Development of a label-free electrochemical aptasensor for Rift Valley fever virus detection.
Aptamer
Aptasensor
Electrochemistry
Label-free detection
Rift Valley fever virus
SELEX
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
12 Oct 2024
12 Oct 2024
Historique:
received:
14
03
2024
accepted:
25
09
2024
medline:
13
10
2024
pubmed:
13
10
2024
entrez:
12
10
2024
Statut:
epublish
Résumé
In this research, we describe the first aptasensor for the detection of the Rift Valley Fever virus (RVFV). The process involved the selection of aptamers through the systematic evolution of ligands by the exponential enrichment (SELEX) technique. After 12 rounds of selection, 6 aptamers were selected and the corresponding binding affinities were assessed using fluorescence binding assays, revealing dissociation constants ranging from 15.45 to 40.98 nM. Notably, among the aptamers, RV2 and RV3 exhibited the highest binding affinities toward RVFV, with dissociation constants of 15.45 and 18.62 nM, respectively. Thiol-modified aptamers were subsequently immobilized onto screen-printed gold electrodes, facilitating the label-free detection of RVFV through square wave voltammetry. The voltammetric aptasensor demonstrated an excellent sensitivity, with a detection limit of 0.015 ng/mL. In addition, cross-reactivity assessments were conducted, where negligible response was obtained when the aptasensor was exposed to non-specific proteins.
Identifiants
pubmed: 39396078
doi: 10.1038/s41598-024-74314-7
pii: 10.1038/s41598-024-74314-7
doi:
Substances chimiques
Aptamers, Nucleotide
0
Gold
7440-57-5
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
23892Informations de copyright
© 2024. The Author(s).
Références
Maes, P. et al. Taxonomy of the family Arenaviridae and the order Bunyavirales: Update 2018. Arch. Virol. 163, 2295–2310 (2018).
doi: 10.1007/s00705-018-3843-5
pubmed: 29680923
Nair, N. et al. Rift Valley fever virus—Infection, pathogenesis and host immune responses. Pathogens 12(9), 1174 (2023).
doi: 10.3390/pathogens12091174
pubmed: 37764982
pmcid: 10535968
Bird, B. H. et al. Rift Valley fever virus. J. Am. Vet. Med. Assoc. 234(7), 883–893 (2009).
doi: 10.2460/javma.234.7.883
pubmed: 19335238
Muturi, M. et al. Ecological and subject-level drivers of interepidemic Rift Valley fever virus exposure in humans and livestock in Northern Kenya. Sci. Rep. 13(1), 15342 (2023).
doi: 10.1038/s41598-023-42596-y
pubmed: 37714941
pmcid: 10504342
Versteirt, V. et al. Systematic literature review on the geographic distribution of Rift Valley fever vectors in Europe and the neighbouring countries of the Mediterranean Basin. EFSA Support. Publ. 10(4), 412E (2013).
Al-Afaleq, A.I., M.F.J.V.-B. Hussein, and Z. Diseases, The status of Rift Valley fever in animals in Saudi Arabia: A mini review. Vector-Borne Zoonotic Dis. 2011. 11(12): p. 1513–1520.
WHO. 2018 Annual review of diseases prioritized under the Research and Development Blueprint (World Health Organization Geneva, 2018).
Bird, B. H. et al. Rift Valley fever virus lacking the NSs and NSm genes is highly attenuated, confers protective immunity from virulent virus challenge, and allows for differential identification of infected and vaccinated animals. J. Virol. 82(6), 2681–2691 (2008).
doi: 10.1128/JVI.02501-07
pubmed: 18199647
pmcid: 2258974
Archer, B.N., et al. Outbreak of Rift Valley fever affecting veterinarians and farmers in South Africa. S. Afr. Med. J.101(4), 263–266 (2008).
Mwaengo, D. et al. Detection and identification of Rift Valley fever virus in mosquito vectors by quantitative real-time PCR. Virus Res. 169(1), 137–143 (2012).
doi: 10.1016/j.virusres.2012.07.019
pubmed: 22841800
Han, Q. et al. Development of a visible reverse transcription-loop-mediated isothermal amplification assay for the detection of Rift Valley fever virus. Front. Microbiol. 11, 590732 (2020).
doi: 10.3389/fmicb.2020.590732
pubmed: 33281787
pmcid: 7691480
Paweska, J. T. et al. IgG-sandwich and IgM-capture enzyme-linked immunosorbent assay for the detection of antibody to Rift Valley fever virus in domestic ruminants. J. Virol. Methods 113(2), 103–112 (2003).
doi: 10.1016/S0166-0934(03)00228-3
pubmed: 14553896
Paweska, J. T., van Vuren, P. J. & Swanepoel, R. J. Validation of an indirect ELISA based on a recombinant nucleocapsid protein of Rift Valley fever virus for the detection of IgG antibody in humans. J. Virol. Methods 146(1–2), 119–124 (2007).
doi: 10.1016/j.jviromet.2007.06.006
pubmed: 17645952
Wilson, W., et al., Diagnostic approaches for Rift Valley fever. In Vaccines and Diagnostics for Transboundary Animal Diseases 73–78. (Karger Publishers, 2013).
Sayed, R. H. et al. Development of a lateral flow kit for detection of IgG and IgM antibodies against Rift Valley fever virus in sheep. Indian J. Vet. Sci. Biotechnol. 15(2), 63–68 (2019).
doi: 10.21887/ijvsbt.15.2.17
Domfe, T. et al. Development of a versatile half-strip lateral flow assay toward the detection of Rift Valley fever virus antibodies. Diagnostics 12(11), 2664 (2022).
doi: 10.3390/diagnostics12112664
pubmed: 36359507
pmcid: 9689200
Duburcq, X. et al. Peptide–protein microarrays for the simultaneous detection of pathogen infections. Bioconjug. Chem. 15(2), 307–316 (2004).
doi: 10.1021/bc034226d
pubmed: 15025526
Sobarzo, A. et al. Optical fiber immunosensor for the detection of IgG antibody to Rift Valley fever virus in humans. J. Virol. Methods 146(1–2), 327–334 (2007).
doi: 10.1016/j.jviromet.2007.07.017
pubmed: 17869352
Zhang, H., et al., Surface-enhanced Raman scattering detection of DNAs derived from virus genomes using Au-coated paramagnetic nanoparticles. Langmuir 22012. 28(8): p. 4030–4037.
Cesewski, E. & Johnson, B. N. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 159, 112214 (2020).
doi: 10.1016/j.bios.2020.112214
pubmed: 32364936
pmcid: 7152911
Cooper, M.A. Label-Free Biosensors: Techniques and Applications (Cambridge University Press, 2009).
Williams, R. et al. Validation of an IgM antibody capture ELISA based on a recombinant nucleoprotein for identification of domestic ruminants infected with Rift Valley fever virus. J. Virol. Methods 177(2), 140–146 (2011).
doi: 10.1016/j.jviromet.2011.07.011
pubmed: 21827790
Chinnappan, R. et al. In vitro selection of DNA aptamers and their integration in a competitive voltammetric biosensor for azlocillin determination in waste water. Analytica Chimica Acta 1101, 149–156 (2020).
doi: 10.1016/j.aca.2019.12.023
pubmed: 32029106
Gaberc-Porekar, V. & Menart, V. Perspectives of immobilized-metal affinity chromatography. J. Biochem. Biophys. Methods 49(1–3), 335–360 (2001).
doi: 10.1016/S0165-022X(01)00207-X
pubmed: 11694288
Freitas, A. I., Domingues, L. & Aguiar, T. Q. Tag-mediated single-step purification and immobilization of recombinant proteins toward protein-engineered advanced materials. J. Adv. Res. 36, 249–264 (2022).
doi: 10.1016/j.jare.2021.06.010
pubmed: 35127175
Mahanta, S. et al. A minimal fragment of MUC1 mediates growth of cancer cells. PLoS ONE 3(4), e2054 (2008).
doi: 10.1371/journal.pone.0002054
pubmed: 18446242
pmcid: 2329594
Chinnappan, R. et al. Aptamer selection and aptasensor construction for bone density biomarkers. Talanta 224, 121818 (2021).
doi: 10.1016/j.talanta.2020.121818
pubmed: 33379043
Kohlberger, M. & Gadermaier, G. SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnol. Appl. Biochem. 69(5), 1771–1792 (2022).
doi: 10.1002/bab.2244
pubmed: 34427974
Marimuthu, C., Tang, T. H., Tominaga, J., Tan, S. C. & Gopinath, S. C. Single-stranded DNA (ssDNA) production in DNA aptamer generation. Analyst 137(6), 1307–1315 (2012).
doi: 10.1039/c2an15905h
pubmed: 22314701
Eissa, S. & Zourob, M. Aptamer-based label-free electrochemical biosensor array for the detection of total and glycated hemoglobin in human whole blood. Sci. Rep. 7(1), 1016 (2017).
doi: 10.1038/s41598-017-01226-0
pubmed: 28432344
pmcid: 5430690
Eissa, S. & Zourob, M. Selection and characterization of DNA aptamers for electrochemical biosensing of carbendazim. Anal. Chem. 89(5), 3138–3145 (2017).
doi: 10.1021/acs.analchem.6b04914
pubmed: 28264568
Eissa, S., Almusharraf, A. Y. & Zourob, M. A comparison of the performance of voltammetric aptasensors for glycated haemoglobin on different carbon nanomaterials-modified screen printed electrodes. Mate. Sci. Eng. C. 101, 423–430 (2019).
doi: 10.1016/j.msec.2019.04.001