Oxoammonium salts exert antiviral effects against coronavirus via denaturation of their spike proteins.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
13 Oct 2024
Historique:
received: 04 04 2024
accepted: 01 10 2024
medline: 14 10 2024
pubmed: 14 10 2024
entrez: 13 10 2024
Statut: epublish

Résumé

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV2) infection has forced social changes worldwide. Development of potent antiviral agents is necessary to prevent future pandemics. Titanium oxide, a photocatalyst, is a long-acting antiviral agent; however, its effects are weakened in the dark. Therefore, new antiviral substances that can be used in the dark are needed. Two types of nitroxyl radicals, 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO) and 2-azaadamantane N-oxyl (AZADO), are commonly used as oxidation catalysts utilizing oxygen in the air as the terminal oxidant. Therefore, in this study, we aimed to evaluate the potential of these radicals as antiviral compounds with sustained activity even in the dark. We evaluated the antiviral effects of oxoammonium salts corresponding to TEMPO and AZADO (TEMPO-Oxo and AZADO-Oxo, respectively), which are the active forms of nitroxyl radicals in oxidation reactions. TEMPO-Oxo and AZADO-Oxo inhibited the binding of SARS-CoV2 spike protein receptor-binding domain (S-RBD) to angiotensin-converting enzyme 2. Notably, AZADO-Oxo exhibited a 10-fold stronger inhibitory effect than TEMPO-Oxo. TEMPO-Oxo and AZADO-Oxo also denatured S-RBD; however, effects of AZADO-Oxo were 10-fold stronger than those of TEMPO-Oxo and did not change in the dark. Some S-RBD peptides treated with AZADO-Oxo were cleaved at the N-terminal side of tyrosine residues. TEMPO-Oxo and AZADO-Oxo exhibited concentration-dependent antiviral effects against feline coronavirus. In conclusion, active forms of the nitroxyl radicals, TEMPO-Oxo and AZADO-Oxo, exerted antiviral effects by denaturing S-RBD, regardless of the presence or absence of light, suggesting their potential as novel antiviral agents.

Identifiants

pubmed: 39397158
doi: 10.1038/s41598-024-75097-7
pii: 10.1038/s41598-024-75097-7
doi:

Substances chimiques

Antiviral Agents 0
Spike Glycoprotein, Coronavirus 0
Cyclic N-Oxides 0
TEMPO VQN7359ICQ
spike protein, SARS-CoV-2 0
Nitrogen Oxides 0
Angiotensin-Converting Enzyme 2 EC 3.4.17.23
nitroxyl GFQ4MMS07W
Adamantane PJY633525U
ACE2 protein, human EC 3.4.17.23

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

23934

Subventions

Organisme : Japan Society for the Promotion of Science
ID : 21H05210
Organisme : Japan Society for the Promotion of Science
ID : 22H02739

Informations de copyright

© 2024. The Author(s).

Références

Abdelrahman, Z., Li, M. & Wang, X. Comparative review of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza a respiratory viruses. Front. Immunol. https://doi.org/10.3389/fimmu.2020.552909 (2020).
Foster, H. A., Ditta, I. B., Varghese, S. & Steele, A. Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Appl. Microbiol. Biotechnol. 90, 1847–1868 (2011). https://doi.org/10.1007/s00253-011-3213-7
Nakano, R. et al. Inactivation of various variant types of SARS-CoV-2 by indoor-light-sensitive TiO2-based photocatalyst. Sci. Rep. 12, 5804 (2022).
doi: 10.1038/s41598-022-09402-7 pubmed: 35422456 pmcid: 9010443
Iwabuchi, Y. Discovery and Exploitation of AZADO: The highly active Catalyst for Alcohol Oxidation. Chem. Pharm. Bull. (Tokyo). 61, 1197–1213 (2013).
doi: 10.1248/cpb.c13-00456 pubmed: 24292782
Sasano, Y. et al. Highly chemoselective aerobic oxidation of amino alcohols into amino carbonyl compounds. Angewandte Chemie-Int. Ed. 53, 3236–3240 (2014).
doi: 10.1002/anie.201309634
Hoover, J. M. & Stahl, S. S. Highly practical copper(I)/TEMPO catalyst system for chemoselective aerobic oxidation of primary alcohols. J. Am. Chem. Soc. 133, 16901–16910 (2011).
doi: 10.1021/ja206230h pubmed: 21861488 pmcid: 3197761
Shibuya, M., Osada, Y., Sasano, Y., Tomizawa, M. & Iwabuchi, Y. Highly efficient, organocatalytic aerobic alcohol oxidation. J. Am. Chem. Soc. 133, 6497–6500 (2011).
doi: 10.1021/ja110940c pubmed: 21473575
Seki, Y. et al. Serine-selective aerobic cleavage of peptides and a protein using a water-soluble copper-organoradical conjugate. Angewandte Chemie-Int. Ed. 53, 6501–6505 (2014).
doi: 10.1002/anie.201402618
Alexander, S. A., Kyi, C. & Schiesser, C. H. Nitroxides as anti-biofilm compounds for the treatment of Pseudomonas aeruginosa and mixed-culture biofilms. Org. Biomol. Chem. 13, 4751–4759 (2015).
doi: 10.1039/C5OB00284B pubmed: 25804546
Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181, 271–280e8 (2020).
doi: 10.1016/j.cell.2020.02.052 pubmed: 32142651 pmcid: 7102627
Tai, W. et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol. 17, 613–620 (2020).
doi: 10.1038/s41423-020-0400-4 pubmed: 32203189 pmcid: 7091888
Yan, R. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 367 (2020). https://www.science.org
Clausen, T. M. et al. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell. 183, 1043–1057.e15 (2020).
Kalra, R. S. & Kandimalla, R. Engaging the spikes: Heparan sulfate facilitates SARS-CoV-2 spike protein binding to ACE2 and potentiates viral infection. Signal Transduct. Targeted Therapy. 6. (2021). https://doi.org/10.1038/s41392-021-00470-1
Shibuya, M., Tomizawa, M., Suzuki, I. & Iwabuchi, Y. 2-Azaadamantane N-oxyl (AZADO) and 1-Me-AZADO: Highly efficient organocatalysts for oxidation of alcohols. J. Am. Chem. Soc. 128, 8412–8413 (2006).
doi: 10.1021/ja0620336 pubmed: 16802802
Jamison, D. A. et al. A comprehensive SARS-CoV-2 and COVID-19 review, Part 1: Intracellular overdrive for SARS-CoV-2 infection. Eur. J. Hum. Genet. 30, 889–898 (2022). https://doi.org/10.1038/s41431-022-01108-8
Ke, Z. et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature. 588, 498–502 (2020).
doi: 10.1038/s41586-020-2665-2 pubmed: 32805734 pmcid: 7116492
Sender, R. et al. The total number and mass of SARS-CoV-2 virions. https://doi.org/10.1073/pnas.2024815118/-/DCSupplemental
Lu, Y. et al. Inactivation of SARS-CoV-2 and photocatalytic degradation by TiO2 photocatalyst coatings. Sci. Rep. 12, (2022).
Palumbo, P., Prota, G. Isolation of a new intermediate in the oxidative conversion of 5,6-dihydroxyindole-2-carboxylic acid to melanin. Tetrahedron Lett. 28 (1987).
Nakagawa, S. et al. pH stability and antioxidant power of CycloDOPA and its derivatives. Molecules 23, (2018).
Tresnan, D. B., Levis, R., And & Holmes, K. V. Feline aminopeptidase N serves as a receptor for Feline, Canine, Porcine, and human coronaviruses in Serogroup I. J. Virol. 70 (1996). https://journals.asm.org/journal/jvi
Gozdziewska, M., Cichowicz, G., Markowska, K., Zawada, K. & Megiel, E. Nitroxide-coated silver nanoparticles: Synthesis, surface physicochemistry and antibacterial activity. RSC Adv. 5, 58403–58415 (2015).
doi: 10.1039/C5RA09366J
Hayashi, M., Shibuya, M. & Iwabuchi, Y. Oxidative conversion of silyl enol ethers to α,β-unsaturated ketones employing oxoammonium salts. Org. Lett. 14, 154–157 (2012).
doi: 10.1021/ol2029417 pubmed: 22181054
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 9, 671–675 (2012). https://doi.org/10.1038/nmeth.2089

Auteurs

Ryosuke Segawa (R)

Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Aoba-ku, Sendai, 980-8578, Japan.

Yusuke Sasano (Y)

Laboratory of Synthetic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Aoba-ku, Sendai, 980-8578, Japan.

Yusuke Hatakawa (Y)

Laboratory of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Aoba-ku, Sendai, 980-8578, Japan.

Yuto Fujisawa (Y)

Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Aoba-ku, Sendai, 980-8578, Japan.

Shuhei Akutsu (S)

Laboratory of Synthetic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Aoba-ku, Sendai, 980-8578, Japan.

Masanobu Uchimura (M)

Advanced Materials and Processing Laboratory, Research Division, Nissan Motor Co., Ltd, 1 Natsushima-cho, Yokosuka, Kanagawa, 237-8523, Japan.

Ami Ikura (A)

Advanced Materials and Processing Laboratory, Research Division, Nissan Motor Co., Ltd, 1 Natsushima-cho, Yokosuka, Kanagawa, 237-8523, Japan.

Kota Matsumoto (K)

Advanced Materials and Processing Laboratory, Research Division, Nissan Motor Co., Ltd, 1 Natsushima-cho, Yokosuka, Kanagawa, 237-8523, Japan.

Kazuki Sone (K)

Advanced Materials and Processing Laboratory, Research Division, Nissan Motor Co., Ltd, 1 Natsushima-cho, Yokosuka, Kanagawa, 237-8523, Japan.

Tomoyuki Oe (T)

Laboratory of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Aoba-ku, Sendai, 980-8578, Japan.

Yoshiharu Iwabuchi (Y)

Laboratory of Synthetic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Aoba-ku, Sendai, 980-8578, Japan.

Masashi Ito (M)

Advanced Materials and Processing Laboratory, Research Division, Nissan Motor Co., Ltd, 1 Natsushima-cho, Yokosuka, Kanagawa, 237-8523, Japan.
Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.

Noriyasu Hirasawa (N)

Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Aoba-ku, Sendai, 980-8578, Japan. noriyasu.hirasawa.c7@tohoku.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH