On the utility of cerebrospinal fluid biomarkers in canine neurological disorders.
Animals
Dogs
Biomarkers
/ cerebrospinal fluid
Dog Diseases
/ cerebrospinal fluid
tau Proteins
/ cerebrospinal fluid
Male
Female
Neurofilament Proteins
/ cerebrospinal fluid
Phosphopyruvate Hydratase
/ cerebrospinal fluid
Amyloid beta-Peptides
/ cerebrospinal fluid
Meningoencephalitis
/ cerebrospinal fluid
Nervous System Diseases
/ cerebrospinal fluid
Brain Neoplasms
/ cerebrospinal fluid
Cerebral biomarkers
Meningoencephalitis
Myelopathies
Tumors
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
15 10 2024
15 10 2024
Historique:
received:
17
03
2023
accepted:
20
09
2024
medline:
16
10
2024
pubmed:
16
10
2024
entrez:
15
10
2024
Statut:
epublish
Résumé
The cerebral biomarkers, neurofilament light chain (NfL), amyloid-β, tau, and neuron specific enolase (NSE) reflect a wide spectrum of neurological damage in the brain and spinal cord. With this study, we aimed to assess whether these biomarkers hold any potential diagnostic value for the three most common canine neurological diseases. Canines suffering from meningoencephalitis of unknown origin (MUO), brain tumors, and selected non-infectious myelopathies were included. For each diagnosis, we analyzed these biomarkers in the cerebrospinal fluid collected via cranial puncture from the cisterna magna. Elevated levels of CSF tau, NfL, and NSE were observed in MUO, with all three biomarkers being intercorrelated. Tau and NSE were increased while amyloid-β was decreased in dogs suffering from tumors. In contrast, no biomarker changes were observed in dogs with myelopathies. Covariates such as age, sex, or castration had minimal impact. CSF biomarkers may reflect molecular changes related to MUO and tumors, but not to non-infectious myelopathies. The combination of NfL, tau, and NSE may represent useful biomarkers for MUO as they reflect the same pathology and are not influenced by age.
Identifiants
pubmed: 39406773
doi: 10.1038/s41598-024-73812-y
pii: 10.1038/s41598-024-73812-y
doi:
Substances chimiques
Biomarkers
0
tau Proteins
0
Neurofilament Proteins
0
neurofilament protein L
0
Phosphopyruvate Hydratase
EC 4.2.1.11
Amyloid beta-Peptides
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
24129Subventions
Organisme : VEGA
ID : 2/0127/22
Organisme : Agentúra na Podporu Výskumu a Vývoja
ID : APVV-18-0515
Organisme : Agentúra na Podporu Výskumu a Vývoja
ID : APVV-18-0515
Informations de copyright
© 2024. The Author(s).
Références
Sisó, S. et al. Neurodegenerative diseases in domestic animals: A comparative review. Vet. J. 171(1), 20–38 (2006).
pubmed: 16427580
doi: 10.1016/j.tvjl.2004.08.015
Noble, W. & Burns, M. Challenges in neurodegeneration research. Front. Psychiatry https://doi.org/10.3389/fpsyt.2010.00007 (2010).
doi: 10.3389/fpsyt.2010.00007
pubmed: 21423446
pmcid: 3059645
Prpar Mihevc, S. & Majdič, G. Canine cognitive dysfunction and Alzheimer’s disease—Two facets of the same disease?. Front. Neurosci. https://doi.org/10.3389/fnins.2019.00604 (2019).
doi: 10.3389/fnins.2019.00604
pubmed: 31249505
pmcid: 6582309
Lombardi, G. et al. Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer’s disease in people with mild cognitive impairment. Cochrane Database Syst. Rev. 3(3), CD009628 (2020).
pubmed: 32119112
Cullen, N. C. et al. Efficacy assessment of an active tau immunotherapy in Alzheimer’s disease patients with amyloid and tau pathology: A post hoc analysis of the “ADAMANT” randomised, placebo-controlled, double-blind, multi-centre, phase 2 clinical trial. EBioMedicine 99, 104923 (2024).
pubmed: 38101301
doi: 10.1016/j.ebiom.2023.104923
Salloway, S. et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 370(4), 322–333 (2014).
pubmed: 24450891
pmcid: 4159618
doi: 10.1056/NEJMoa1304839
Janelidze, S. et al. Head-to-head comparison of 10 plasma phospho-tau assays in prodromal Alzheimer’s disease. Brain 146(4), 1592–1601 (2023).
pubmed: 36087307
doi: 10.1093/brain/awac333
Lowrie, M., Smith, P. M. & Garosi, L. Meningoencephalitis of unknown origin: Investigation of prognostic factors and outcome using a standard treatment protocol. Vet. Rec. 172(20), 527 (2013).
pubmed: 23462382
doi: 10.1136/vr.101431
Cornelis, I. et al. Clinical presentation, diagnostic findings, prognostic factors, treatment and outcome in dogs with meningoencephalomyelitis of unknown origin: A review. Vet. J. 244, 37–44 (2019).
pubmed: 30825893
doi: 10.1016/j.tvjl.2018.12.007
Lowrie, M. et al. Effect of a constant rate infusion of cytosine arabinoside on mortality in dogs with meningoencephalitis of unknown origin. Vet. J. 213, 1–5 (2016).
pubmed: 27240905
doi: 10.1016/j.tvjl.2016.03.026
Hall, S. et al. CSF biomarkers and clinical progression of Parkinson disease. Neurology 84(1), 57–63 (2015).
pubmed: 25411441
pmcid: 4336091
doi: 10.1212/WNL.0000000000001098
Blennow, K. & Zetterberg, H. Chapter one—Fluid biomarker-based molecular phenotyping of Alzheimer’s disease patients in research and clinical settings. In Progress in Molecular Biology and Translational Science (ed. Teplow, D. B.) 3–23 (Academic Press, 2019).
Blennow, K. & Zetterberg, H. Biomarkers for Alzheimer’s disease: Current status and prospects for the future. J. Intern. Med. 284(6), 643–663 (2018).
pubmed: 30051512
doi: 10.1111/joim.12816
Jack, C. R. Jr. et al. NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14(4), 535–562 (2018).
pubmed: 29653606
doi: 10.1016/j.jalz.2018.02.018
Lleó, A. et al. Longitudinal cerebrospinal fluid biomarker trajectories along the Alzheimer’s disease continuum in the BIOMARKAPD study. Alzheimers Dement. 15(6), 742–753 (2019).
pubmed: 30967340
doi: 10.1016/j.jalz.2019.01.015
Bittner, S. et al. The potential of serum neurofilament as biomarker for multiple sclerosis. Brain 144(10), 2954–2963 (2021).
pubmed: 34180982
pmcid: 8634125
doi: 10.1093/brain/awab241
Olby, N. J. et al. Prognostic factors in canine acute intervertebral disc disease. Front. Vet. Sci. 7, 596059 (2020).
pubmed: 33324703
pmcid: 7725764
doi: 10.3389/fvets.2020.596059
Roerig, A. et al. Cerebrospinal fluid tau protein as a biomarker for severity of spinal cord injury in dogs with intervertebral disc herniation. Vet. J. 197(2), 253–258 (2013).
pubmed: 23499240
doi: 10.1016/j.tvjl.2013.02.005
Toda, Y. et al. Glial fibrillary acidic protein (gfap) and anti-gfap autoantibody in canine necrotising meningoencephalitis. Vet. Record 161(8), 261–264 (2007).
pubmed: 17720962
doi: 10.1136/vr.161.8.261
Toedebusch, C. M. et al. Cerebrospinal fluid levels of phosphorylated neurofilament heavy as a diagnostic marker of canine degenerative myelopathy. J. Vet. Intern. Med. 31(2), 513–520 (2017).
pubmed: 28186658
pmcid: 5354061
doi: 10.1111/jvim.14659
Panek, W. K. et al. Plasma neurofilament light chain as a translational biomarker of aging and neurodegeneration in dogs. Mol. Neurobiol. 57(7), 3143–3149 (2020).
pubmed: 32472519
pmcid: 7529326
doi: 10.1007/s12035-020-01951-0
Yun, T. et al. Neurofilament light chain as a biomarker of meningoencephalitis of unknown etiology in dogs. J. Vet. Intern. Med. 35(4), 1865–1872 (2021).
pubmed: 34114244
pmcid: 8295659
doi: 10.1111/jvim.16184
Zhang, L. et al. Cerebrospinal fluid and blood biomarkers in the diagnostic assays of Alzheimer’s disease. J. Innov. Opt. Health Sci. 15(01), 2230001 (2022).
doi: 10.1142/S1793545822300014
Olby, N. J. et al. Time course and prognostic value of serum GFAP, pNFH, and S100beta concentrations in dogs with complete spinal cord injury because of intervertebral disc extrusion. J. Vet. Intern. Med. 33(2), 726–734 (2019).
pubmed: 30758078
pmcid: 6430936
doi: 10.1111/jvim.15439
Vikartovska, Z. et al. Novel diagnostic tools for identifying cognitive impairment in dogs: Behavior, biomarkers, and pathology. Front. Vet. Sci. 7, 551895 (2020).
pubmed: 33521072
doi: 10.3389/fvets.2020.551895
Samanci, Y. et al. Neuron-specific enolase levels as a marker for possible neuronal damage in idiopathic intracranial hypertension. Acta Neurol. Belg. 117(3), 707–711 (2017).
pubmed: 28220397
doi: 10.1007/s13760-017-0762-2
Granger, N., Smith, P. M. & Jeffery, N. D. Clinical findings and treatment of non-infectious meningoencephalomyelitis in dogs: A systematic review of 457 published cases from 1962 to 2008. Vet. J. 184(3), 290–297 (2010).
pubmed: 19410487
doi: 10.1016/j.tvjl.2009.03.031
Hecht, S. & Adams, W. H. MRI of brain disease in veterinary patients part 2: Acquired brain disorders. Vet. Clin. North Am. Small Anim. Pract. 40(1), 39–63 (2010).
pubmed: 19942056
doi: 10.1016/j.cvsm.2009.09.006
Wisner, E. R., Dickinson, P. J. & Higgins, R. J. Magnetic resonance imaging features of canine intracranial neoplasia. Vet. Radiol. Ultrasound 52(1 Suppl 1), S52-61 (2011).
pubmed: 21392157
Rusbridge, C., Greitz, D. & Iskandar, B. J. Syringomyelia: Current concepts in pathogenesis, diagnosis, and treatment. J. Vet. Intern. Med. 20(3), 469–479 (2006).
pubmed: 16734077
doi: 10.1111/j.1939-1676.2006.tb02884.x
Hechler, A. C. & Moore, S. A. Understanding and treating chiari-like malformation and syringomyelia in dogs. Top. Companion Anim. Med. 33(1), 1–11 (2018).
pubmed: 29793722
doi: 10.1053/j.tcam.2018.03.002
Mariani, C. L. et al. Cerebrospinal fluid lactate in dogs with inflammatory central nervous system disorders. J. Vet. Intern. Med. 33(6), 2701–2708 (2019).
pubmed: 31549740
pmcid: 6872616
doi: 10.1111/jvim.15606
De Risio, L. et al. International veterinary epilepsy task force consensus proposal: Diagnostic approach to epilepsy in dogs. BMC Vet. Res. 11, 148 (2015).
pubmed: 26316175
pmcid: 4552251
doi: 10.1186/s12917-015-0462-1
Di Terlizzi, R. & Platt, S. R. The function, composition and analysis of cerebrospinal fluid in companion animals: Part II—Analysis. Vet. J. 180(1), 15–32 (2009).
pubmed: 18294880
doi: 10.1016/j.tvjl.2007.11.024
MacNeill, A. L. et al. The effects of iatrogenic blood contamination on total nucleated cell counts and protein concentrations in canine cerebrospinal fluid. Vet. Clin. Pathol. 47(3), 464–470 (2018).
pubmed: 30011069
doi: 10.1111/vcp.12639
Nagendran, A. et al. Risk factors for blood-contaminated cerebrospinal fluid collection in dogs. Vet. Rec. 186(16), e8 (2020).
pubmed: 31481599
doi: 10.1136/vr.105192
Hurtt, A. E. & Smith, M. O. Effects of iatrogenic blood contamination on results of cerebrospinal fluid analysis in clinically normal dogs and dogs with neurologic disease. J. Am. Vet. Med. Assoc. 211(7), 866–867 (1997).
pubmed: 9333087
doi: 10.2460/javma.1997.211.07.866
Chrisman, C. L. Cerebrospinal fluid analysis. Vet. Clin. North Am. Small Anim. Pract. 22(4), 781–810 (1992).
pubmed: 1641918
doi: 10.1016/S0195-5616(92)50077-8
Hugo, T. B., Heading, K. L. & Labuc, R. H. Canine cerebrospinal fluid total nucleated cell counts and cytology associations with the prevalence of magnetic resonance imaging abnormalities. Vet. Med. (Auckl) 5, 75–84 (2014).
pubmed: 32670848
R_Core_Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2022).
Welch, B. L. The generalization of `student’s’ problem when several different population variances are involved. Biometrika 34(1/2), 28–35 (1947).
pubmed: 20287819
doi: 10.2307/2332510
Searle, S. R., Speed, F. M. & Milliken, G. A. Population marginal means in the linear model: An alternative to least squares means. Am. Stat. 34(4), 216–221 (1980).
doi: 10.1080/00031305.1980.10483031
Winterbottom, A. A note on the derivation of fisher’s transformation of the correlation coefficient. Am. Stat. 33(3), 142–143 (1979).
doi: 10.1080/00031305.1979.10482682
Pepe, M. S. The Statistical Evaluation of Medical Tests for Classification and Prediction (Oxford University Press, 2004).
Stylianaki, I. et al. Amyloid-beta plasma and cerebrospinal fluid biomarkers in aged dogs with cognitive dysfunction syndrome. J. Vet. Intern. Med. 34(4), 1532–1540 (2020).
pubmed: 32557873
pmcid: 7379053
doi: 10.1111/jvim.15812
Smolek, T. et al. Tau hyperphosphorylation in synaptosomes and neuroinflammation are associated with canine cognitive impairment. J. Compar. Neurol. 524(4), 874–895 (2016).
doi: 10.1002/cne.23877
National Center for Biotechnology Information Database (NCBI).
Blomme, E. A. G. & Waring, J. F. Cerebrospinal fluid biomarkers: Exploiting advances in humans to improve veterinary care. Vet. J. 197(2), 113–114 (2013).
pubmed: 23769457
doi: 10.1016/j.tvjl.2013.04.026
Isgrò, M. A., Bottoni, P. & Scatena, R. Neuron-specific enolase as a biomarker: Biochemical and clinical aspects. In Advances in Cancer Biomarkers: From biochemistry to clinic for a critical revision (ed. Scatena, R.) 125–143 (Springer, 2015).
doi: 10.1007/978-94-017-7215-0_9
Bandyopadhyay, S. et al. Serum neuron-specific enolase as a predictor of short-term outcome in children with closed traumatic brain injury. Acad. Emerg. Med. 12(8), 732–738 (2005).
pubmed: 16079426
Selakovic, V., Raicevic, R. & Radenovic, L. The increase of neuron-specific enolase in cerebrospinal fluid and plasma as a marker of neuronal damage in patients with acute brain infarction. J. Clin. Neurosci. 12(5), 542–547 (2005).
pubmed: 15921910
doi: 10.1016/j.jocn.2004.07.019
El-Maraghi, S. et al. The prognostic value of neuron specific enolase in head injury. Egypt. J. Crit. Care Med. 1(1), 25–32 (2013).
doi: 10.1016/j.ejccm.2012.12.002
Nakamura, K. et al. Proteome analysis of cerebrospinal fluid in healthy beagles and canine encephalitis. J. Vet. Med. Sci. 74(6), 751–756 (2012).
pubmed: 22251802
doi: 10.1292/jvms.11-0474
Satoh, H. et al. Cerebrospinal fluid biomarkers showing neurodegeneration in dogs with GM1 gangliosidosis: Possible use for assessment of a therapeutic regimen. Brain Res. 1133, 200–208 (2007).
pubmed: 17196562
doi: 10.1016/j.brainres.2006.11.039
Elias, B. C., Alfieri, A. F., Navarro, I. T. & Gomes, L. A. Neuron-specific enolase as biomarker for possible neuronal damage in dogs with distemper vírus. Pesquisa Veterinária Brasileira 39(01), 47–51 (2019).
doi: 10.1590/1678-5150-pvb-5787
Gaetani, L. et al. Neurofilament light chain as a biomarker in neurological disorders. J. Neurol. Neurosurg. Psychiatry 90(8), 870–881 (2019).
pubmed: 30967444
doi: 10.1136/jnnp-2018-320106
Head, E. et al. Amyloid-β peptide and oligomers in the brain and cerebrospinal fluid of aged canines. J. Alzheimer’s Dis. 20, 637–646 (2010).
doi: 10.3233/JAD-2010-1397
Urfer, S. R. et al. Canine Cognitive Dysfunction (CCD) scores correlate with amyloid beta 42 levels in dog brain tissue. GeroScience 43(5), 2379–2386 (2021).
pubmed: 34417706
pmcid: 8599551
doi: 10.1007/s11357-021-00422-1
Schmidt, F. et al. Detection and quantification of β-amyloid, pyroglutamyl Aβ, and tau in aged canines. J. Neuropathol. Exp. Neurol. 74(9), 912–923 (2015).
pubmed: 26247394
doi: 10.1097/NEN.0000000000000230
Rusbridge, C. et al. An aged canid with behavioral deficits exhibits blood and cerebrospinal fluid amyloid beta oligomers. Front. Aging Neurosci. https://doi.org/10.3389/fnagi.2018.00007 (2018).
doi: 10.3389/fnagi.2018.00007
pubmed: 29441010
pmcid: 5797595
Borghys, H. et al. Young to middle-aged dogs with high amyloid-β levels in cerebrospinal fluid are impaired on learning in standard cognition tests. J. Alzheimer’s Dis. 56(2), 763–774 (2017).
doi: 10.3233/JAD-160434
Priester, W. A. & Mantel, N. Occurrence of tumors in domestic animals. Data from 12 United States and Canadian colleges of veterinary medicine. J. Natl. Cancer Inst. 47(6), 1333–44 (1971).
pubmed: 5120412
Song, R. B. et al. Postmortem evaluation of 435 cases of intracranial neoplasia in dogs and relationship of neoplasm with breed, age, and body weight. J. Vet. Intern. Med. 27(5), 1143–1152 (2013).
pubmed: 23865437
doi: 10.1111/jvim.12136
Snyder, J. M. et al. Canine intracranial primary neoplasia: 173 cases (1986–2003). J. Vet. Intern. Med. 20(3), 669–675 (2006).
pubmed: 16734106
doi: 10.1111/j.1939-1676.2006.tb02913.x
Westworth, D. et al. Choroid plexus tumors in 56 dogs (1985–2007). J. Vet. Intern. Med. 22(5), 1157–1165 (2008).
pubmed: 18691364
doi: 10.1111/j.1939-1676.2008.0170.x
Sturges, B. et al. Magnetic resonance imaging and histological classification of intracranial meningiomas in 112 dogs. J. Vet. Intern. Med. 22(3), 586–595 (2008).
pubmed: 18466258
doi: 10.1111/j.1939-1676.2008.00042.x
Miller, A. D., Miller, C. R. & Rossmeisl, J. H. Canine primary intracranial cancer: A clinicopathologic and comparative review of glioma, meningioma, and choroid plexus tumors. Front. Oncol. https://doi.org/10.3389/fonc.2019.01151 (2019).
doi: 10.3389/fonc.2019.01151
pubmed: 31788444
pmcid: 6856054
Wolff, C. A. et al. Magnetic resonance imaging for the differentiation of neoplastic, inflammatory, and cerebrovascular brain disease in dogs. J. Vet. Intern. Med. 26(3), 589–597 (2012).
pubmed: 22404482
doi: 10.1111/j.1939-1676.2012.00899.x
Bentley, R. T. Magnetic resonance imaging diagnosis of brain tumors in dogs. Vet. J. 205(2), 204–216 (2015).
pubmed: 25792181
doi: 10.1016/j.tvjl.2015.01.025
Braund, K. G. Granulomatous meningoencephalomyelitis. J. Am. Vet. Med. Assoc. 186(2), 138–141 (1985).
pubmed: 3882646
Tipold, A. Diagnosis of inflammatory and infectious diseases of the central nervous system in dogs: A retrospective study. J. Vet. Intern. Med. 9(5), 304–314 (1995).
pubmed: 8531175
doi: 10.1111/j.1939-1676.1995.tb01089.x
Coates, J. R. & Jeffery, N. D. Perspectives on meningoencephalomyelitis of unknown origin. Vet. Clin. North Am. Small Anim. Pract. 44(6), 1157–1185 (2014).
pubmed: 25239815
doi: 10.1016/j.cvsm.2014.07.009
Talarico, L. R. & Schatzberg, S. J. Idiopathic granulomatous and necrotising inflammatory disorders of the canine central nervous system: A review and future perspectives. J. Small Anim. Pract. 51(3), 138–149 (2010).
pubmed: 19814766
doi: 10.1111/j.1748-5827.2009.00823.x
Nessler, J. N. et al. Canine meningoencephalitis of unknown origin-the search for infectious agents in the cerebrospinal fluid via deep sequencing. Front. Vet. Sci. 8, 645517 (2021).
pubmed: 34950723
pmcid: 8688736
doi: 10.3389/fvets.2021.645517
Wijnrocx, K. et al. Twelve years of chiari-like malformation and syringomyelia scanning in Cavalier King Charles Spaniels in the Netherlands: Towards a more precise phenotype. PLoS One 12(9), e0184893 (2017).
pubmed: 28934242
pmcid: 5608246
doi: 10.1371/journal.pone.0184893
Mitchell, T. J. et al. Syringomyelia: Determining risk and protective factors in the conformation of the Cavalier King Charles Spaniel dog. Canine Genet. Epidemiol. 1(1), 9 (2014).
pubmed: 26401326
pmcid: 4579371
doi: 10.1186/2052-6687-1-9
Park, C. et al. Syringomyelia in three small breed dogs secondary to Chiari-like malformation: Clinical and diagnostic findings. J. Vet. Sci. 10(4), 365–367 (2009).
pubmed: 19934606
pmcid: 2807277
doi: 10.4142/jvs.2009.10.4.365
Wolfe, K. C. & Poma, R. Syringomyelia in the Cavalier King Charles spaniel (CKCS) dog. Can. Vet. J. 51(1), 95–102 (2010).
pubmed: 20357949
pmcid: 2797361
Rusbridge, C., McFadyen, A. K. & Knower, S. P. Behavioral and clinical signs of Chiari-like malformation-associated pain and syringomyelia in Cavalier King Charles spaniels. J. Vet. Intern. Med. 33(5), 2138–2150 (2019).
pubmed: 31290195
pmcid: 6766577
doi: 10.1111/jvim.15552
Knowler, S. P., Galea, G. L. & Rusbridge, C. Morphogenesis of Canine chiari malformation and secondary syringomyelia: Disorders of cerebrospinal fluid circulation. Front. Vet. Sci. 5, 171 (2018).
pubmed: 30101146
pmcid: 6074093
doi: 10.3389/fvets.2018.00171
Rusbridge, C., Stringer, F. & Knowler, S. P. Clinical application of diagnostic imaging of Chiari-like malformation and syringomyelia. Front. Vet. Sci. 5, 280 (2018).
pubmed: 30547039
pmcid: 6279941
doi: 10.3389/fvets.2018.00280
Rusbridge, C. & Knowler, S. P. Inheritance of occipital bone hypoplasia (Chiari type I malformation) in Cavalier King Charles Spaniels. J. Vet. Intern. Med. 18(5), 673–678 (2004).
pubmed: 15515584
doi: 10.1111/j.1939-1676.2004.tb02605.x
Lu, D. et al. Neurological signs and results of magnetic resonance imaging in 40 cavalier King Charles spaniels with Chiari type 1-like malformations. Vet. Record 153(9), 260–263 (2003).
pubmed: 12974337
doi: 10.1136/vr.153.9.260
Griffin, J. F. et al. Meningomyelitis in dogs: A retrospective review of 28 cases (1999 to 2007). J. Small Anim. Pract. 49(10), 509–517 (2008).
pubmed: 18631217
doi: 10.1111/j.1748-5827.2008.00588.x
Tipold, A. & Stein, V. M. Inflammatory diseases of the spine in small animals. Vet. Clin. North Am. Small Anim. Pract. 40(5), 871–879 (2010).
pubmed: 20732596
doi: 10.1016/j.cvsm.2010.05.008
Wojdala, A. L. et al. Trajectories of CSF and plasma biomarkers across Alzheimer’s disease continuum: Disease staging by NF-L, p-tau181, and GFAP. Neurobiol. Dis. 189, 106356 (2023).
pubmed: 37977432
doi: 10.1016/j.nbd.2023.106356
Rostgaard, N. et al. Differential proteomic profile of lumbar and ventricular cerebrospinal fluid. Fluids Barriers CNS 20(1), 6 (2023).
pubmed: 36670437
pmcid: 9863210
doi: 10.1186/s12987-022-00405-0