On the utility of cerebrospinal fluid biomarkers in canine neurological disorders.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
15 10 2024
Historique:
received: 17 03 2023
accepted: 20 09 2024
medline: 16 10 2024
pubmed: 16 10 2024
entrez: 15 10 2024
Statut: epublish

Résumé

The cerebral biomarkers, neurofilament light chain (NfL), amyloid-β, tau, and neuron specific enolase (NSE) reflect a wide spectrum of neurological damage in the brain and spinal cord. With this study, we aimed to assess whether these biomarkers hold any potential diagnostic value for the three most common canine neurological diseases. Canines suffering from meningoencephalitis of unknown origin (MUO), brain tumors, and selected non-infectious myelopathies were included. For each diagnosis, we analyzed these biomarkers in the cerebrospinal fluid collected via cranial puncture from the cisterna magna. Elevated levels of CSF tau, NfL, and NSE were observed in MUO, with all three biomarkers being intercorrelated. Tau and NSE were increased while amyloid-β was decreased in dogs suffering from tumors. In contrast, no biomarker changes were observed in dogs with myelopathies. Covariates such as age, sex, or castration had minimal impact. CSF biomarkers may reflect molecular changes related to MUO and tumors, but not to non-infectious myelopathies. The combination of NfL, tau, and NSE may represent useful biomarkers for MUO as they reflect the same pathology and are not influenced by age.

Identifiants

pubmed: 39406773
doi: 10.1038/s41598-024-73812-y
pii: 10.1038/s41598-024-73812-y
doi:

Substances chimiques

Biomarkers 0
tau Proteins 0
Neurofilament Proteins 0
neurofilament protein L 0
Phosphopyruvate Hydratase EC 4.2.1.11
Amyloid beta-Peptides 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

24129

Subventions

Organisme : VEGA
ID : 2/0127/22
Organisme : Agentúra na Podporu Výskumu a Vývoja
ID : APVV-18-0515
Organisme : Agentúra na Podporu Výskumu a Vývoja
ID : APVV-18-0515

Informations de copyright

© 2024. The Author(s).

Références

Sisó, S. et al. Neurodegenerative diseases in domestic animals: A comparative review. Vet. J. 171(1), 20–38 (2006).
pubmed: 16427580 doi: 10.1016/j.tvjl.2004.08.015
Noble, W. & Burns, M. Challenges in neurodegeneration research. Front. Psychiatry https://doi.org/10.3389/fpsyt.2010.00007 (2010).
doi: 10.3389/fpsyt.2010.00007 pubmed: 21423446 pmcid: 3059645
Prpar Mihevc, S. & Majdič, G. Canine cognitive dysfunction and Alzheimer’s disease—Two facets of the same disease?. Front. Neurosci. https://doi.org/10.3389/fnins.2019.00604 (2019).
doi: 10.3389/fnins.2019.00604 pubmed: 31249505 pmcid: 6582309
Lombardi, G. et al. Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer’s disease in people with mild cognitive impairment. Cochrane Database Syst. Rev. 3(3), CD009628 (2020).
pubmed: 32119112
Cullen, N. C. et al. Efficacy assessment of an active tau immunotherapy in Alzheimer’s disease patients with amyloid and tau pathology: A post hoc analysis of the “ADAMANT” randomised, placebo-controlled, double-blind, multi-centre, phase 2 clinical trial. EBioMedicine 99, 104923 (2024).
pubmed: 38101301 doi: 10.1016/j.ebiom.2023.104923
Salloway, S. et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 370(4), 322–333 (2014).
pubmed: 24450891 pmcid: 4159618 doi: 10.1056/NEJMoa1304839
Janelidze, S. et al. Head-to-head comparison of 10 plasma phospho-tau assays in prodromal Alzheimer’s disease. Brain 146(4), 1592–1601 (2023).
pubmed: 36087307 doi: 10.1093/brain/awac333
Lowrie, M., Smith, P. M. & Garosi, L. Meningoencephalitis of unknown origin: Investigation of prognostic factors and outcome using a standard treatment protocol. Vet. Rec. 172(20), 527 (2013).
pubmed: 23462382 doi: 10.1136/vr.101431
Cornelis, I. et al. Clinical presentation, diagnostic findings, prognostic factors, treatment and outcome in dogs with meningoencephalomyelitis of unknown origin: A review. Vet. J. 244, 37–44 (2019).
pubmed: 30825893 doi: 10.1016/j.tvjl.2018.12.007
Lowrie, M. et al. Effect of a constant rate infusion of cytosine arabinoside on mortality in dogs with meningoencephalitis of unknown origin. Vet. J. 213, 1–5 (2016).
pubmed: 27240905 doi: 10.1016/j.tvjl.2016.03.026
Hall, S. et al. CSF biomarkers and clinical progression of Parkinson disease. Neurology 84(1), 57–63 (2015).
pubmed: 25411441 pmcid: 4336091 doi: 10.1212/WNL.0000000000001098
Blennow, K. & Zetterberg, H. Chapter one—Fluid biomarker-based molecular phenotyping of Alzheimer’s disease patients in research and clinical settings. In Progress in Molecular Biology and Translational Science (ed. Teplow, D. B.) 3–23 (Academic Press, 2019).
Blennow, K. & Zetterberg, H. Biomarkers for Alzheimer’s disease: Current status and prospects for the future. J. Intern. Med. 284(6), 643–663 (2018).
pubmed: 30051512 doi: 10.1111/joim.12816
Jack, C. R. Jr. et al. NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14(4), 535–562 (2018).
pubmed: 29653606 doi: 10.1016/j.jalz.2018.02.018
Lleó, A. et al. Longitudinal cerebrospinal fluid biomarker trajectories along the Alzheimer’s disease continuum in the BIOMARKAPD study. Alzheimers Dement. 15(6), 742–753 (2019).
pubmed: 30967340 doi: 10.1016/j.jalz.2019.01.015
Bittner, S. et al. The potential of serum neurofilament as biomarker for multiple sclerosis. Brain 144(10), 2954–2963 (2021).
pubmed: 34180982 pmcid: 8634125 doi: 10.1093/brain/awab241
Olby, N. J. et al. Prognostic factors in canine acute intervertebral disc disease. Front. Vet. Sci. 7, 596059 (2020).
pubmed: 33324703 pmcid: 7725764 doi: 10.3389/fvets.2020.596059
Roerig, A. et al. Cerebrospinal fluid tau protein as a biomarker for severity of spinal cord injury in dogs with intervertebral disc herniation. Vet. J. 197(2), 253–258 (2013).
pubmed: 23499240 doi: 10.1016/j.tvjl.2013.02.005
Toda, Y. et al. Glial fibrillary acidic protein (gfap) and anti-gfap autoantibody in canine necrotising meningoencephalitis. Vet. Record 161(8), 261–264 (2007).
pubmed: 17720962 doi: 10.1136/vr.161.8.261
Toedebusch, C. M. et al. Cerebrospinal fluid levels of phosphorylated neurofilament heavy as a diagnostic marker of canine degenerative myelopathy. J. Vet. Intern. Med. 31(2), 513–520 (2017).
pubmed: 28186658 pmcid: 5354061 doi: 10.1111/jvim.14659
Panek, W. K. et al. Plasma neurofilament light chain as a translational biomarker of aging and neurodegeneration in dogs. Mol. Neurobiol. 57(7), 3143–3149 (2020).
pubmed: 32472519 pmcid: 7529326 doi: 10.1007/s12035-020-01951-0
Yun, T. et al. Neurofilament light chain as a biomarker of meningoencephalitis of unknown etiology in dogs. J. Vet. Intern. Med. 35(4), 1865–1872 (2021).
pubmed: 34114244 pmcid: 8295659 doi: 10.1111/jvim.16184
Zhang, L. et al. Cerebrospinal fluid and blood biomarkers in the diagnostic assays of Alzheimer’s disease. J. Innov. Opt. Health Sci. 15(01), 2230001 (2022).
doi: 10.1142/S1793545822300014
Olby, N. J. et al. Time course and prognostic value of serum GFAP, pNFH, and S100beta concentrations in dogs with complete spinal cord injury because of intervertebral disc extrusion. J. Vet. Intern. Med. 33(2), 726–734 (2019).
pubmed: 30758078 pmcid: 6430936 doi: 10.1111/jvim.15439
Vikartovska, Z. et al. Novel diagnostic tools for identifying cognitive impairment in dogs: Behavior, biomarkers, and pathology. Front. Vet. Sci. 7, 551895 (2020).
pubmed: 33521072 doi: 10.3389/fvets.2020.551895
Samanci, Y. et al. Neuron-specific enolase levels as a marker for possible neuronal damage in idiopathic intracranial hypertension. Acta Neurol. Belg. 117(3), 707–711 (2017).
pubmed: 28220397 doi: 10.1007/s13760-017-0762-2
Granger, N., Smith, P. M. & Jeffery, N. D. Clinical findings and treatment of non-infectious meningoencephalomyelitis in dogs: A systematic review of 457 published cases from 1962 to 2008. Vet. J. 184(3), 290–297 (2010).
pubmed: 19410487 doi: 10.1016/j.tvjl.2009.03.031
Hecht, S. & Adams, W. H. MRI of brain disease in veterinary patients part 2: Acquired brain disorders. Vet. Clin. North Am. Small Anim. Pract. 40(1), 39–63 (2010).
pubmed: 19942056 doi: 10.1016/j.cvsm.2009.09.006
Wisner, E. R., Dickinson, P. J. & Higgins, R. J. Magnetic resonance imaging features of canine intracranial neoplasia. Vet. Radiol. Ultrasound 52(1 Suppl 1), S52-61 (2011).
pubmed: 21392157
Rusbridge, C., Greitz, D. & Iskandar, B. J. Syringomyelia: Current concepts in pathogenesis, diagnosis, and treatment. J. Vet. Intern. Med. 20(3), 469–479 (2006).
pubmed: 16734077 doi: 10.1111/j.1939-1676.2006.tb02884.x
Hechler, A. C. & Moore, S. A. Understanding and treating chiari-like malformation and syringomyelia in dogs. Top. Companion Anim. Med. 33(1), 1–11 (2018).
pubmed: 29793722 doi: 10.1053/j.tcam.2018.03.002
Mariani, C. L. et al. Cerebrospinal fluid lactate in dogs with inflammatory central nervous system disorders. J. Vet. Intern. Med. 33(6), 2701–2708 (2019).
pubmed: 31549740 pmcid: 6872616 doi: 10.1111/jvim.15606
De Risio, L. et al. International veterinary epilepsy task force consensus proposal: Diagnostic approach to epilepsy in dogs. BMC Vet. Res. 11, 148 (2015).
pubmed: 26316175 pmcid: 4552251 doi: 10.1186/s12917-015-0462-1
Di Terlizzi, R. & Platt, S. R. The function, composition and analysis of cerebrospinal fluid in companion animals: Part II—Analysis. Vet. J. 180(1), 15–32 (2009).
pubmed: 18294880 doi: 10.1016/j.tvjl.2007.11.024
MacNeill, A. L. et al. The effects of iatrogenic blood contamination on total nucleated cell counts and protein concentrations in canine cerebrospinal fluid. Vet. Clin. Pathol. 47(3), 464–470 (2018).
pubmed: 30011069 doi: 10.1111/vcp.12639
Nagendran, A. et al. Risk factors for blood-contaminated cerebrospinal fluid collection in dogs. Vet. Rec. 186(16), e8 (2020).
pubmed: 31481599 doi: 10.1136/vr.105192
Hurtt, A. E. & Smith, M. O. Effects of iatrogenic blood contamination on results of cerebrospinal fluid analysis in clinically normal dogs and dogs with neurologic disease. J. Am. Vet. Med. Assoc. 211(7), 866–867 (1997).
pubmed: 9333087 doi: 10.2460/javma.1997.211.07.866
Chrisman, C. L. Cerebrospinal fluid analysis. Vet. Clin. North Am. Small Anim. Pract. 22(4), 781–810 (1992).
pubmed: 1641918 doi: 10.1016/S0195-5616(92)50077-8
Hugo, T. B., Heading, K. L. & Labuc, R. H. Canine cerebrospinal fluid total nucleated cell counts and cytology associations with the prevalence of magnetic resonance imaging abnormalities. Vet. Med. (Auckl) 5, 75–84 (2014).
pubmed: 32670848
R_Core_Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2022).
Welch, B. L. The generalization of `student’s’ problem when several different population variances are involved. Biometrika 34(1/2), 28–35 (1947).
pubmed: 20287819 doi: 10.2307/2332510
Searle, S. R., Speed, F. M. & Milliken, G. A. Population marginal means in the linear model: An alternative to least squares means. Am. Stat. 34(4), 216–221 (1980).
doi: 10.1080/00031305.1980.10483031
Winterbottom, A. A note on the derivation of fisher’s transformation of the correlation coefficient. Am. Stat. 33(3), 142–143 (1979).
doi: 10.1080/00031305.1979.10482682
Pepe, M. S. The Statistical Evaluation of Medical Tests for Classification and Prediction (Oxford University Press, 2004).
Stylianaki, I. et al. Amyloid-beta plasma and cerebrospinal fluid biomarkers in aged dogs with cognitive dysfunction syndrome. J. Vet. Intern. Med. 34(4), 1532–1540 (2020).
pubmed: 32557873 pmcid: 7379053 doi: 10.1111/jvim.15812
Smolek, T. et al. Tau hyperphosphorylation in synaptosomes and neuroinflammation are associated with canine cognitive impairment. J. Compar. Neurol. 524(4), 874–895 (2016).
doi: 10.1002/cne.23877
National Center for Biotechnology Information Database (NCBI).
Blomme, E. A. G. & Waring, J. F. Cerebrospinal fluid biomarkers: Exploiting advances in humans to improve veterinary care. Vet. J. 197(2), 113–114 (2013).
pubmed: 23769457 doi: 10.1016/j.tvjl.2013.04.026
Isgrò, M. A., Bottoni, P. & Scatena, R. Neuron-specific enolase as a biomarker: Biochemical and clinical aspects. In Advances in Cancer Biomarkers: From biochemistry to clinic for a critical revision (ed. Scatena, R.) 125–143 (Springer, 2015).
doi: 10.1007/978-94-017-7215-0_9
Bandyopadhyay, S. et al. Serum neuron-specific enolase as a predictor of short-term outcome in children with closed traumatic brain injury. Acad. Emerg. Med. 12(8), 732–738 (2005).
pubmed: 16079426
Selakovic, V., Raicevic, R. & Radenovic, L. The increase of neuron-specific enolase in cerebrospinal fluid and plasma as a marker of neuronal damage in patients with acute brain infarction. J. Clin. Neurosci. 12(5), 542–547 (2005).
pubmed: 15921910 doi: 10.1016/j.jocn.2004.07.019
El-Maraghi, S. et al. The prognostic value of neuron specific enolase in head injury. Egypt. J. Crit. Care Med. 1(1), 25–32 (2013).
doi: 10.1016/j.ejccm.2012.12.002
Nakamura, K. et al. Proteome analysis of cerebrospinal fluid in healthy beagles and canine encephalitis. J. Vet. Med. Sci. 74(6), 751–756 (2012).
pubmed: 22251802 doi: 10.1292/jvms.11-0474
Satoh, H. et al. Cerebrospinal fluid biomarkers showing neurodegeneration in dogs with GM1 gangliosidosis: Possible use for assessment of a therapeutic regimen. Brain Res. 1133, 200–208 (2007).
pubmed: 17196562 doi: 10.1016/j.brainres.2006.11.039
Elias, B. C., Alfieri, A. F., Navarro, I. T. & Gomes, L. A. Neuron-specific enolase as biomarker for possible neuronal damage in dogs with distemper vírus. Pesquisa Veterinária Brasileira 39(01), 47–51 (2019).
doi: 10.1590/1678-5150-pvb-5787
Gaetani, L. et al. Neurofilament light chain as a biomarker in neurological disorders. J. Neurol. Neurosurg. Psychiatry 90(8), 870–881 (2019).
pubmed: 30967444 doi: 10.1136/jnnp-2018-320106
Head, E. et al. Amyloid-β peptide and oligomers in the brain and cerebrospinal fluid of aged canines. J. Alzheimer’s Dis. 20, 637–646 (2010).
doi: 10.3233/JAD-2010-1397
Urfer, S. R. et al. Canine Cognitive Dysfunction (CCD) scores correlate with amyloid beta 42 levels in dog brain tissue. GeroScience 43(5), 2379–2386 (2021).
pubmed: 34417706 pmcid: 8599551 doi: 10.1007/s11357-021-00422-1
Schmidt, F. et al. Detection and quantification of β-amyloid, pyroglutamyl Aβ, and tau in aged canines. J. Neuropathol. Exp. Neurol. 74(9), 912–923 (2015).
pubmed: 26247394 doi: 10.1097/NEN.0000000000000230
Rusbridge, C. et al. An aged canid with behavioral deficits exhibits blood and cerebrospinal fluid amyloid beta oligomers. Front. Aging Neurosci. https://doi.org/10.3389/fnagi.2018.00007 (2018).
doi: 10.3389/fnagi.2018.00007 pubmed: 29441010 pmcid: 5797595
Borghys, H. et al. Young to middle-aged dogs with high amyloid-β levels in cerebrospinal fluid are impaired on learning in standard cognition tests. J. Alzheimer’s Dis. 56(2), 763–774 (2017).
doi: 10.3233/JAD-160434
Priester, W. A. & Mantel, N. Occurrence of tumors in domestic animals. Data from 12 United States and Canadian colleges of veterinary medicine. J. Natl. Cancer Inst. 47(6), 1333–44 (1971).
pubmed: 5120412
Song, R. B. et al. Postmortem evaluation of 435 cases of intracranial neoplasia in dogs and relationship of neoplasm with breed, age, and body weight. J. Vet. Intern. Med. 27(5), 1143–1152 (2013).
pubmed: 23865437 doi: 10.1111/jvim.12136
Snyder, J. M. et al. Canine intracranial primary neoplasia: 173 cases (1986–2003). J. Vet. Intern. Med. 20(3), 669–675 (2006).
pubmed: 16734106 doi: 10.1111/j.1939-1676.2006.tb02913.x
Westworth, D. et al. Choroid plexus tumors in 56 dogs (1985–2007). J. Vet. Intern. Med. 22(5), 1157–1165 (2008).
pubmed: 18691364 doi: 10.1111/j.1939-1676.2008.0170.x
Sturges, B. et al. Magnetic resonance imaging and histological classification of intracranial meningiomas in 112 dogs. J. Vet. Intern. Med. 22(3), 586–595 (2008).
pubmed: 18466258 doi: 10.1111/j.1939-1676.2008.00042.x
Miller, A. D., Miller, C. R. & Rossmeisl, J. H. Canine primary intracranial cancer: A clinicopathologic and comparative review of glioma, meningioma, and choroid plexus tumors. Front. Oncol. https://doi.org/10.3389/fonc.2019.01151 (2019).
doi: 10.3389/fonc.2019.01151 pubmed: 31788444 pmcid: 6856054
Wolff, C. A. et al. Magnetic resonance imaging for the differentiation of neoplastic, inflammatory, and cerebrovascular brain disease in dogs. J. Vet. Intern. Med. 26(3), 589–597 (2012).
pubmed: 22404482 doi: 10.1111/j.1939-1676.2012.00899.x
Bentley, R. T. Magnetic resonance imaging diagnosis of brain tumors in dogs. Vet. J. 205(2), 204–216 (2015).
pubmed: 25792181 doi: 10.1016/j.tvjl.2015.01.025
Braund, K. G. Granulomatous meningoencephalomyelitis. J. Am. Vet. Med. Assoc. 186(2), 138–141 (1985).
pubmed: 3882646
Tipold, A. Diagnosis of inflammatory and infectious diseases of the central nervous system in dogs: A retrospective study. J. Vet. Intern. Med. 9(5), 304–314 (1995).
pubmed: 8531175 doi: 10.1111/j.1939-1676.1995.tb01089.x
Coates, J. R. & Jeffery, N. D. Perspectives on meningoencephalomyelitis of unknown origin. Vet. Clin. North Am. Small Anim. Pract. 44(6), 1157–1185 (2014).
pubmed: 25239815 doi: 10.1016/j.cvsm.2014.07.009
Talarico, L. R. & Schatzberg, S. J. Idiopathic granulomatous and necrotising inflammatory disorders of the canine central nervous system: A review and future perspectives. J. Small Anim. Pract. 51(3), 138–149 (2010).
pubmed: 19814766 doi: 10.1111/j.1748-5827.2009.00823.x
Nessler, J. N. et al. Canine meningoencephalitis of unknown origin-the search for infectious agents in the cerebrospinal fluid via deep sequencing. Front. Vet. Sci. 8, 645517 (2021).
pubmed: 34950723 pmcid: 8688736 doi: 10.3389/fvets.2021.645517
Wijnrocx, K. et al. Twelve years of chiari-like malformation and syringomyelia scanning in Cavalier King Charles Spaniels in the Netherlands: Towards a more precise phenotype. PLoS One 12(9), e0184893 (2017).
pubmed: 28934242 pmcid: 5608246 doi: 10.1371/journal.pone.0184893
Mitchell, T. J. et al. Syringomyelia: Determining risk and protective factors in the conformation of the Cavalier King Charles Spaniel dog. Canine Genet. Epidemiol. 1(1), 9 (2014).
pubmed: 26401326 pmcid: 4579371 doi: 10.1186/2052-6687-1-9
Park, C. et al. Syringomyelia in three small breed dogs secondary to Chiari-like malformation: Clinical and diagnostic findings. J. Vet. Sci. 10(4), 365–367 (2009).
pubmed: 19934606 pmcid: 2807277 doi: 10.4142/jvs.2009.10.4.365
Wolfe, K. C. & Poma, R. Syringomyelia in the Cavalier King Charles spaniel (CKCS) dog. Can. Vet. J. 51(1), 95–102 (2010).
pubmed: 20357949 pmcid: 2797361
Rusbridge, C., McFadyen, A. K. & Knower, S. P. Behavioral and clinical signs of Chiari-like malformation-associated pain and syringomyelia in Cavalier King Charles spaniels. J. Vet. Intern. Med. 33(5), 2138–2150 (2019).
pubmed: 31290195 pmcid: 6766577 doi: 10.1111/jvim.15552
Knowler, S. P., Galea, G. L. & Rusbridge, C. Morphogenesis of Canine chiari malformation and secondary syringomyelia: Disorders of cerebrospinal fluid circulation. Front. Vet. Sci. 5, 171 (2018).
pubmed: 30101146 pmcid: 6074093 doi: 10.3389/fvets.2018.00171
Rusbridge, C., Stringer, F. & Knowler, S. P. Clinical application of diagnostic imaging of Chiari-like malformation and syringomyelia. Front. Vet. Sci. 5, 280 (2018).
pubmed: 30547039 pmcid: 6279941 doi: 10.3389/fvets.2018.00280
Rusbridge, C. & Knowler, S. P. Inheritance of occipital bone hypoplasia (Chiari type I malformation) in Cavalier King Charles Spaniels. J. Vet. Intern. Med. 18(5), 673–678 (2004).
pubmed: 15515584 doi: 10.1111/j.1939-1676.2004.tb02605.x
Lu, D. et al. Neurological signs and results of magnetic resonance imaging in 40 cavalier King Charles spaniels with Chiari type 1-like malformations. Vet. Record 153(9), 260–263 (2003).
pubmed: 12974337 doi: 10.1136/vr.153.9.260
Griffin, J. F. et al. Meningomyelitis in dogs: A retrospective review of 28 cases (1999 to 2007). J. Small Anim. Pract. 49(10), 509–517 (2008).
pubmed: 18631217 doi: 10.1111/j.1748-5827.2008.00588.x
Tipold, A. & Stein, V. M. Inflammatory diseases of the spine in small animals. Vet. Clin. North Am. Small Anim. Pract. 40(5), 871–879 (2010).
pubmed: 20732596 doi: 10.1016/j.cvsm.2010.05.008
Wojdala, A. L. et al. Trajectories of CSF and plasma biomarkers across Alzheimer’s disease continuum: Disease staging by NF-L, p-tau181, and GFAP. Neurobiol. Dis. 189, 106356 (2023).
pubmed: 37977432 doi: 10.1016/j.nbd.2023.106356
Rostgaard, N. et al. Differential proteomic profile of lumbar and ventricular cerebrospinal fluid. Fluids Barriers CNS 20(1), 6 (2023).
pubmed: 36670437 pmcid: 9863210 doi: 10.1186/s12987-022-00405-0

Auteurs

Tomas Smolek (T)

Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava, Slovak Republic.
Neuroimmunology Institute, n.p.o., Dvořákovo nábrežie 7527/10, 811 02, Bratislava, Slovak Republic.

Zuzana Vince-Kazmerova (Z)

Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava, Slovak Republic.

Jozef Hanes (J)

Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava, Slovak Republic.

Eva Stevens (E)

Axon Neuroscience R&D Services SE, Dvořakovo Nabrezie 10, Bratislava, Slovak Republic.

Viktor Palus (V)

Neurovet -Referral Center for Veterinary Neurology, Bratislavska 2196/32, Trencin, Slovak Republic.

Ivo Hajek (I)

Small Animal Referral Centre Sibra, Na Vrátkach 13, Bratislava, Slovak Republic.

Stanislav Katina (S)

Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava, Slovak Republic.
Institute of Mathematics and Statistics, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic.

Petr Novak (P)

Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava, Slovak Republic. petr.novak@savba.sk.

Norbert Zilka (N)

Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava, Slovak Republic.
Neuroimmunology Institute, n.p.o., Dvořákovo nábrežie 7527/10, 811 02, Bratislava, Slovak Republic.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH