IL-4 promotes chondrogenesis of bone marrow mesenchymal stem cells and blockade of IL-4Rα retards the endochondral ossification during rat embryonic bone development.

BMSCs IL‐4/IL‐4Rα chondrogenesis embryonic bone development

Journal

Basic & clinical pharmacology & toxicology
ISSN: 1742-7843
Titre abrégé: Basic Clin Pharmacol Toxicol
Pays: England
ID NLM: 101208422

Informations de publication

Date de publication:
13 Oct 2024
Historique:
revised: 19 08 2024
received: 19 04 2024
accepted: 12 09 2024
medline: 14 10 2024
pubmed: 14 10 2024
entrez: 13 10 2024
Statut: aheadofprint

Résumé

Interleukin-4 (IL-4)/IL-4 receptor alpha (IL-4Rα) signalling pathways play important roles in the complex process of bone formation and bone remodelling. However, whether IL-4/IL-4Rα participates in skeletogenesis during embryonic development is not completely understood. We used the anti-IL-4Rα monoclonal antibody (anti-IL-4Rα mAb) as a powerful investigational tool to evaluate the potential roles of IL-4/IL-4Rα in the chondrogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) in vitro. Simultaneously, we explored the effect of IL-4/IL-4Rα on bone ossification during rat embryo-fetal development. In this study, we found that, compared to the control group, IL-4 can significantly promote the chondrogenic differentiation of BMSCs. Furthermore, following exposure to anti-IL-4Rα mAb in pregnant rats, unexpected phenomena were observed in fetal bone development, including non-ossification of the fetal sternum, an incomplete ossification centre in long bones and a reduced number of ossification points in digit (toe) bones. To further investigate the underlying mechanism of the phenotype, we studied the rat sternum as the target organ, starting from different time points of sternum development in the embryonic stage. The results indicated that the retardation mainly occurred in the middle and late stages of embryonic development. This retardation was characterized by the inhibition of the differentiation process of mesenchymal stem cells into chondrocytes, resulting in reduced angiogenesis near the ossification centre, failure of osteoblasts to invade the centre of the cartilage body with the blood vessels and delayed formation of the primary ossification centre (POC). Overall, our study demonstrated the significant function of IL-4/IL-4Rα in chondrogenic differentiation of BMSCs and bone ossification during embryo-fetal development.

Identifiants

pubmed: 39396908
doi: 10.1111/bcpt.14088
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Shanghai Clinical Research Plan of SHCD
Organisme : Shanghai Municipal Health and Family Planning Commission
ID : 202040352
Organisme : Shanghai Rising-Star Program
ID : 20QA1408700

Informations de copyright

© 2024 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society). Published by John Wiley & Sons Ltd.

Références

McCormick SM, Heller NM. Commentary: IL‐4 and IL‐13 receptors and signaling. Cytokine. 2015;75(1):38‐50. doi:10.1016/j.cyto.2015.05.023
Gieseck RL 3rd, Wilson MS, Wynn TA. Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol. 2018;18(1):62‐76. doi:10.1038/nri.2017.90
Andrews AL, Holloway JW, Holgate ST, Davies DE. IL‐4 receptor alpha is an important modulator of IL‐4 and IL‐13 receptor binding: implications for the development of therapeutic targets. J Immunol. 2006;176(12):7456‐7461. doi:10.4049/jimmunol.176.12.7456
Russell SM, Keegan AD, Harada N, et al. Interleukin‐2 receptor gamma chain: a functional component of the interleukin‐4 receptor. Science. 1993;262(5141):1880‐1883. doi:10.1126/science.8266078
Junttila IS. Tuning the cytokine responses: an update on interleukin (IL)‐4 and IL‐13 receptor complexes. Front Immunol. 2018;9:888. doi:10.3389/fimmu.2018.00888
Fahy JV. Type 2 inflammation in asthma—present in most, absent in many. Nat Rev Immunol. 2015;15:57‐65.
Zhu J. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin‐4 (IL‐4) and IL‐13 production. Cytokine. 2015;75(1):14‐24. doi:10.1016/j.cyto.2015.05.010
Gandhi NA, Pirozzi G, Graham NMH. Commonality of the IL‐4/IL‐13 pathway in atopic diseases. Expert Rev Clin Immunol. 2017;13(5):425‐437. doi:10.1080/1744666X.2017.1298443
Obiri NI, Siegel JP, Varricchio F, Puri RK. Expression of high‐affinity IL‐4 receptors on human melanoma, ovarian and breast carcinoma cells. Clin Exp Immunol. 1994;95(1):148‐155. doi:10.1111/j.1365‐2249.1994.tb06029.x
Leland P, Taguchi J, Husain SR, Kreitman RJ, Pastan I, Puri RK. Human breast carcinoma cells express type II IL‐4 receptors and are sensitive to antitumor activity of a chimeric IL‐4‐Pseudomonas exotoxin fusion protein in vitro and in vivo. Mol Med. 2000;6(3):165‐178. doi:10.1007/BF03402112
Ishige K, Shoda J, Kawamoto T, et al. Potent in vitro and in vivo antitumor activity of interleukin‐4‐conjugated Pseudomonas exotoxin against human biliary tract carcinoma. Int J Cancer. 2008;123(12):2915‐2922. doi:10.1002/ijc.23865
Chi L, Na MH, Jung HK, et al. Enhanced delivery of liposomes to lung tumor through targeting interleukin‐4 receptor on both tumor cells and tumor endothelial cells. J Control Release. 2015;209:327‐336. doi:10.1016/j.jconrel.2015.05.260
Permpoon U, Khan F, Vadevoo SMP, et al. Inhibition of tumor growth against chemoresistant cholangiocarcinoma by a proapoptotic peptide targeting interleukin‐4 receptor. Mol Pharm. 2020;17(11):4077‐4088. doi:10.1021/acs.molpharmaceut.0c00529
Damen M, Stankiewicz TE, Park SH, et al. Non‐hematopoietic IL‐4Rα expression contributes to fructose‐driven obesity and metabolic sequelae. Int J Obes (Lond). 2021;45(11):2377‐2387. doi:10.1038/s41366‐021‐00902‐6
Silfverswärd CJ, Larsson S, Ohlsson C, Frost A, Nilsson O. Reduced cortical bone mass in mice with inactivation of interleukin‐4 and interleukin‐13. J Orthop Res. 2007;25(6):725‐731. doi:10.1002/jor.20361
Silfverswärd CJ, Sisask G, Larsson S, et al. Bone formation in interleukin‐4 and interleukin‐13 depleted mice. Acta Orthop. 2008;79(3):410‐420. doi:10.1080/17453670710015337
Bai J, Zhang Y, Zheng X, et al. LncRNA MM2P‐induced, exosome‐mediated transfer of Sox9 from monocyte‐derived cells modulates primary chondrocytes. Cell Death Dis. 2020;11(9):763. doi:10.1038/s41419‐020‐02945‐5
Wei S, Wang MW, Teitelbaum SL, Ross FP. Interleukin‐4 reversibly inhibits osteoclastogenesis via inhibition of NF‐kappa B and mitogen‐activated protein kinase signaling. J Biol Chem. 2002;277(8):6622‐6630. doi:10.1074/jbc.M104957200
Berendsen AD, Olsen BR. Bone development. Bone. 2015;80:14‐18. doi:10.1016/j.bone.2015.04.035
Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423(6937):332‐336. doi:10.1038/nature01657
Galea GL, Zein MR, Allen S, Francis‐West P. Making and shaping endochondral and intramembranous bones. Dev Dyn. 2021;250(3):414‐449. doi:10.1002/dvdy.278
Aghajanian P, Mohan S. The art of building bone: emerging role of chondrocyte‐to‐osteoblast transdifferentiation in endochondral ossification. Bone Res. 2018;6(1):19. doi:10.1038/s41413‐018‐0021‐z
Tveden‐Nyborg P, Bergmann TK, Jessen N, Simonsen U, Lykkesfeldt J. BCPT 2023 policy for experimental and clinical studies. Basic Clin Pharmacol Toxicol. 2023;133(4):391‐396. doi:10.1111/bcpt.13944
Li C, Qiu M, Chang L, et al. The osteoprotective role of USP26 in coordinating bone formation and resorption. Cell Death Differ. 2022;29(6):1123‐1136. doi:10.1038/s41418‐021‐00904‐x
Mead TJ. Alizarin red and alcian blue preparations to visualize the skeleton. Methods Mol Biol. 2020;2043:207‐212. doi:10.1007/978‐1‐4939‐9698‐8_17
Chen JM. Studies on the morphogenesis of the mouse sternum. I Normal embryonic development. J Anat. 1952;86:373‐386.
Chen JM. Studies on the morphogenesis of the mouse sternum. II. Experiments on the origin of the sternum and its capacity for self‐differentiation in vitro. J Anat. 1952;86(4):387‐401.
Chen JM. Studies on the morphogenesis of the mouse sternum. III. Experiments on the closure and segmentation of the sternal bands. J Anat. 1953;87(2):130‐149.
DeSesso JM, Scialli AR. Bone development in laboratory mammals used in developmental toxicity studies. Birth Defects Res. 2018;110(15):1157‐1187. doi:10.1002/bdr2.1350
Breeland G, Sinkler MA, Menezes RG. Embryology, bone ossification. In: StatPearls. StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.
de Crombrugghe B, Lefebvre V, Nakashima K. Regulatory mechanisms in the pathways of cartilage and bone formation. Curr Opin Cell Biol. 2001;13(6):721‐727. doi:10.1016/S0955‐0674(00)00276‐3
Salhotra A, Shah HN, Levi B, Longaker MT. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol. 2020;21(11):696‐711. doi:10.1038/s41580‐020‐00279‐w
Shalak L, Kaddoura I, Obeid M, Hashem H, Haidar R, Bitar FF. Complete cleft sternum and congenital heart disease: review of the literature. Pediatr Int. 2002;44(3):314‐316. doi:10.1046/j.1442‐200X.2002.t01‐1‐01545.x
Rush WJ, Donnelly LF, Brody AS, Anton CG, Poe SA. “Missing” sternal ossification center: potential mimicker of disease in young children. Radiology. 2002;224(1):120‐123. doi:10.1148/radiol.2241011202
Paterson. The sternum: its early development and ossification in man and mammals: preliminary communication. J Anat Physiol. 1900;35:21‐32.23.

Auteurs

Yimeng Hao (Y)

Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.

Qinghe Meng (Q)

School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, China.

Leilei Chang (L)

Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.

Minglong Qiu (M)

Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.

Jianxin Han (J)

Liaoning Qianyi Testing Technology Development Co. Ltd., Benxi, Liaoning, China.

Zhiqin Wang (Z)

Liaoning Qianyi Testing Technology Development Co. Ltd., Benxi, Liaoning, China.

Changwei Li (C)

Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.

Jing Ma (J)

Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.

Xuemei Zhang (X)

Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.

Classifications MeSH