation 126, 1245–1255 (2012).
pubmed: 22899774 doi: 10.1161/CIRCULATIONAHA.112.092544
Aratake, S. et al. High-intensity transient signals during transcatheter aortic valve implantation assessed by ultrasonic carotid artery blood-flow monitoring: a single center prospective observational study. J. Cardiol. 76, 244–250 (2020).
pubmed: 32675027 doi: 10.1016/j.jjcc.2020.06.017
Van Mieghem, N. M. et al. Histopathology of embolic debris captured during transcatheter aortic valve replacement. Circulation 127, 2194–2201 (2013).
pubmed: 23652860 doi: 10.1161/CIRCULATIONAHA.112.001091
Schmidt, T. et al. Debris heterogeneity across different valve types captured by a cerebral protection system during transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 11, 1262–1273 (2018).
pubmed: 29976363 doi: 10.1016/j.jcin.2018.03.001
Kapadia, S. R. et al. Protection against cerebral embolism during transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 69, 367–377 (2017).
pubmed: 27815101 doi: 10.1016/j.jacc.2016.10.023
Kroon, H. et al. Heterogeneity of debris captured by cerebral embolic protection filters during TAVI. EuroIntervention 16, 1141–1147 (2021).
pubmed: 32894232 pmcid: 9724925 doi: 10.4244/EIJ-D-20-00744
Ghanem, A. et al. Risk and fate of cerebral embolism after transfemoral aortic valve implantation: a prospective pilot study with diffusion-weighted magnetic resonance imaging. J. Am. Coll. Cardiol. 55, 1427–1432 (2010).
pubmed: 20188503 doi: 10.1016/j.jacc.2009.12.026
Kahlert, P. et al. Silent and apparent cerebral ischemia after percutaneous transfemoral aortic valve implantation: a diffusion-weighted magnetic resonance imaging study. Circulation 121, 870–878 (2010).
pubmed: 20177005 doi: 10.1161/CIRCULATIONAHA.109.855866
Smith, C. R. et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 364, 2187–2198 (2011).
pubmed: 21639811 doi: 10.1056/NEJMoa1103510
Reardon, M. J. et al. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N. Engl. J. Med. 376, 1321–1331 (2017).
pubmed: 28304219 doi: 10.1056/NEJMoa1700456
Mack, M. J. et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N. Engl. J. Med. 380, 1695–1705 (2019).
pubmed: 30883058 doi: 10.1056/NEJMoa1814052
Forrest, J. K. et al. 3-Year outcomes after transcatheter or surgical aortic valve replacement in low-risk patients with aortic stenosis. J. Am. Coll. Cardiol. 81, 1663–1674 (2023).
pubmed: 36882136 doi: 10.1016/j.jacc.2023.02.017
Popma, J. J. et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N. Engl. J. Med. 380, 1706–1715 (2019).
pubmed: 30883053 doi: 10.1056/NEJMoa1816885
Watanabe, Y. et al. First direct comparison of clinical outcomes between European and Asian cohorts in transcatheter aortic valve implantation: the Massy study group vs. the PREVAIL JAPAN trial. J. Cardiol. 65, 112–116 (2015).
pubmed: 24927855 doi: 10.1016/j.jjcc.2014.05.001
Fanning, J. P. et al. Neurological injury in intermediate-risk transcatheter aortic valve implantation. J. Am. Heart Assoc. 5, e004203 (2016).
pubmed: 27849158 pmcid: 5210348 doi: 10.1161/JAHA.116.004203
Mendiz, O. et al. Clinical outcome in nonagenarians undergoing transcatheter valve replacement. Indian Heart J. 69, 597–599 (2017).
pubmed: 29054182 pmcid: 5650581 doi: 10.1016/j.ihj.2017.02.017
Hu, X. et al. Comparisons of two-dimensional echocardiographic aortic dimensions between Chinese, Japanese, and Europeans. J. Thorac. Imaging 38, 399–406 (2023).
doi: 10.1097/RTI.0000000000000730
Kanzaki, H. Several concerns in transcatheter aortic valve replacement in Japanese elderly. J. Cardiol. 65, 89–90 (2015).
pubmed: 25104064 doi: 10.1016/j.jjcc.2014.07.001
Jilaihawi, H. et al. Morphological characteristics of severe aortic stenosis in China: imaging corelab observations from the first Chinese transcatheter aortic valve trial. Catheter. Cardiovasc. Interv. 85, 752–761 (2015).
pubmed: 25630494 doi: 10.1002/ccd.25863
Tempe, D. K. & Virmani, S. Coagulation abnormalities in patients with cyanotic congenital heart disease. J. Cardiothorac. Vasc. Anesth. 16, 752–765 (2002).
pubmed: 12486661 doi: 10.1053/jcan.2002.128436
Abdelghani, E., Cua, C. L., Giver, J. & Rodriguez, V. Thrombosis prevention and anticoagulation management in the pediatric patient with congenital heart disease. Cardiol. Ther. 10, 325–348 (2021).
pubmed: 34184214 pmcid: 8555036 doi: 10.1007/s40119-021-00228-4
Rose, S. S., Shah, A. A., Hoover, D. R. & Saidi, P. Cyanotic congenital heart disease (CCHD) with symptomatic erythrocytosis. J. Gen. Intern. Med. 22, 1775–1777 (2007).
pubmed: 17917783 pmcid: 2219824 doi: 10.1007/s11606-007-0356-4
Manlhiot, C. et al. Risk, clinical features, and outcomes of thrombosis associated with pediatric cardiac surgery. Circulation 124, 1511–1519 (2011).
pubmed: 21911785 doi: 10.1161/CIRCULATIONAHA.110.006304
Macdonald, P. D., Gibson, B. E., Brownlie, J., Doig, W. B. & Houston, A. B. Protein C activity in severely ill newborns with congenital heart disease. J. Perinat. Med. 20, 421–427 (1992).
pubmed: 1293267 doi: 10.1515/jpme.1992.20.6.421
Oechslin, E. et al. Systemic endothelial dysfunction in adults with cyanotic congenital heart disease. Circulation 112, 1106–1112 (2005).
pubmed: 16103236 doi: 10.1161/CIRCULATIONAHA.105.534073
Cordina, R. L. et al. Widespread endotheliopathy in adults with cyanotic congenital heart disease. Cardiol. Young 25, 511–519 (2015).
pubmed: 24666694 doi: 10.1017/S1047951114000262
Firdouse, M., Agarwal, A., Chan, A. K. & Mondal, T. Thrombosis and thromboembolic complications in fontan patients: a literature review. Clin. Appl. Thromb. Hemost. 20, 484–492 (2014).
pubmed: 24463598 doi: 10.1177/1076029613520464
Opotowsky, A. R. et al. Prospective cohort study of C-reactive protein as a predictor of clinical events in adults with congenital heart disease: results of the Boston adult congenital heart disease biobank. Eur. Heart J. 39, 3253–3261 (2018).
pubmed: 30010900 pmcid: 6127895 doi: 10.1093/eurheartj/ehy362
Bannan, A., Shen, R., Silvestry, F. E. & Herrmann, H. C. Characteristics of adult patients with atrial septal defects presenting with paradoxical embolism. Catheter. Cardiovasc. Interv. 74, 1066–1069 (2009).
pubmed: 19670302 doi: 10.1002/ccd.22170
Maron, B. A., Shekar, P. S. & Goldhaber, S. Z. Paradoxical embolism. Circulation 122, 1968–1972 (2010).
pubmed: 21060086 doi: 10.1161/CIRCULATIONAHA.110.961920
Pickard, S. S., Prakash, A., Newburger, J. W., Malek, A. M. & Wong, J. B. Screening for intracranial aneurysms in coarctation of the aorta: a decision and cost-effectiveness analysis. Circ. Cardiovasc. Qual. Outcomes 13, e006406 (2020).
pubmed: 32762482 pmcid: 7442667 doi: 10.1161/CIRCOUTCOMES.119.006406
Colon-Otero, G., Gilchrist, G. S., Holcomb, G. R., Ilstrup, D. M. & Bowie, E. J. Preoperative evaluation of hemostasis in patients with congenital heart disease. Mayo Clin. Proc. 62, 379–385 (1987).
pubmed: 3573826 doi: 10.1016/S0025-6196(12)65442-1
Giang, K. W. et al. Long-term risk of hemorrhagic stroke in young patients with congenital heart disease. Stroke 49, 1155–1162 (2018).
pubmed: 29626133 pmcid: 5916472 doi: 10.1161/STROKEAHA.117.020032
Xi, S. B. et al. Pediatric hemorrhagic stroke complicates interventions for congenital heart disease: experiences from two centers. Chin. Med. J. 131, 2862–2863 (2018).
pubmed: 30511690 pmcid: 6278193
Heying, R. et al. Children undergoing cardiac surgery for complex cardiac defects show imbalance between pro- and anti-thrombotic activity. Crit. Care 10, R165 (2006).
pubmed: 17125503 pmcid: 1794476 doi: 10.1186/cc5108
Attar, H., Sachdeva, A. & Sundararajan, S. Cardioembolic stroke in adults with a history of congenital heart disease. Stroke 47, e79–e81 (2016).
pubmed: 27073244 doi: 10.1161/STROKEAHA.116.012882
Asakai, H. et al. Arterial ischemic stroke in children with cardiac disease. Neurology 85, 2053–2059 (2015).
pubmed: 26408496 pmcid: 4676756 doi: 10.1212/WNL.0000000000002036
Dowling, M. M. et al. International Paediatric Stroke Study: stroke associated with cardiac disorders. Int. J. Stroke 8, 39–44 (2013).
pubmed: 23231361 doi: 10.1111/j.1747-4949.2012.00925.x
Roach, E. S. et al. Management of stroke in infants and children: a scientific statement from a Special Writing Group of the American Heart Association Stroke Council and the Council on Cardiovascular Disease in the Young. Stroke 39, 2644–2691 (2008).
pubmed: 18635845 doi: 10.1161/STROKEAHA.108.189696
Lee, J. S., Choi, J., Shin, H. J., Jung, J. M. & Seo, W. K. Incidence and risk of stroke in Korean patients with congenital heart disease. J. Stroke Cerebrovasc. Dis. 32, 107408 (2023).
pubmed: 37980821 doi: 10.1016/j.jstrokecerebrovasdis.2023.107408
Fox, C. K., Sidney, S. & Fullerton, H. J. Community-based case-control study of childhood stroke risk associated with congenital heart disease. Stroke 46, 336–340 (2015).
pubmed: 25516197 doi: 10.1161/STROKEAHA.114.007218
Mandalenakis, Z. et al. Ischemic stroke in children and young adults with congenital heart disease. J. Am. Heart Assoc. 5, e003071 (2016).
pubmed: 26908411 pmcid: 4802444 doi: 10.1161/JAHA.115.003071
Lanz, J. et al. Stroke in adults with congenital heart disease: incidence, cumulative risk, and predictors. Circulation 132, 2385–2394 (2015).
pubmed: 26597113 doi: 10.1161/CIRCULATIONAHA.115.011241
Liu, X. Y., Wong, V. & Leung, M. Neurologic complications due to catheterization. Pediatr. Neurol. 24, 270–275 (2001).
pubmed: 11377101 doi: 10.1016/S0887-8994(00)00272-1
Yeh, H. R. et al. Arterial ischemic stroke in children with congenital heart diseases. Pediatr. Int. 64, e15200 (2022).
pubmed: 35770792 doi: 10.1111/ped.15200
Amlie-Lefond, C. et al. Predictors of cerebral arteriopathy in children with arterial ischemic stroke: results of the International Pediatric Stroke Study. Circulation 119, 1417–1423 (2009).
pubmed: 19255344 pmcid: 4205969 doi: 10.1161/CIRCULATIONAHA.108.806307
Carroll, J. D. et al. Closure of patent foramen ovale versus medical therapy after cryptogenic stroke. N. Engl. J. Med. 368, 1092–1100 (2013).
pubmed: 23514286 doi: 10.1056/NEJMoa1301440
Mas, J. L. et al. Patent foramen ovale closure or anticoagulation vs. antiplatelets after stroke. N. Engl. J. Med. 377, 1011–1021 (2017).
pubmed: 28902593 doi: 10.1056/NEJMoa1705915
Sondergaard, L. et al. Patent foramen ovale closure or antiplatelet therapy for cryptogenic stroke. N. Engl. J. Med. 377, 1033–1042 (2017).
pubmed: 28902580 doi: 10.1056/NEJMoa1707404
Dorenbeck, U. et al. Cerebral embolism with interventional closure of symptomatic patent foramen ovale: an MRI-based study using diffusion-weighted imaging. Eur. J. Neurol. 14, 451–454 (2007).
pubmed: 17388997 doi: 10.1111/j.1468-1331.2007.01689.x
Hornung, M. et al. Long-term results of a randomized trial comparing three different devices for percutaneous closure of a patent foramen ovale. Eur. Heart J. 34, 3362–3369 (2013).
pubmed: 23842846 doi: 10.1093/eurheartj/eht283
Krumsdorf, U. et al. Incidence and clinical course of thrombus formation on atrial septal defect and patient foramen ovale closure devices in 1,000 consecutive patients. J. Am. Coll. Cardiol. 43, 302–309 (2004).
pubmed: 14736453 doi: 10.1016/j.jacc.2003.10.030
Capodanno, D. et al. Updating the evidence on patent foramen ovale closure versus medical therapy in patients with cryptogenic stroke: a systematic review and comprehensive meta-analysis of 2,303 patients from three randomised trials and 2,231 patients from 11 observational studies. EuroIntervention 9, 1342–1349 (2014).
pubmed: 24240356 doi: 10.4244/EIJV9I11A225
Lin, M.-H. et al. Perioperative/postoperative atrial fibrillation and risk of subsequent stroke and/or mortality. Stroke 50, 1364–1371 (2019).
pubmed: 31043148 doi: 10.1161/STROKEAHA.118.023921
Gottesman, R. F. et al. Watershed strokes after cardiac surgery. Stroke 37, 2306–2311 (2006).
pubmed: 16857947 doi: 10.1161/01.STR.0000236024.68020.3a
Moss, E. et al. Avoiding aortic clamping during coronary artery bypass grafting reduces postoperative stroke. J. Thorac. Cardiovasc. Surg. 149, 175–180 (2015).
pubmed: 25293356 doi: 10.1016/j.jtcvs.2014.09.011
Sedrakyan, A., Wu, A. W., Parashar, A., Bass, E. B. & Treasure, T. Off-pump surgery is associated with reduced occurrence of stroke and other morbidity as compared with traditional coronary artery bypass grafting: a meta-analysis of systematically reviewed trials. Stroke 37, 2759–2769 (2006).
pubmed: 17008617 doi: 10.1161/01.STR.0000245081.52877.f2
Marasco, S. F., Sharwood, L. N. & Abramson, M. J. No improvement in neurocognitive outcomes after off-pump versus on-pump coronary revascularisation: a meta-analysis. Eur. J. Cardiothorac. Surg. 33, 961–970 (2008).
pubmed: 18424064 doi: 10.1016/j.ejcts.2008.03.022
Shimamura, J. et al. Systematic review and network meta-analysis of various nadir temperature strategies for hypothermic circulatory arrest for aortic arch surgery. Asian Cardiovasc. Thorac. Ann. 31, 102–114 (2023).
pubmed: 36571785 doi: 10.1177/02184923221144959
Miyata, H., Tomotaki, A., Motomura, N. & Takamoto, S. Operative mortality and complication risk model for all major cardiovascular operations in Japan. Ann. Thorac. Surg. 99, 130–139 (2015).
pubmed: 25442990 doi: 10.1016/j.athoracsur.2014.07.038
Liu, H., Chang, Q., Zhang, H. & Yu, C. Predictors of adverse outcome and transient neurological dysfunction following aortic arch replacement in 626 consecutive patients in China. Heart Lung Circ. 26, 172–178 (2017).
pubmed: 27637729 doi: 10.1016/j.hlc.2016.02.004
Ji, Q., Mei, Y., Wang, X. & Ding, W. On-pump versus off-pump coronary artery bypass surgery in high-risk patients. Int. Heart J. 55, 484–488 (2014).
pubmed: 25297502 doi: 10.1536/ihj.14-088
Borracci, R. A., Baldi, J. Jr, Ynon, D. & Rubio, M. Current hospital mortality, neurological deficit, and mid-term survival after surgery for acute type A aortic dissection in Argentina. Arch. Cardiol. Mex. 88, 454–459 (2018).
pubmed: 29857964
Barber, P. A. et al. Cerebral ischemic lesions on diffusion-weighted imaging are associated with neurocognitive decline after cardiac surgery. Stroke 39, 1427–1433 (2008).
pubmed: 18323490 doi: 10.1161/STROKEAHA.107.502989
Byrne, R. A. et al. 2023 ESC guidelines for the management of acute coronary syndromes. Eur. Heart J. 44, 3720–3826 (2023).
pubmed: 37622654 doi: 10.1093/eurheartj/ehad191
Wallentin, L. et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 361, 1045–1057 (2009).
pubmed: 19717846 doi: 10.1056/NEJMoa0904327
Parodi, G. et al. Safety of immediate reversal of anticoagulation by protamine to reduce bleeding complications after infarct artery stenting for acute myocardial infarction and adjunctive abciximab therapy. J. Thromb. Thrombolysis 30, 446–451 (2010).
pubmed: 20571920 pmcid: 2964489 doi: 10.1007/s11239-010-0481-5
Choi, J. H. et al. Safety and efficacy of immediate heparin reversal with protamine after complex percutaneous coronary intervention. BMC Cardiovasc. Disord. 22, 207 (2022).
pubmed: 35538419 pmcid: 9088099 doi: 10.1186/s12872-022-02650-5
Knuuti, J. et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 41, 407–477 (2020).
pubmed: 31504439 doi: 10.1093/eurheartj/ehz425
Sherwood, M. W. et al. Use of dual antiplatelet therapy and patient outcomes in those undergoing percutaneous coronary intervention: the ROCKET AF trial. JACC Cardiovasc. Interv. 9, 1694–1702 (2016).
pubmed: 27539689 pmcid: 6921699 doi: 10.1016/j.jcin.2016.05.039
Yu, J. J., Zou, C., Liu, W. Y. & Yang, G. P. Dual versus single antiplatelet therapy for patients with long-term oral anticoagulation undergoing coronary intervention: a systematic review and meta-analysis. J. Geriatr. Cardiol. 14, 725–736 (2017).
pubmed: 29581711 pmcid: 5863050
Tzeis, S. et al. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace 26, euae043 (2024).
pubmed: 38587017 pmcid: 11000153 doi: 10.1093/europace/euae043
Di Biase, L. et al. Periprocedural stroke and bleeding complications in patients undergoing catheter ablation of atrial fibrillation with different anticoagulation management: results from the Role of Coumadin in Preventing Thromboembolism in Atrial Fibrillation (AF) Patients Undergoing Catheter Ablation (COMPARE) randomized trial. Circulation 129, 2638–2644 (2014).
pubmed: 24744272 doi: 10.1161/CIRCULATIONAHA.113.006426
Cappato, R. et al. Uninterrupted rivaroxaban vs. uninterrupted vitamin K antagonists for catheter ablation in non-valvular atrial fibrillation. Eur. Heart J. 36, 1805–1811 (2015).
pubmed: 25975659 pmcid: 4508487 doi: 10.1093/eurheartj/ehv177
Calkins, H. et al. Uninterrupted dabigatran versus warfarin for ablation in atrial fibrillation. N. Engl. J. Med. 376, 1627–1636 (2017).
pubmed: 28317415 doi: 10.1056/NEJMoa1701005
Kirchhof, P. et al. Apixaban in patients at risk of stroke undergoing atrial fibrillation ablation. Eur. Heart J. 39, 2942–2955 (2018).
pubmed: 29579168 pmcid: 6110196 doi: 10.1093/eurheartj/ehy176
Hohnloser, S. H. et al. Uninterrupted edoxaban vs. vitamin K antagonists for ablation of atrial fibrillation: the ELIMINATE-AF trial. Eur. Heart J. 40, 3013–3021 (2019).
pubmed: 30976787 pmcid: 6754569 doi: 10.1093/eurheartj/ehz190
Romero, J. et al. Significant benefit of uninterrupted DOACs versus VKA during catheter ablation of atrial fibrillation. JACC Clin. Electrophysiol. 5, 1396–1405 (2019).
pubmed: 31857038 doi: 10.1016/j.jacep.2019.08.010
Cardoso, R. et al. An updated meta-analysis of novel oral anticoagulants versus vitamin K antagonists for uninterrupted anticoagulation in atrial fibrillation catheter ablation. Heart Rhythm 15, 107–115 (2018).
pubmed: 28917562 doi: 10.1016/j.hrthm.2017.09.011
van Vugt, S. P. G. et al. Meta-analysis of controlled studies on minimally interrupted vs. continuous use of non-vitamin K antagonist oral anticoagulants in catheter ablation for atrial fibrillation. Europace 23, 1961–1969 (2021).
pubmed: 34333631 pmcid: 8651164 doi: 10.1093/europace/euab175
Steffel, J. et al. 2021 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Europace 23, 1612–1676 (2021).
pubmed: 33895845 doi: 10.1093/europace/euab065
Cauchemez, B. et al. High-flow perfusion of sheaths for prevention of thromboembolic complications during complex catheter ablation in the left atrium. J. Cardiovasc. Electrophysiol. 15, 276–283 (2004).
pubmed: 15030415 doi: 10.1046/j.1540-8167.2004.03401.x
Calkins, H. et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 14, e275–e444 (2017).
pubmed: 28506916 pmcid: 6019327 doi: 10.1016/j.hrthm.2017.05.012
Cronin, E. M. et al. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. J. Interv. Card. Electrophysiol. 59, 145–298 (2020).
pubmed: 31984466 pmcid: 7223859 doi: 10.1007/s10840-019-00663-3
Yasar, S. J. et al. Heparin reversal with protamine sulfate is not required in atrial fibrillation ablation with suture hemostasis. J. Cardiovasc. Electrophysiol. 30, 2811–2817 (2019).
pubmed: 31661173 doi: 10.1111/jce.14253
Ghannam, M. et al. Protamine to expedite vascular hemostasis after catheter ablation of atrial fibrillation: a randomized controlled trial. Heart Rhythm 15, 1642–1647 (2018).
pubmed: 30661768 doi: 10.1016/j.hrthm.2018.06.045
Kewcharoen, J. et al. Periprocedural outcomes of protamine administration after catheter ablation of atrial fibrillation. Rev. Cardiovasc. Med. 23, 34 (2022).
pubmed: 35092226 doi: 10.31083/j.rcm2301034
Gurses, K. M. et al. Safety and efficacy outcomes of protamine administration for heparin reversal following cryoballoon-based pulmonary vein isolation. J. Interv. Card. Electrophysiol. 43, 161–167 (2015).
pubmed: 25724721 doi: 10.1007/s10840-015-9989-0
Patel, A. A. et al. The use of protamine after radiofrequency catheter ablation: a pilot study. J. Interv. Card. Electrophysiol. 18, 155–158 (2007).
pubmed: 17318446 doi: 10.1007/s10840-006-9063-z
Chilukuri, K. et al. Incidence and outcomes of protamine reactions in patients undergoing catheter ablation of atrial fibrillation. J. Interv. Card. Electrophysiol. 25, 175–181 (2009).
pubmed: 19263201 doi: 10.1007/s10840-009-9364-0
Leung, L. W. M. et al. Cardiac arrest following protamine administration: a case series. Europace 21, 886–892 (2019).
pubmed: 30649275 doi: 10.1093/europace/euy288
Cronin, E. M. et al. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. Heart Rhythm 17, e2–e154 (2020).
pubmed: 31085023 doi: 10.1016/j.hrthm.2019.03.002
Gottlieb, L. A., Dekker, L. R. C. & Coronel, R. The blinding period following ablation therapy for atrial fibrillation: proarrhythmic and antiarrhythmic pathophysiological mechanisms. JACC Clin. Electrophysiol. 7, 416–430 (2021).
pubmed: 33736761 doi: 10.1016/j.jacep.2021.01.011
Romero, J. et al. Oral anticoagulation after catheter ablation of atrial fibrillation and the associated risk of thromboembolic events and intracranial hemorrhage: a systematic review and meta-analysis. J. Cardiovasc. Electrophysiol. 30, 1250–1257 (2019).
pubmed: 31257677 doi: 10.1111/jce.14052
Proietti, R. et al. Anticoagulation after catheter ablation of atrial fibrillation: an unnecessary evil? A systematic review and meta-analysis. J. Cardiovasc. Electrophysiol. 30, 468–478 (2019).
pubmed: 30575175 doi: 10.1111/jce.13822
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02168829 (2024).
Siontis, K. C. et al. Thromboembolic prophylaxis protocol with warfarin after radiofrequency catheter ablation of infarct-related ventricular tachycardia. J. Cardiovasc. Electrophysiol. 29, 584–590 (2018).
pubmed: 29315941 doi: 10.1111/jce.13418
Stevenson, W. G. et al. Irrigated radiofrequency catheter ablation guided by electroanatomic mapping for recurrent ventricular tachycardia after myocardial infarction: the multicenter thermocool ventricular tachycardia ablation trial. Circulation 118, 2773–2782 (2008).
pubmed: 19064682 doi: 10.1161/CIRCULATIONAHA.108.788604
Meier, B. et al. EHRA/EAPCI expert consensus statement on catheter-based left atrial appendage occlusion. Europace 16, 1397–1416 (2014).
pubmed: 25172844 doi: 10.1093/europace/euu174
Flores-Umanzor, E. J. et al. Rationale and design of a randomized clinical trial to compare two antithrombotic strategies after left atrial appendage occlusion: double antiplatelet therapy vs. apixaban (ADALA study). J. Interv. Card. Electrophysiol. 59, 471–477 (2020).
pubmed: 32986176 doi: 10.1007/s10840-020-00884-x
Chavez-Ponce, A. et al. Utilization and outcomes of protamine after percutaneous left atrial appendage occlusion. Catheter. Cardiovasc. Interv. 102, 293–300 (2023).
pubmed: 37272681 doi: 10.1002/ccd.30743
Streb, W. et al. Rationale and design of a randomized clinical trial evaluating the efficacy of mechanical neuroprotection in reducing the risk of silent brain infarcts associated with percutaneous left atrial appendage closure: study protocol for a LAAC-SBI trial. Trials 24, 749 (2023).
pubmed: 37996955 pmcid: 10666419 doi: 10.1186/s13063-023-07766-3
Pouru, J. P. et al. Effectiveness of only aspirin or clopidogrel following percutaneous left atrial appendage closure. Am. J. Cardiol. 124, 1894–1899 (2019).
pubmed: 31668344 doi: 10.1016/j.amjcard.2019.08.050
Rodes-Cabau, J. et al. Changes in coagulation and platelet activation markers following transcatheter left atrial appendage closure. Am. J. Cardiol. 120, 87–91 (2017).
pubmed: 28495432 doi: 10.1016/j.amjcard.2017.03.253
Duthoit, G. et al. Reduced rivaroxaban dose versus dual antiplatelet therapy after left atrial appendage closure: ADRIFT a randomized pilot study. Circ. Cardiovasc. Interv. 13, e008481 (2020).
pubmed: 32674675 doi: 10.1161/CIRCINTERVENTIONS.119.008481
Della Rocca, D. G. et al. Half-dose direct oral anticoagulation versus standard antithrombotic therapy after left atrial appendage occlusion. JACC Cardiovasc. Interv. 14, 2353–2364 (2021).
pubmed: 34656496 doi: 10.1016/j.jcin.2021.07.031
Frerker, C. et al. Cerebral protection during mitraclip implantation: initial experience at 2 centers. JACC Cardiovasc. Interv. 9, 171–179 (2016).
pubmed: 26723763 doi: 10.1016/j.jcin.2015.09.039
Calabro, P. et al. Antithrombotic therapy in patients undergoing transcatheter interventions for structural heart disease. Circulation 144, 1323–1343 (2021).
pubmed: 34662163 doi: 10.1161/CIRCULATIONAHA.121.054305
Waechter, C. et al. Antithrombotic treatment and its association with outcome in a multicenter cohort of transcatheter edge-to-edge mitral valve repair patients. J. Cardiovasc. Dev. Dis. 9, 366 (2022).
pubmed: 36354765 pmcid: 9695441
Di Biase, L. et al. Antithrombotic therapy for patients undergoing cardiac electrophysiological and interventional procedures: JACC state-of-the-art review. J. Am. Coll. Cardiol. 83, 82–108 (2024).
pubmed: 38171713 doi: 10.1016/j.jacc.2023.09.831
Mehta, S. R. et al. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: the PCI-CURE study. Lancet 358, 527–533 (2001).
pubmed: 11520521 doi: 10.1016/S0140-6736(01)05701-4
Hioki, H. et al. Pre-procedural dual antiplatelet therapy in patients undergoing transcatheter aortic valve implantation increases risk of bleeding. Heart 103, 361–367 (2017).
pubmed: 27540180 doi: 10.1136/heartjnl-2016-309735
Brinkert, M. et al. Safety and efficacy of transcatheter aortic valve replacement with continuation of vitamin K antagonists or direct oral anticoagulants. JACC Cardiovasc. Interv. 14, 135–144 (2021).
pubmed: 33358653 doi: 10.1016/j.jcin.2020.09.062
Ten Berg, J. et al. Management of antithrombotic therapy in patients undergoing transcatheter aortic valve implantation: a consensus document of the ESC Working Group on Thrombosis and the European Association of Percutaneous Cardiovascular Interventions (EAPCI), in collaboration with the ESC Council on Valvular Heart Disease. Eur. Heart J. 42, 2265–2269 (2021).
pubmed: 33822924 doi: 10.1093/eurheartj/ehab196
Van Mieghem, N. M. et al. Filter-based cerebral embolic protection with transcatheter aortic valve implantation: the randomised MISTRAL-C trial. EuroIntervention 12, 499–507 (2016).
pubmed: 27436602 doi: 10.4244/EIJV12I4A84
Haussig, S. et al. Effect of a cerebral protection device on brain lesions following transcatheter aortic valve implantation in patients with severe aortic stenosis: the CLEAN-TAVI randomized clinical trial. JAMA 316, 592–601 (2016).
pubmed: 27532914 doi: 10.1001/jama.2016.10302
Kapadia, S. R. et al. Cerebral embolic protection during transcatheter aortic-valve replacement. N. Engl. J. Med. 387, 1253–1263 (2022).
pubmed: 36121045 doi: 10.1056/NEJMoa2204961
Lansky, A. J. et al. A prospective randomized evaluation of the TriGuard HDH embolic DEFLECTion device during transcatheter aortic valve implantation: results from the DEFLECT III trial. Eur. Heart J. 36, 2070–2078 (2015).
pubmed: 25990342 doi: 10.1093/eurheartj/ehv191
Lansky, A. J. et al. A randomized evaluation of the TriGuard HDH cerebral embolic protection device to Reduce the Impact of Cerebral Embolic LEsions after TransCatheter aortic valve implantation: the REFLECT I trial. Eur. Heart J. 42, 2670–2679 (2021).
pubmed: 34000004 doi: 10.1093/eurheartj/ehab213
Kneizeh, K. et al. Efficacy and safety of low-dose protamine in reducing bleeding complications during TAVI: a propensity-matched comparison. J. Clin. Med. 12, 4243 (2023).
pubmed: 37445282 pmcid: 10342582 doi: 10.3390/jcm12134243
Al-Kassou, B. et al. Safety and efficacy of protamine administration for prevention of bleeding complications in patients undergoing TAVR. JACC Cardiovasc. Interv. 13, 1471–1480 (2020).
pubmed: 32553337 doi: 10.1016/j.jcin.2020.03.041
Zbronski, K. et al. Protamine sulfate during transcatheter aortic valve implantation (PS TAVI) - a single-center, single-blind, randomized placebo-controlled trial. Kardiol. Pol. 79, 995–1002 (2021).
pubmed: 34292562 doi: 10.33963/KP.a2021.0070
Otto, C. M. et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 143, e35–e71 (2021).
pubmed: 33332149
Rodes-Cabau, J. et al. Aspirin versus aspirin plus clopidogrel as antithrombotic treatment following transcatheter aortic valve replacement with a balloon-expandable valve: the ARTE (Aspirin Versus Aspirin + Clopidogrel Following Transcatheter Aortic Valve Implantation) randomized clinical trial. JACC Cardiovasc. Interv. 10, 1357–1365 (2017).
pubmed: 28527771 doi: 10.1016/j.jcin.2017.04.014
Brouwer, J. et al. Aspirin with or without clopidogrel after transcatheter aortic-valve implantation. N. Engl. J. Med. 383, 1447–1457 (2020).
pubmed: 32865376 doi: 10.1056/NEJMoa2017815
Montalescot, G. et al. Apixaban and valve thrombosis after transcatheter aortic valve replacement: the ATLANTIS-4D-CT randomized clinical trial substudy. JACC Cardiovasc. Interv. 15, 1794–1804 (2022).
pubmed: 36137682 doi: 10.1016/j.jcin.2022.07.014
Dangas, G. D. et al. A controlled trial of rivaroxaban after transcatheter aortic-valve replacement. N. Engl. J. Med. 382, 120–129 (2020).
pubmed: 31733180 doi: 10.1056/NEJMoa1911425
Hart, R. G. et al. Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol. 13, 429–438 (2014).
pubmed: 24646875 doi: 10.1016/S1474-4422(13)70310-7
Diener, H. C. et al. Dabigatran or aspirin after embolic stroke of undetermined source in patients with patent foramen ovale: results from RE-SPECT ESUS. Stroke 52, 1065–1068 (2021).
pubmed: 33504190 doi: 10.1161/STROKEAHA.120.031237
Warnes, C. A. et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines for the management of adults with congenital heart disease). Circulation 118, 2395–2451 (2008).
pubmed: 18997168 doi: 10.1161/CIRCULATIONAHA.108.190811
Feltes, T. F. et al. Indications for cardiac catheterization and intervention in pediatric cardiac disease: a scientific statement from the American Heart Association. Circulation 123, 2607–2652 (2011).
pubmed: 21536996 doi: 10.1161/CIR.0b013e31821b1f10
Pristipino, C. et al. European position paper on the management of patients with patent foramen ovale. General approach and left circulation thromboembolism. Eur. Heart J. 40, 3182–3195 (2019).
pubmed: 30358849 doi: 10.1093/eurheartj/ehy649
Messé, S. R. et al. Stroke after aortic valve surgery. Circulation 129, 2253–2261 (2014).
pubmed: 24690611 pmcid: 4043861 doi: 10.1161/CIRCULATIONAHA.113.005084
Sandner, S. E. et al. Routine preoperative aortic computed tomography angiography is associated with reduced risk of stroke in coronary artery bypass grafting: a propensity-matched analysis. Eur. J. Cardiothorac. Surg. 57, 684–690 (2019).
Daniel, W. T. III et al. Trends in aortic clamp use during coronary artery bypass surgery: effect of aortic clamping strategies on neurologic outcomes. J. Thorac. Cardiovasc. Surg. 147, 652–657 (2014).
pubmed: 23477689 doi: 10.1016/j.jtcvs.2013.02.021
Emmert, M. Y. et al. Aortic no-touch technique makes the difference in off-pump coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg. 142, 1499–1506 (2011).
pubmed: 21683376 doi: 10.1016/j.jtcvs.2011.04.031
Slater, J. P. et al. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann. Thorac. Surg. 87, 36–44 (2009).
pubmed: 19101265 doi: 10.1016/j.athoracsur.2008.08.070
Koster, S., Hensens, A. G. & van der Palen, J. The long-term cognitive and functional outcomes of postoperative delirium after cardiac surgery. Ann. Thorac. Surg. 87, 1469–1474 (2009).
pubmed: 19379886 doi: 10.1016/j.athoracsur.2009.02.080
Subramanian, B. et al. A multicenter pilot study assessing regional cerebral oxygen desaturation frequency during cardiopulmonary bypass and responsiveness to an intervention algorithm. Anesth. Analg. 122, 1786–1793 (2016).
pubmed: 27028775 pmcid: 5508104 doi: 10.1213/ANE.0000000000001275
Murkin, J. M. et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth. Analg. 104, 51–58 (2007).
pubmed: 17179242 doi: 10.1213/01.ane.0000246814.29362.f4
Colak, Z. et al. Influence of intraoperative cerebral oximetry monitoring on neurocognitive function after coronary artery bypass surgery: a randomized, prospective study. Eur. J. Cardiothorac. Surg. 47, 447–454 (2015).
pubmed: 24810757 doi: 10.1093/ejcts/ezu193
Lei, L. et al. Cerebral oximetry and postoperative delirium after cardiac surgery: a randomised, controlled trial. Anaesthesia 72, 1456–1466 (2017).
pubmed: 28940368 doi: 10.1111/anae.14056
Uysal, S., Lin, H. M., Trinh, M., Park, C. H. & Reich, D. L. Optimizing cerebral oxygenation in cardiac surgery: a randomized controlled trial examining neurocognitive and perioperative outcomes. J. Thorac. Cardiovasc. Surg. 159, 943–953 e943 (2020).
pubmed: 31056357 doi: 10.1016/j.jtcvs.2019.03.036
Lee, G. et al. ESC/EACTS vs. ACC/AHA guidelines for the management of severe aortic stenosis. Eur. Heart J. 44, 796–812 (2023).
pubmed: 36632841 doi: 10.1093/eurheartj/ehac803
Vahanian, A. et al. 2021 ESC/EACTS guidelines for the management of valvular heart disease. Eur. Heart J. 43, 561–632 (2022).
pubmed: 34453165 doi: 10.1093/eurheartj/ehab395
Aboyans, V. et al. Antithrombotic therapies in aortic and peripheral arterial diseases in 2021: a consensus document from the ESC working group on aorta and peripheral vascular diseases, the ESC working group on thrombosis, and the ESC working group on cardiovascular pharmacotherapy. Eur. Heart J. 42, 4013–4024 (2021).
pubmed: 34279602 doi: 10.1093/eurheartj/ehab390
Markus, H. S., van der Worp, H. B. & Rothwell, P. M. Posterior circulation ischaemic stroke and transient ischaemic attack: diagnosis, investigation, and secondary prevention. Lancet Neurol. 12, 989–998 (2013).
pubmed: 24050733 doi: 10.1016/S1474-4422(13)70211-4
Nouh, A. et al. Identifying best practices to improve evaluation and management of in-hospital stroke: a scientific statement from the American Heart Association. Stroke 53, e165–e175 (2022).
pubmed: 35137601 doi: 10.1161/STR.0000000000000402
Kassardjian, C. D. et al. In-Patient code stroke: a quality improvement strategy to overcome knowledge-to-action gaps in response time. Stroke 48, 2176–2183 (2017).
pubmed: 28655812 doi: 10.1161/STROKEAHA.117.017622
Snavely, J. & Thompson, H. J. Nursing and institutional responsibilities for in-hospital stroke. Stroke 54, 2926–2934 (2023).
pubmed: 37732490 doi: 10.1161/STROKEAHA.123.042868
Hernández-García, C., Rodríguez-Rodríguez, A. & Egea-Guerrero, J. J. Brain injury biomarkers in the setting of cardiac surgery: still a world to explore. Brain Inj. 30, 10–17 (2016).
pubmed: 26556022 doi: 10.3109/02699052.2015.1079733
Lorts, A., Hehir, D. & Krawczeski, C. in Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care (eds. Eduardo M Da Cruz, E. M., Ivy, D. & Jaggers,J.) Section VII, 48 (Springer, 2014).
Lazibat, I. et al. Predictors of short-term neurocognitive outcome following coronary revascularisation (CABG) depending on the use of cardiopulmonary bypass. Coll. Antropol. 36, 827–833 (2012).
pubmed: 23213940
Georgiadis, D. et al. Predictive value of S-100beta and neuron-specific enolase serum levels for adverse neurologic outcome after cardiac surgery. J. Thorac. Cardiovasc. Surg. 119, 138–147 (2000).
pubmed: 10612773 doi: 10.1016/S0022-5223(00)70229-7
Lloyd, C. T. et al. Serum S-100 protein release and neuropsychologic outcome during coronary revascularization on the beating heart: a prospective randomized study. J. Thorac. Cardiovasc. Surg. 119, 148–154 (2000).
pubmed: 10612774 doi: 10.1016/S0022-5223(00)70230-3
Wang, X. et al. Relationship between postoperative biomarkers of neuronal injury and postoperative cognitive dysfunction: a meta-analysis. PLoS ONE 18, e0284728 (2023).
pubmed: 37098084 pmcid: 10128950 doi: 10.1371/journal.pone.0284728
LeMaire, S. A. et al. S100beta correlates with neurologic complications after aortic operation using circulatory arrest. Ann. Thorac. Surg. 71, 1913–1918 (2001).
pubmed: 11426768 doi: 10.1016/S0003-4975(01)02536-X
Sramko, M. et al. A novel biomarker-based approach for the detection of asymptomatic brain injury during catheter ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol. 25, 349–354 (2014).
pubmed: 24238018 doi: 10.1111/jce.12325
Alserr, A. H. et al. Using serum s100-β protein as a biomarker for comparing silent brain injury in carotid endarterectomy and carotid artery stenting. Int. Angiol. 38, 136–142 (2019).
pubmed: 30650951 doi: 10.23736/S0392-9590.19.04079-3
Brightwell, R. E., Sherwood, R. A., Athanasiou, T., Hamady, M. & Cheshire, N. J. The neurological morbidity of carotid revascularisation: using markers of cellular brain injury to compare CEA and CAS. Eur. J. Vasc. Endovasc. Surg. 34, 552–560 (2007).
pubmed: 17719806 doi: 10.1016/j.ejvs.2007.06.016
Reinsfelt, B. et al. Transcranial Doppler microembolic signals and serum marker evidence of brain injury during transcatheter aortic valve implantation. Acta Anaesthesiol. Scand. 56, 240–247 (2012).
pubmed: 22092012 doi: 10.1111/j.1399-6576.2011.02563.x
Wiberg, S. et al. Biomarkers of cerebral injury for prediction of postoperative cognitive dysfunction in patients undergoing cardiac surgery. J. Cardiothorac. Vasc. Anesth. 36, 125–132 (2022).
pubmed: 34130895 doi: 10.1053/j.jvca.2021.05.016
Nurcahyo, W. I. et al. Difference in GFAP levels in POCD and non-POCD patients after on pump CABG. Vasc. Health Risk Manag. 18, 915–925 (2022).
pubmed: 36605932 pmcid: 9809160 doi: 10.2147/VHRM.S386791
Szwed, K. et al. Novel markers for predicting type 2 neurologic complications of coronary artery bypass grafting. Ann. Thorac. Surg. 110, 599–607 (2020).
pubmed: 31863758 doi: 10.1016/j.athoracsur.2019.10.071
Barbu, M. et al. Serum biomarkers of brain injury after uncomplicated cardiac surgery: secondary analysis from a randomized trial. Acta Anaesthesiol. Scand. 66, 447–453 (2022).
pubmed: 35118644 pmcid: 9302991 doi: 10.1111/aas.14033
Alifier, M. et al. Cardiac surgery is associated with biomarker evidence of neuronal damage. J. Alzheimers Dis. 74, 1211–1220 (2020).
pubmed: 32176641 doi: 10.3233/JAD-191165
Levi, A. et al. Management and outcome of acute ischemic stroke complicating transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 15, 1808–1819 (2022).
pubmed: 36137683 doi: 10.1016/j.jcin.2022.06.033
Lip, G. Y. H. et al. Integrated care for optimizing the management of stroke and associated heart disease: a position paper of the European Society of Cardiology Council on Stroke. Eur. Heart J. 43, 2442–2460 (2022).
pubmed: 35552401 pmcid: 9259378 doi: 10.1093/eurheartj/ehac245
Turk, A. S. III et al. Aspiration thrombectomy versus stent retriever thrombectomy as first-line approach for large vessel occlusion (COMPASS): a multicentre, randomised, open label, blinded outcome, non-inferiority trial. Lancet 393, 998–1008 (2019).
pubmed: 30860055 doi: 10.1016/S0140-6736(19)30297-1
Goyal, M. et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 387, 1723–1731 (2016).
pubmed: 26898852 doi: 10.1016/S0140-6736(16)00163-X
Bendszus, M. et al. Endovascular thrombectomy for acute ischaemic stroke with established large infarct: multicentre, open-label, randomised trial. Lancet 402, 1753–1763 (2023).
pubmed: 37837989 doi: 10.1016/S0140-6736(23)02032-9
Sarraj, A. et al. Trial of endovascular thrombectomy for large ischemic strokes. N. Engl. J. Med. 388, 1259–1271 (2023).
pubmed: 36762865 doi: 10.1056/NEJMoa2214403
Ospel, J. M. & Goyal, M. A review of endovascular treatment for medium vessel occlusion stroke. J. Neurointerv. Surg. 13, 623–630 (2021).
pubmed: 33637570 doi: 10.1136/neurintsurg-2021-017321
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05151172 (2024).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05983757 (2024).
Jovin, T. G. et al. Trial of thrombectomy 6 to 24 hours after stroke due to basilar-artery occlusion. N. Engl. J. Med. 387, 1373–1384 (2022).
pubmed: 36239645 doi: 10.1056/NEJMoa2207576
Tao, C. et al. Trial of endovascular treatment of acute basilar-artery occlusion. N. Engl. J. Med. 387, 1361–1372 (2022).
pubmed: 36239644 doi: 10.1056/NEJMoa2206317
Majoie, C. B. et al. Value of intravenous thrombolysis in endovascular treatment for large-vessel anterior circulation stroke: individual participant data meta-analysis of six randomised trials. Lancet 402, 965–974 (2023).
pubmed: 37640037 doi: 10.1016/S0140-6736(23)01142-X
Sluis, W. M. et al. Timing and causes of death after endovascular thrombectomy in patients with acute ischemic stroke. Eur. Stroke J. 8, 215–223 (2023).
pubmed: 37021180 doi: 10.1177/23969873221143210
Lim, M. J. R. et al. Symptomatic intracerebral hemorrhage after non-emergency percutaneous coronary intervention: incidence, risk factors, and association with cardiovascular outcomes. Front. Cardiovasc. Med. 9, 936498 (2022).
pubmed: 36186990 pmcid: 9524143 doi: 10.3389/fcvm.2022.936498
Al-Shahi Salman, R. et al. Absolute risk and predictors of the growth of acute spontaneous intracerebral haemorrhage: a systematic review and meta-analysis of individual patient data. Lancet Neurol. 17, 885–894 (2018).
pubmed: 30120039 pmcid: 6143589 doi: 10.1016/S1474-4422(18)30253-9
Witsch, J. et al. Prognostication after intracerebral hemorrhage: a review. Neurol. Res. Pract. 3, 22 (2021).
pubmed: 33934715 pmcid: 8091769 doi: 10.1186/s42466-021-00120-5
Ha, A. C. T. et al. Intracranial hemorrhage during dual antiplatelet therapy: JACC review topic of the week. J. Am. Coll. Cardiol. 78, 1372–1384 (2021).
pubmed: 34556323 doi: 10.1016/j.jacc.2021.07.048
Qureshi, A. I. et al. Outcomes of intensive systolic blood pressure reduction in patients with intracerebral hemorrhage and excessively high initial systolic blood pressure: post hoc analysis of a randomized clinical trial. JAMA Neurol. 77, 1355–1365 (2020).
pubmed: 32897310 doi: 10.1001/jamaneurol.2020.3075
Baharoglu, M. I. et al. Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral haemorrhage associated with antiplatelet therapy (PATCH): a randomised, open-label, phase 3 trial. Lancet 387, 2605–2613 (2016).
pubmed: 27178479 doi: 10.1016/S0140-6736(16)30392-0
Yaghi, S. et al. Treatment and outcome of hemorrhagic transformation after intravenous alteplase in acute ischemic stroke: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 48, e343–e361 (2017).
pubmed: 29097489 doi: 10.1161/STR.0000000000000152
Langhorne, P., Ramachandra, S. & Stroke Unit Trialists’ Collaboration. Organised inpatient (stroke unit) care for stroke: network meta-analysis. Cochrane Database Syst. Rev. 4, CD000197 (2020).
pubmed: 32324916
Waje-Andreassen, U. et al. European stroke organisation certification of stroke units and stroke centres. Eur. Stroke J. 3, 220–226 (2018).
pubmed: 31008352 pmcid: 6453203 doi: 10.1177/2396987318778971
Strazzullo, P. et al. Excess body weight and incidence of stroke: meta-analysis of prospective studies with 2 million participants. Stroke 41, e418–426 (2010).
pubmed: 20299666 doi: 10.1161/STROKEAHA.109.576967
Ettehad, D. et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 387, 957–967 (2016).
pubmed: 26724178 doi: 10.1016/S0140-6736(15)01225-8
Amarenco, P., Labreuche, J., Lavallee, P. & Touboul, P. J. Statins in stroke prevention and carotid atherosclerosis: systematic review and up-to-date meta-analysis. Stroke 35, 2902–2909 (2004).
pubmed: 15514180 doi: 10.1161/01.STR.0000147965.52712.fa
Artinian, N. T. et al. Interventions to promote physical activity and dietary lifestyle changes for cardiovascular risk factor reduction in adults: a scientific statement from the American Heart Association. Circulation 122, 406–441 (2010).
pubmed: 20625115 pmcid: 6893884 doi: 10.1161/CIR.0b013e3181e8edf1
Glynn, L. G., Murphy, A. W., Smith, S. M., Schroeder, K. & Fahey, T. Self-monitoring and other non-pharmacological interventions to improve the management of hypertension in primary care: a systematic review. Br. J. Gen. Pract. 60, e476–e488 (2010).
pubmed: 21144192 pmcid: 2991764 doi: 10.3399/bjgp10X544113
Kamiya, Y., Whelan, B., Timonen, V. & Kenny, R. A. The differential impact of subjective and objective aspects of social engagement on cardiovascular risk factors. BMC Geriatr. 10, 81 (2010).
pubmed: 21044327 pmcid: 2987781 doi: 10.1186/1471-2318-10-81
Zhou, J. et al. A systematic review and meta-analysis of health utility values among patients with ischemic stroke. Front. Neurol. 14, 1219679 (2023).
pubmed: 37731850 pmcid: 10507900 doi: 10.3389/fneur.2023.1219679
Milani, G. et al. Variations in health-related quality of life after stroke: insights from a clinical trial on arm rehabilitation with a long-term follow-up. Adv. Rehabil. Sci. Pract. 12, 27536351231214845 (2023).
pubmed: 38034067 pmcid: 10687933
Christensen, M. C., Mayer, S. & Ferran, J. M. Quality of life after intracerebral hemorrhage: results of the Factor Seven for Acute Hemorrhagic Stroke (FAST) trial. Stroke 40, 1677–1682 (2009).
pubmed: 19265046 doi: 10.1161/STROKEAHA.108.538967
Ali, A. et al. Effect of exercise interventions on health-related quality of life after stroke and transient ischemic attack: a systematic review and meta-analysis. Stroke 52, 2445–2455 (2021).
pubmed: 34039033 doi: 10.1161/STROKEAHA.120.032979
Romiti, G. F. et al. Adherence to the ‘Atrial Fibrillation Better Care’ pathway in patients with atrial fibrillation: impact on clinical outcomes-a systematic review and meta-analysis of 285,000 patients. Thromb. Haemost. 122, 406–414 (2022).
pubmed: 34020488 doi: 10.1055/a-1515-9630
Hindricks, G. et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the task force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 42, 373–498 (2021).
pubmed: 32860505 doi: 10.1093/eurheartj/ehaa612
Sagris, D., Lip, G., Korompoki, E., Ntaios, G. & Vemmos, K. Adherence to an integrated care pathway for stroke is associated with lower risk of major cardiovascular events: a report from the Athens Stroke Registry. Eur. J. Intern. Med. 122, 61–67 (2024).
pubmed: 38103953 doi: 10.1016/j.ejim.2023.12.010
Goksuluk, H. et al. Comparison of frequency of silent cerebral infarction after coronary angiography and stenting with transradial versus transfemoral approaches. Am. J. Cardiol. 122, 548–553 (2018).
pubmed: 29960662 doi: 10.1016/j.amjcard.2018.04.056
Kim, I. C. et al. Incidence and predictors of silent embolic cerebral infarction following diagnostic coronary angiography. Int. J. Cardiol. 148, 179–182 (2011).
pubmed: 19942304 doi: 10.1016/j.ijcard.2009.10.053
Hamon, M. et al. Silent cerebral infarcts after cardiac catheterization: a randomized comparison of radial and femoral approaches. Am. Heart J. 164, 449–454 e441 (2012).
pubmed: 23067900 doi: 10.1016/j.ahj.2012.04.005
Stein, L. et al. Intermediate-term risk of stroke following cardiac procedures in a nationally representative data set. J. Am. Heart Assoc. 6, e006900 (2017).
pubmed: 29197827 pmcid: 5779011 doi: 10.1161/JAHA.117.006900
Hoffman, S. J. et al. Trends, predictors, and outcomes of cerebrovascular events related to percutaneous coronary intervention: a 16-year single-center experience. JACC Cardiovasc. Interv. 4, 415–422 (2011).
pubmed: 21511221 doi: 10.1016/j.jcin.2010.11.010
Wexler, N. Z. et al. Adverse impact of peri-procedural stroke in patients who underwent percutaneous coronary intervention. Am. J. Cardiol. 181, 18–24 (2022).
pubmed: 35999069 doi: 10.1016/j.amjcard.2022.06.063
Yang, C. et al. Intracranial hemorrhage in hospitalized patients following percutaneous coronary intervention: a large cohort analysis from a single center. Diagnostics 13, 2422 (2023).
pubmed: 37510165 pmcid: 10378240 doi: 10.3390/diagnostics13142422
Uyanik, M., Yildirim, U., Avci, B. & Soylu, K. Assessment of silent brain injury in patients undergoing elective percutaneous coronary intervention due to chronic total occlusion. Scand. Cardiovasc. J. 57, 25–30 (2023).
pubmed: 36443919 doi: 10.1080/14017431.2022.2150786
Werner, N. et al. Incidence and clinical impact of stroke complicating percutaneous coronary intervention: results of the Euro heart survey percutaneous coronary interventions registry. Circ. Cardiovasc. Interv. 6, 362–369 (2013).
pubmed: 23899872 doi: 10.1161/CIRCINTERVENTIONS.112.000170
Trivedi, S. J., Cooper, M. J., Ong, A. T. L. & Denniss, A. R. Low incidence of ischemic stroke associated with thrombus aspiration in STEMI patients undergoing primary PCI. J. Invasive Cardiol. 33, E805–E807 (2021).
pubmed: 34433694 doi: 10.25270/jic/20.00641
Laible, M. et al. Peri-procedural silent cerebral infarcts after left atrial appendage occlusion. Eur. J. Neurol. 24, 53–57 (2017).
pubmed: 27647674 doi: 10.1111/ene.13129
Bellmann, B. et al. Long-term follow up of 3 T MRI-detected brain lesions after percutaneous catheter-based left atrial appendage closure. Catheter. Cardiovasc. Interv. 92, 327–333 (2018).
pubmed: 29737618 doi: 10.1002/ccd.27611
Rillig, A. et al. Left atrial appendage angiography is associated with the incidence and number of magnetic resonance imaging-detected brain lesions after percutaneous catheter-based left atrial appendage closure. Heart Rhythm 15, 3–8 (2018).
pubmed: 29304951 doi: 10.1016/j.hrthm.2017.11.015
Braemswig, T. B. et al. New cerebral microbleeds after catheter-based structural heart interventions: an exploratory analysis. J. Am. Heart Assoc. 12, e8189 (2023).
pubmed: 36734351 pmcid: 9973666 doi: 10.1161/JAHA.122.027284
Seeger, J. et al. Efficacy and safety of percutaneous left atrial appendage closure to prevent thromboembolic events in atrial fibrillation patients with high stroke and bleeding risk. Clin. Res. Cardiol. 105, 225–229 (2016).
pubmed: 26318322 doi: 10.1007/s00392-015-0910-8
Maier, A. et al. Catheter based left atrial appendage closure in-hospital outcomes in Germany from 2016 to 2020. Clin. Res. Cardiol. 113, 1419–1429 (2024).
pubmed: 37698619
Khan, M. Z. et al. Intracranial bleeding and associated outcomes in atrial fibrillation patients undergoing percutaneous left atrial appendage occlusion: insights from National Inpatient Sample 2016-2020. Heart Rhythm O2 4, 433–439 (2023).
pubmed: 37520018 pmcid: 10373143 doi: 10.1016/j.hroo.2023.06.002
Tzikas, A. et al. Patients with intracranial bleeding and atrial fibrillation treated with left atrial appendage occlusion: results from the Amplatzer Cardiac Plug registry. Int. J. Cardiol. 236, 232–236 (2017).
pubmed: 28215464 doi: 10.1016/j.ijcard.2017.02.042
Holmes, D. R. et al. Percutaneous closure of the left atrial appendage versus warfarin therapy for prevention of stroke in patients with atrial fibrillation: a randomised non-inferiority trial. Lancet 374, 534–542 (2009).
pubmed: 19683639 doi: 10.1016/S0140-6736(09)61343-X
Holmes, D. R. Jr et al. Prospective randomized evaluation of the Watchman Left Atrial Appendage Closure device in patients with atrial fibrillation versus long-term warfarin therapy: the PREVAIL trial. J. Am. Coll. Cardiol. 64, 1–12 (2014).
pubmed: 24998121 doi: 10.1016/j.jacc.2014.04.029
Osmancik, P. et al. Left atrial appendage closure versus direct oral anticoagulants in high-risk patients with atrial fibrillation. J. Am. Coll. Cardiol. 75, 3122–3135 (2020).
pubmed: 32586585 doi: 10.1016/j.jacc.2020.04.067
Freeman, J. V. et al. The NCDR left atrial appendage occlusion registry. J. Am. Coll. Cardiol. 75, 1503–1518 (2020).
pubmed: 32238316 pmcid: 7205034 doi: 10.1016/j.jacc.2019.12.040
Thevathasan, T. et al. Safety and healthcare resource utilization in patients undergoing left atrial appendage closure—a nationwide analysis. J. Clin. Med. 12, 4573 (2023).
pubmed: 37510689 pmcid: 10380523 doi: 10.3390/jcm12144573
Chen, C., Chen, Y., Qu, L., Su, X. & Chen, Y. 3-Year outcomes after left atrial appendage closure in patients with nonvalvular atrial fibrillation: cardiomyopathy related with increased death and stroke rate. BMC Cardiovasc. Disord. 23, 27 (2023).
pubmed: 36650429 pmcid: 9844026 doi: 10.1186/s12872-023-03054-9
Mugnai, G. et al. Complications in the setting of percutaneous atrial fibrillation ablation using radiofrequency and cryoballoon techniques: a single-center study in a large cohort of patients. Int. J. Cardiol. 196, 42–49 (2015).
pubmed: 26080278 doi: 10.1016/j.ijcard.2015.05.145
Chun, K. R. J. et al. Complications in catheter ablation of atrial fibrillation in 3,000 consecutive procedures: balloon versus radiofrequency current ablation. JACC Clin. Electrophysiol. 3, 154–161 (2017).
pubmed: 29759388 doi: 10.1016/j.jacep.2016.07.002
Hussein, A. A. et al. Radiofrequency ablation of atrial fibrillation under therapeutic international normalized ratio: a safe and efficacious periprocedural anticoagulation strategy. Heart Rhythm 6, 1425–1429 (2009).
pubmed: 19968920 doi: 10.1016/j.hrthm.2009.07.007
Patel, D. et al. Long-term functional and neurocognitive recovery in patients who had an acute cerebrovascular event secondary to catheter ablation for atrial fibrillation. J. Cardiovasc. Electrophysiol. 21, 412–417 (2010).
pubmed: 19925610 doi: 10.1111/j.1540-8167.2009.01650.x
Cappato, R. et al. Prevalence and causes of fatal outcome in catheter ablation of atrial fibrillation. J. Am. Coll. Cardiol. 53, 1798–1803 (2009).
pubmed: 19422987 doi: 10.1016/j.jacc.2009.02.022
Liu, Y. et al. Incidence and outcomes of cerebrovascular events complicating catheter ablation for atrial fibrillation. Europace 18, 1357–1365 (2016).
pubmed: 26705560 doi: 10.1093/europace/euv356
Deneke, T. et al. Acute safety and efficacy of a novel multipolar irrigated radiofrequency ablation catheter for pulmonary vein isolation. J. Cardiovasc. Electrophysiol. 25, 339–345 (2014).
pubmed: 24237612 doi: 10.1111/jce.12316
Herrera Siklody, C. et al. Incidence of asymptomatic intracranial embolic events after pulmonary vein isolation: comparison of different atrial fibrillation ablation technologies in a multicenter study. J. Am. Coll. Cardiol. 58, 681–688 (2011).
pubmed: 21664090 doi: 10.1016/j.jacc.2011.04.010
Wasmer, K. et al. Safety profile of multielectrode-phased radiofrequency pulmonary vein ablation catheter and irrigated radiofrequency catheter. Europace 18, 78–84 (2016).
pubmed: 25883082 doi: 10.1093/europace/euv046
Hummel, J. et al. Evaluation of stroke incidence with duty-cycled multielectrode-phased radiofrequency ablation of persistent atrial fibrillation results of the VICTORY AF Study. J. Cardiovasc. Electrophysiol. 31, 1289–1297 (2020).
pubmed: 32270538 doi: 10.1111/jce.14483
McCready, J. et al. Safety and efficacy of multipolar pulmonary vein ablation catheter vs. irrigated radiofrequency ablation for paroxysmal atrial fibrillation: a randomized multicentre trial. Europace 16, 1145–1153 (2014).
pubmed: 24843051 pmcid: 4114331 doi: 10.1093/europace/euu064
Andrade, J. G. et al. Efficacy and safety of atrial fibrillation ablation with phased radiofrequency energy and multielectrode catheters. Heart Rhythm 9, 289–296 (2012).
pubmed: 21907169 doi: 10.1016/j.hrthm.2011.09.009
Reinsch, N. et al. Cerebral safety after pulsed field ablation for paroxysmal atrial fibrillation. Heart Rhythm 19, 1813–1818 (2022).
pubmed: 35718318 doi: 10.1016/j.hrthm.2022.06.018
Ekanem, E. et al. Multi-national survey on the methods, efficacy, and safety on the post-approval clinical use of pulsed field ablation (MANIFEST-PF). Europace 24, 1256–1266 (2022).
pubmed: 35647644 pmcid: 9435639 doi: 10.1093/europace/euac050
Reddy, V. Y. et al. Pulsed field ablation of paroxysmal atrial fibrillation: 1-year outcomes of IMPULSE, PEFCAT, and PEFCAT II. JACC Clin. Electrophysiol. 7, 614–627 (2021).
pubmed: 33933412 doi: 10.1016/j.jacep.2021.02.014
Chen, W. J. et al. Impact of high-power short-duration atrial fibrillation ablation technique on the incidence of silent cerebral embolism: a prospective randomized controlled study. BMC Med. 21, 461 (2023).
pubmed: 37996906 pmcid: 10666361 doi: 10.1186/s12916-023-03180-3
Yavin, H. D. et al. Impact of high-power short-duration radiofrequency ablation on long-term lesion durability for atrial fibrillation ablation. JACC Clin. Electrophysiol. 6, 973–985 (2020).
pubmed: 32819533 doi: 10.1016/j.jacep.2020.04.023
Dikdan, S. J. et al. Comparison of clinical and procedural outcomes between high-power short-duration, standard-power standard-duration, and temperature-controlled noncontact force guided ablation for atrial fibrillation. J. Cardiovasc. Electrophysiol. 32, 608–615 (2021).
pubmed: 33415782 doi: 10.1111/jce.14868
Winkle, R. A. et al. High-power, short-duration atrial fibrillation ablations using contact force sensing catheters: outcomes and predictors of success including posterior wall isolation. Heart Rhythm 17, 1223–1231 (2020).
pubmed: 32272229 doi: 10.1016/j.hrthm.2020.03.022
Winkle, R. A. et al. Low complication rates using high power (45-50 W) for short duration for atrial fibrillation ablations. Heart Rhythm 16, 165–169 (2019).
pubmed: 30712645 doi: 10.1016/j.hrthm.2018.11.031
Reddy, V. Y. et al. Pulmonary vein isolation with very high power, short duration, temperature-controlled lesions: the QDOT-FAST trial. JACC Clin. Electrophysiol. 5, 778–786 (2019).
pubmed: 31320006 doi: 10.1016/j.jacep.2019.04.009
Mueller, J. et al. Safety aspects of very high power very short duration atrial fibrillation ablation using a modified radiofrequency RF-generator: single-center experience. J. Cardiovasc. Electrophysiol. 33, 920–927 (2022).
pubmed: 35233883 doi: 10.1111/jce.15433
Boga, M. et al. Incidence and predictors of stroke and silent cerebral embolism following very high-power short-duration atrial fibrillation ablation. Europace 25, euad327 (2023).
pubmed: 37931067 pmcid: 10653180 doi: 10.1093/europace/euad327
Popa, M. A. et al. Safety profile and long-term efficacy of very high-power short-duration (60-70 W) catheter ablation for atrial fibrillation: results of a large comparative analysis. Europace 25, 408–416 (2023).
pubmed: 36504120 doi: 10.1093/europace/euac215
Solimene, F. et al. One-year outcomes in patients undergoing very high-power short-duration ablation for atrial fibrillation. J. Interv. Card. Electrophysiol. 66, 1911–1917 (2023).
pubmed: 36897460 pmcid: 10570155 doi: 10.1007/s10840-023-01520-0
Miyazaki, S. et al. Silent cerebral events/lesions after second-generation cryoballoon ablation: how can we reduce the risk of silent strokes? Heart Rhythm 16, 41–48 (2019).
pubmed: 30017816 doi: 10.1016/j.hrthm.2018.07.011
Nakamura, T. et al. Incidence of silent cerebral infarctions after catheter ablation of atrial fibrillation utilizing the second-generation cryoballoon. Europace 19, 1681–1688 (2017).
pubmed: 27702854 doi: 10.1093/europace/euw191
Santoro, F. et al. Stroke and left atrial thrombi after cryoballoon ablation of atrial fibrillation: incidence and predictors. Results from a long-term follow-up. J. Thromb. Thrombolysis 51, 74–80 (2021).
pubmed: 32447744 doi: 10.1007/s11239-020-02148-x
Blazek, S. et al. Incidence, characteristics and functional implications of cerebral embolic lesions after the MitraClip procedure. EuroIntervention 10, 1195–1203 (2015).
pubmed: 24831647 doi: 10.4244/EIJY14M05_10
Barth, S. et al. Incidence and clinical impact of cerebral lesions after the MitraClipA(R) procedure. J. Heart Valve Dis. 26, 175–184 (2017).
pubmed: 28820547
Braemswig, T. B. et al. Cerebral embolisation during transcatheter edge-to-edge repair of the mitral valve with the MitraClip system: a prospective, observational study. EuroIntervention 18, e160–e168 (2022).
pubmed: 34916177 pmcid: 9904372 doi: 10.4244/EIJ-D-21-00646
Nickenig, G. et al. Percutaneous mitral valve edge-to-edge repair: in-hospital results and 1-year follow-up of 628 patients of the 2011-2012 Pilot European Sentinel Registry. J. Am. Coll. Cardiol. 64, 875–884 (2014).
pubmed: 25169171 doi: 10.1016/j.jacc.2014.06.1166
Puls, M. et al. One-year outcomes and predictors of mortality after MitraClip therapy in contemporary clinical practice: results from the German transcatheter mitral valve interventions registry. Eur. Heart J. 37, 703–712 (2016).
pubmed: 26614824 doi: 10.1093/eurheartj/ehv627
Feldman, T. et al. Percutaneous repair or surgery for mitral regurgitation. N. Engl. J. Med. 364, 1395–1406 (2011).
pubmed: 21463154 doi: 10.1056/NEJMoa1009355
Glower, D. D. et al. Percutaneous mitral valve repair for mitral regurgitation in high-risk patients: results of the EVEREST II study. J. Am. Coll. Cardiol. 64, 172–181 (2014).
pubmed: 25011722 doi: 10.1016/j.jacc.2013.12.062
Maisano, F. et al. Percutaneous mitral valve interventions in the real world: early and 1-year results from the ACCESS-EU, a prospective, multicenter, nonrandomized post-approval study of the MitraClip therapy in Europe. J. Am. Coll. Cardiol. 62, 1052–1061 (2013).
pubmed: 23747789 doi: 10.1016/j.jacc.2013.02.094
Bapat, V. et al. Early experience with new transcatheter mitral valve replacement. J. Am. Coll. Cardiol. 71, 12–21 (2018).
pubmed: 29102689 doi: 10.1016/j.jacc.2017.10.061
Yoon, S. H. et al. Transcatheter mitral valve replacement for degenerated bioprosthetic valves and failed annuloplasty rings. J. Am. Coll. Cardiol. 70, 1121–1131 (2017).
pubmed: 28838360 doi: 10.1016/j.jacc.2017.07.714
Eleid, M. F. et al. Percutaneous transvenous transseptal transcatheter valve implantation in failed bioprosthetic mitral valves, ring annuloplasty, and severe mitral annular calcification. JACC Cardiovasc. Interv. 9, 1161–1174 (2016).
pubmed: 27085576 doi: 10.1016/j.jcin.2016.02.041
Frerker, C. et al. Transcatheter implantation of aortic valve prostheses into degenerated mitral valve bioprostheses and failed annuloplasty rings: outcomes according to access route and Mitral Valve Academic Research Consortium (MVARC) criteria. EuroIntervention 12, 1520–1526 (2016).
pubmed: 27998844 doi: 10.4244/EIJ-D-16-00209
Sengupta, A. et al. Reoperative mitral surgery versus transcatheter mitral valve replacement: a systematic review. J. Am. Heart Assoc. 10, e019854 (2021).
pubmed: 33686870 pmcid: 8174229 doi: 10.1161/JAHA.120.019854
Guerrero, M. E. et al. 5-year prospective evaluation of mitral valve-in-valve, valve-in-ring, and valve-in-MAC outcomes: MITRAL trial final results. JACC Cardiovasc. Interv. 16, 2211–2227 (2023).
pubmed: 37758379 doi: 10.1016/j.jcin.2023.06.041
Hu, J. et al. Transcatheter mitral valve implantation for degenerated mitral bioprostheses or failed surgical annuloplasty rings: a systematic review and meta-analysis. J. Card. Surg. 33, 508–519 (2018).
pubmed: 29989214 pmcid: 6175121 doi: 10.1111/jocs.13767
Van Belle, E. et al. Cerebral microbleeds during transcatheter aortic valve replacement: a prospective magnetic resonance imaging cohort. Circulation 146, 383–397 (2022).
pubmed: 35722876 pmcid: 9345525 doi: 10.1161/CIRCULATIONAHA.121.057145
Shah, K. et al. Meta-analysis comparing the frequency of stroke after transcatheter versus surgical aortic valve replacement. Am. J. Cardiol. 122, 1215–1221 (2018).
pubmed: 30089530 pmcid: 6503855 doi: 10.1016/j.amjcard.2018.06.032
Carroll, J. D. et al. STS-ACC TVT registry of transcatheter aortic valve replacement. Ann. Thorac. Surg. 111, 701–722 (2021).
pubmed: 33213826 doi: 10.1016/j.athoracsur.2020.09.002
Kapadia, S. et al. Insights into timing, risk factors, and outcomes of stroke and transient ischemic attack after transcatheter aortic valve replacement in the PARTNER trial (Placement of Aortic Transcatheter Valves). Circ. Cardiovasc. Interv. 9, e002981 (2016).
pubmed: 27601428 doi: 10.1161/CIRCINTERVENTIONS.115.002981
Eggebrecht, H. et al. Risk of stroke after transcatheter aortic valve implantation (TAVI): a meta-analysis of 10,037 published patients. EuroIntervention 8, 129–138 (2012).
pubmed: 22391581 doi: 10.4244/EIJV8I1A20
Macherey, S. et al. Meta-analysis of stroke and mortality rates in patients undergoing valve-in-valve transcatheter aortic valve replacement. J. Am. Heart Assoc. 10, e019512 (2021).
pubmed: 33682426 pmcid: 8174195 doi: 10.1161/JAHA.120.019512
Lee, H. A. et al. Balloon-expandable versus self-expanding transcatheter aortic valve replacement for bioprosthetic dysfunction: a systematic review and meta-analysis. PLoS ONE 15, e0233894 (2020).
pubmed: 32479546 pmcid: 7263630 doi: 10.1371/journal.pone.0233894
Holzer, R. et al. Characteristics and safety of interventions and procedures performed during catheterisation of patients with congenital heart disease: early report from the national cardiovascular data registry. Cardiol. Young 26, 1202–1212 (2016).
pubmed: 26455737 doi: 10.1017/S1047951115002218
Harrar, D. B. et al. Stroke after cardiac catheterization in children. Pediatr. Neurol. 100, 42–48 (2019).
pubmed: 31481331 doi: 10.1016/j.pediatrneurol.2019.07.005
Quinn, B. P. et al. Procedural risk in congenital cardiac catheterization (PREDIC(3)T). J. Am. Heart Assoc. 11, e022832 (2022).
pubmed: 34935425 doi: 10.1161/JAHA.121.022832
Oktay Tureli, H. et al. Risk of cerebral embolism after interventional closure of symptomatic patent foramen ovale or atrial septal defect: a diffusion-weighted MRI and neuron-specific enolase-based study. J. Invasive Cardiol. 25, 519–524 (2013).
pubmed: 24088426
Singh, V. et al. Influence of hospital volume on outcomes of percutaneous atrial septal defect and patent foramen ovale closure: a 10-years US perspective. Catheter. Cardiovasc. Interv. 85, 1073–1081 (2015).
pubmed: 25534392 doi: 10.1002/ccd.25794
Abaci, A., Unlu, S., Alsancak, Y., Kaya, U. & Sezenoz, B. Short and long term complications of device closure of atrial septal defect and patent foramen ovale: meta-analysis of 28,142 patients from 203 studies. Catheter. Cardiovasc. Interv. 82, 1123–1138 (2013).
pubmed: 23412921 doi: 10.1002/ccd.24875
Everett, A. D. et al. Community use of the amplatzer atrial septal defect occluder: results of the multicenter MAGIC atrial septal defect study. Pediatr. Cardiol. 30, 240–247 (2009).
pubmed: 19015911 doi: 10.1007/s00246-008-9325-x
Esch, J. J., Porras, D., Bergersen, L., Jenkins, K. J. & Marshall, A. C. Systemic embolic complications of pulmonary vein angioplasty in children. Pediatr. Cardiol. 36, 1357–1362 (2015).
pubmed: 25835204 doi: 10.1007/s00246-015-1165-x
Prieto, L. R., Schoenhagen, P., Arruda, M. J., Natale, A. & Worley, S. E. Comparison of stent versus balloon angioplasty for pulmonary vein stenosis complicating pulmonary vein isolation. J. Cardiovasc. Electrophysiol. 19, 673–678 (2008).
pubmed: 18284494 doi: 10.1111/j.1540-8167.2008.01110.x
Holzer, R. et al. Stenting of aortic coarctation: acute, intermediate, and long-term results of a prospective multi-institutional registry–Congenital Cardiovascular Interventional Study Consortium (CCISC). Catheter. Cardiovasc. Interv. 76, 553–563 (2010).
pubmed: 20882661 doi: 10.1002/ccd.22587
Forbes, T. J. et al. Procedural results and acute complications in stenting native and recurrent coarctation of the aorta in patients over 4 years of age: a multi-institutional study. Catheter. Cardiovasc. Interv. 70, 276–285 (2007).
pubmed: 17630670 doi: 10.1002/ccd.21164
Lefort, B. et al. Immediate and midterm results of balloon angioplasty for recurrent aortic coarctation in children aged <1 year. Arch. Cardiovasc. Dis. 111, 172–179 (2018).
pubmed: 29030063 doi: 10.1016/j.acvd.2017.05.007
Yetman, A. T. et al. Balloon angioplasty of recurrent coarctation: a 12-year review. J. Am. Coll. Cardiol. 30, 811–816 (1997).
pubmed: 9283545 doi: 10.1016/S0735-1097(97)00228-3
Djaiani, G. et al. Off-pump coronary bypass surgery: risk of ischemic brain lesions in patients with atheromatous thoracic aorta. Can. J. Anaesth. 53, 795–801 (2006).
pubmed: 16873346 doi: 10.1007/BF03022796
Patel, N. et al. Perioperative cerebral microbleeds after adult cardiac surgery. Stroke 50, 336–343 (2019).
pubmed: 30572811 doi: 10.1161/STROKEAHA.118.023355
Head, S. J. et al. Stroke rates following surgical versus percutaneous coronary revascularization. J. Am. Coll. Cardiol. 72, 386–398 (2018).
pubmed: 30025574 doi: 10.1016/j.jacc.2018.04.071
Moreyra, A. E. et al. Frequency of stroke after percutaneous coronary intervention or coronary artery bypass grafting (from an Eleven-Year Statewide Analysis). Am. J. Cardiol. 119, 197–202 (2017).
pubmed: 27817795 doi: 10.1016/j.amjcard.2016.09.046
Bucerius, J. et al. Stroke after cardiac surgery: a risk factor analysis of 16,184 consecutive adult patients. Ann. Thorac. Surg. 75, 472–478 (2003).
pubmed: 12607656 doi: 10.1016/S0003-4975(02)04370-9
McKhann, G. M., Grega, M. A., Borowicz, L. M. Jr, Baumgartner, W. A. & Selnes, O. A. Stroke and encephalopathy after cardiac surgery: an update. Stroke 37, 562–571 (2006).
pubmed: 16373636 doi: 10.1161/01.STR.0000199032.78782.6c
Kim, J. H. et al. Incidence and predictors of intracranial bleeding after coronary artery bypass graft surgery. Front. Cardiovasc. Med. 9, 863590 (2022).
pubmed: 36035927 pmcid: 9411799 doi: 10.3389/fcvm.2022.863590
Stolz, E. et al. Diffusion-weighted magnetic resonance imaging and neurobiochemical markers after aortic valve replacement: implications for future neuroprotective trials? Stroke 35, 888–892 (2004).
pubmed: 14976326 doi: 10.1161/01.STR.0000120306.82787.5A
Barbero, C. et al. Magnetic resonance imaging for cerebral micro-embolizations during minimally invasive mitral valve surgery. J. Cardiovasc. Transl. Res. 15, 828–833 (2022).
pubmed: 34845626 doi: 10.1007/s12265-021-10188-8
Sultan, I. et al. Predictors and outcomes of ischemic stroke after cardiac surgery. Ann. Thorac. Surg. 110, 448–456 (2020).
pubmed: 32199830 doi: 10.1016/j.athoracsur.2020.02.025
Floyd, T. F. et al. Clinically silent cerebral ischemic events after cardiac surgery: their incidence, regional vascular occurrence, and procedural dependence. Ann. Thorac. Surg. 81, 2160–2166 (2006).
pubmed: 16731147 doi: 10.1016/j.athoracsur.2006.01.080
Wu, C. et al. Elevated trimethylamine N-oxide related to ischemic brain lesions after carotid artery stenting. Neurology 90, e1283–e1290 (2018).
pubmed: 29540587 doi: 10.1212/WNL.0000000000005298
Alserr, A. H. et al. Using serum s100-beta protein as a biomarker for comparing silent brain injury in carotid endarterectomy and carotid artery stenting. Int. Angiol. 38, 136–142 (2019).
pubmed: 30650951 doi: 10.23736/S0392-9590.19.04079-3
Makkar, R. R. et al. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N. Engl. J. Med. 373, 2015–2024 (2015).
pubmed: 26436963 doi: 10.1056/NEJMoa1509233
Rheude, T. et al. Meta-analysis of bioprosthetic valve thrombosis after transcatheter aortic valve implantation. Am. J. Cardiol. 138, 92–99 (2021).
pubmed: 33065085 doi: 10.1016/j.amjcard.2020.10.018
Goldman, L. et al. Understanding acquired brain injury: a review. Biomedicines 10, 2167 (2022).
pubmed: 36140268 pmcid: 9496189 doi: 10.3390/biomedicines10092167
Sacco, R. L. et al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44, 2064–2089 (2013).
pubmed: 23652265 pmcid: 11078537 doi: 10.1161/STR.0b013e318296aeca
Easton, J. D. et al. Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. The American Academy of Neurology affirms the value of this statement as an educational tool for neurologists. Stroke 40, 2276–2293 (2009).
pubmed: 19423857 doi: 10.1161/STROKEAHA.108.192218
Caceres, J. A. & Goldstein, J. N. Intracranial hemorrhage. Emerg. Med. Clin. North. Am. 30, 771–794 (2012).
pubmed: 22974648 pmcid: 3443867 doi: 10.1016/j.emc.2012.06.003
Sheehan, B. Assessment scales in dementia. Ther. Adv. Neurol. Disord. 5, 349–358 (2012).
pubmed: 23139705 pmcid: 3487532 doi: 10.1177/1756285612455733
Slooter, A. J. C. et al. Updated nomenclature of delirium and acute encephalopathy: statement of ten Societies. Intensive Care Med. 46, 1020–1022 (2020).
pubmed: 32055887 pmcid: 7210231 doi: 10.1007/s00134-019-05907-4
Thygesen, K. et al. Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 40, 237–269 (2019).
pubmed: 30165617 doi: 10.1093/eurheartj/ehy462
Zeppenfeld, K. et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 43, 3997–4126 (2022).
pubmed: 36017572 doi: 10.1093/eurheartj/ehac262
McDonagh, T. A. et al. Corrigendum to: 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 42, 4901 (2021).
pubmed: 34649282 doi: 10.1093/eurheartj/ehab670
Senguttuvan, N. B. et al. Trans-radial approach versus trans-femoral approach in patients with acute coronary syndrome undergoing percutaneous coronary intervention: an updated meta-analysis of randomized controlled trials. PLoS ONE 17, e0266709 (2022).
pubmed: 35483028 pmcid: 9050011 doi: 10.1371/journal.pone.0266709
Shah, R. M., Patel, D., Abbate, A., Cowley, M. J. & Jovin, I. S. Comparison of transradial coronary procedures via right radial versus left radial artery approach: a meta-analysis. Catheter. Cardiovasc. Interv. 88, 1027–1033 (2016).
pubmed: 27037544 doi: 10.1002/ccd.26519
Samarasekera, N., Smith, C. & Al-Shahi Salman, R. The association between cerebral amyloid angiopathy and intracerebral haemorrhage: systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 83, 275–281 (2012).
pubmed: 22056966 doi: 10.1136/jnnp-2011-300371
Boyle, P. A. et al. Cerebral amyloid angiopathy and cognitive outcomes in community-based older persons. Neurology 85, 1930–1936 (2015).
pubmed: 26537052 pmcid: 4664125 doi: 10.1212/WNL.0000000000002175
Patiolla, S. H. et al. Intracranial hemorrhage complicating acute myocardial infarction: an 18-year national study of temporal trends, predictors, and outcomes. J. Clin. Med. 9, 2717 (2020).
doi: 10.3390/jcm9092717
Raposeiras-Roubin, S. et al. Incidence, predictors and prognostic impact of intracranial bleeding within the first year after an acute coronary syndrome in patients treated with percutaneous coronary intervention. Eur. Heart J. Acute Cardiovasc. Care 9, 764–770 (2020).
pubmed: 31042052 doi: 10.1177/2048872619827471

Auteurs

Radosław Lenarczyk (R)

Department of Cardiology and Electrotherapy, Silesian Centre for Heart Diseases, Zabrze, Poland. rlenarczyk@sum.edu.pl.
The Medical University of Silesia in Katowice, Faculty of Medical Sciences in Zabrze, Zabrze, Poland. rlenarczyk@sum.edu.pl.

Marco Proietti (M)

Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
Division of Subacute Care, IRCCS Istituti Clinici Scientifici Maugeri, Milan, Italy.

Jan F Scheitz (JF)

Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Center for Stroke Research Berlin, Berlin, Germany.
Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany.
German Centre for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany.

Dipen Shah (D)

Cardiology Service, University Hospital Geneva, Geneva, Switzerland.

Eberhard Siebert (E)

Institute for Neuroradiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.

Diana A Gorog (DA)

Faculty of Medicine, National Heart and Lung Institute, Imperial College, London, UK.
Centre for Health Services Research, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK.

Jacek Kowalczyk (J)

Department of Cardiology and Electrotherapy, Silesian Centre for Heart Diseases, Zabrze, Poland.
The Medical University of Silesia in Katowice, Faculty of Medical Sciences in Zabrze, Zabrze, Poland.

Nikolaos Bonaros (N)

Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria.

George Ntaios (G)

Department of Internal Medicine, University of Thessaly, Larissa, Greece.

Wolfram Doehner (W)

Center for Stroke Research Berlin, Berlin, Germany.
German Centre for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany.
Berlin Institute of Health-Center for Regenerative Therapies, Berlin, Germany.
Deutsches Herzzentrum der Charité, Campus Virchow Klinikum, Berlin, Germany.

Nicolas M Van Mieghem (NM)

Department of Interventional Cardiology, Cardiovascular Institute, Thoraxcenter, Erasmus University Medical Centre, Rotterdam, Netherlands.

Sandor Nardai (S)

Semmelweis University, Department of Neurosurgery and Neurointervention, Budapest, Hungary.

Jan Kovac (J)

University Hospitals of Leicester NHS Trust, Leicester, UK.

Roland Fiszer (R)

The Medical University of Silesia in Katowice, Faculty of Medical Sciences in Zabrze, Zabrze, Poland.
Department of Paediatric Cardiology and Congenital Heart Defects, Silesian Centre for Heart Diseases, Zabrze, Poland.

Roberto Lorusso (R)

Cardio-Thoracic Surgery Department, Heart and Vascular Centre, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, Netherlands.

Eliano Navarese (E)

Clinical Experimental Cardiology, Department of Cardiology, Azienda Ospedaliero Universitaria di Sassari, Sassari, Italy.
SIRIO MEDICINE Research Network, Sassari, Italy.

Sergio Castrejón (S)

Servicio de Cardiología, Hospital Universitario La Paz, Madrid, Spain.

Andrea Rubboli (A)

Department of Emergency, Internal Medicine and Cardiology, Division of Cardiology, S. Maria delle Croci Hospital, Ravenna, Italy.

José Miguel Rivera-Caravaca (JM)

Faculty of Nursing, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, Murcia, Spain.

Alaide Chieffo (A)

San Raffaele Vita Salute, University Milan, Milan, Italy.
IRCCS San Raffaele Scientific Institute, Milan, Italy.

Gregory Y H Lip (GYH)

Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool, UK.
Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.

Classifications MeSH