An open-access lumbosacral spine MRI dataset with enhanced spinal nerve root structure resolution.


Journal

Scientific data
ISSN: 2052-4463
Titre abrégé: Sci Data
Pays: England
ID NLM: 101640192

Informations de publication

Date de publication:
15 Oct 2024
Historique:
received: 17 04 2024
accepted: 23 09 2024
medline: 16 10 2024
pubmed: 16 10 2024
entrez: 15 10 2024
Statut: epublish

Résumé

Spinal cord injury (SCI) profoundly affects an individual's ability to move. Fortunately, recent advancements in neuromodulation, particularly the spatio-temporal epidural electrical stimulation (EES) targeting the spinal nerve roots, promoted rapid rehabilitation of SCI patients. Such neuromodulation techniques require precise anatomical modelling of spinal cord. However, the lack of spine imaging datasets, especially high-quality magnetic resonance imaging (MRI) datasets highlighting nerve roots, hinders the translation of EES into medical practice. To address this problem, we introduce an open-access lumbosacral spine MRI dataset acquired in 14 healthy adults, using constructive interference in steady state (CISS) sequence, double echo steady state (DESS) sequence, and T2-weight turbo spin echo (T2-TSE) sequence, with enhanced nerve root resolution. The dataset also includes the corresponding anatomical annotations of nerve roots and the final reconstructed 3D spinal cord models. The quality of our dataset is assessed using image quality metrics implemented in MRI quality control tool (MRIQC). Our dataset provides a valuable platform to promote a wide range of spinal cord neuromodulation research and collaboration among neurorehabilitation engineers.

Identifiants

pubmed: 39406785
doi: 10.1038/s41597-024-03919-4
pii: 10.1038/s41597-024-03919-4
doi:

Types de publication

Dataset Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1131

Informations de copyright

© 2024. The Author(s).

Références

Musienko, P., Heutschi, J., Friedli, L., Van Den Brand, R. & Courtine, G. Multi-system neurorehabilitative strategies to restore motor functions following severe spinal cord injury. Experimental neurology 235, 100–109 (2012).
doi: 10.1016/j.expneurol.2011.08.025 pubmed: 21925172
Won, S. M., Song, E., Reeder, J. T. & Rogers, J. A. Emerging modalities and implantable technologies for neuromodulation. Cell 181, 115–135 (2020).
doi: 10.1016/j.cell.2020.02.054 pubmed: 32220309
Bizzi, E., Tresch, M. C., Saltiel, P. & d’Avella, A. New perspectives on spinal motor systems. Nature Reviews Neuroscience 1, 101–108 (2000).
doi: 10.1038/35039000 pubmed: 11252772
Angeli, C. A., Edgerton, V. R., Gerasimenko, Y. P. & Harkema, S. J. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 137, 1394–1409 (2014).
doi: 10.1093/brain/awu038 pubmed: 24713270 pmcid: 3999714
Harkema, S. et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. The Lancet 377, 1938–1947 (2011).
doi: 10.1016/S0140-6736(11)60547-3
Rowald, A. et al. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nature medicine 28, 260–271 (2022).
doi: 10.1038/s41591-021-01663-5 pubmed: 35132264
Wenger, N. et al. Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nature medicine 22, 138–145 (2016).
doi: 10.1038/nm.4025 pubmed: 26779815 pmcid: 5061079
Wagner, F. B. et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 563, 65–71 (2018).
doi: 10.1038/s41586-018-0649-2 pubmed: 30382197
Angeli, C. A. et al. Recovery of over-ground walking after chronic motor complete spinal cord injury. New England Journal of Medicine 379, 1244–1250 (2018).
doi: 10.1056/NEJMoa1803588 pubmed: 30247091
Lorach, H. et al. Walking naturally after spinal cord injury using a brain–spine interface. Nature 1–8 (2023).
Canbay, S. et al. Anatomical relationship and positions of the lumbar and sacral segments of the spinal cord according to the vertebral bodies and the spinal roots. Clinical anatomy 27, 227–233 (2014).
doi: 10.1002/ca.22253 pubmed: 23649511
Pham, H. H., Trung, H. N. & Nguyen, H. Q. Vindr-spinexr: A large annotated medical image dataset for spinal lesions detection and classification from radiographs. PhysioNet (2021).
Liebl, H. et al. A computed tomography vertebral segmentation dataset with anatomical variations and multi-vendor scanner data. Scientific data 8, 284 (2021).
doi: 10.1038/s41597-021-01060-0 pubmed: 34711848 pmcid: 8553749
Löffler, M. T. et al. A vertebral segmentation dataset with fracture grading. Radiology: Artificial Intelligence 2, e190138 (2020).
pubmed: 33937831 pmcid: 8082364
van der Graaf, J. W. et al. Lumbar spine segmentation in mr images: a dataset and a public benchmark. Scientific Data 11, 264 (2024).
doi: 10.1038/s41597-024-03090-w pubmed: 38431692 pmcid: 10908819
Sudirman, S. et al. Lumbar spine mri dataset. Mendeley Data 2, 2019 (2019).
Zhang, X. et al. Seuneter: Channel attentive u-net for instance segmentation of the cervical spine mri medical image. Frontiers in Physiology 13, 2564 (2022).
doi: 10.3389/fphys.2022.1081441
Cohen-Adad, J. et al. Open-access quantitative mri data of the spinal cord and reproducibility across participants, sites and manufacturers. Scientific data 8, 219 (2021).
doi: 10.1038/s41597-021-00941-8 pubmed: 34400655 pmcid: 8368310
Esteban, O. et al. Mriqc: Advancing the automatic prediction of image quality in mri from unseen sites. PloS one 12, e0184661 (2017).
doi: 10.1371/journal.pone.0184661 pubmed: 28945803 pmcid: 5612458
Li, X., Morgan, P. S., Ashburner, J., Smith, J. & Rorden, C. The first step for neuroimaging data analysis: Dicom to nifti conversion. Journal of neuroscience methods 264, 47–56 (2016).
doi: 10.1016/j.jneumeth.2016.03.001 pubmed: 26945974
Gorgolewski, K. J. et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data 3, 160044 (2016).
doi: 10.1038/sdata.2016.44 pubmed: 27326542 pmcid: 4978148
Boré, A., Guay, S., Bedetti, C., Meisler, S. & GuenTher, N. Dcm2Bids, https://doi.org/10.5281/zenodo.8436509 (2023).
Rigoard, P. et al. Multicolumn spinal cord stimulation lead implantation using an optic transligamentar minimally invasive technique. Neurosurgery 73, 550–553 (2013).
doi: 10.1227/NEU.0000000000000008 pubmed: 23756742
Liu, J. et al. An open-access lumbosacral spine mri dataset with enhanced spinal nerve root structure resolution. figshare https://doi.org/10.6084/m9.figshare.c.7372564 (2024).
Magnotta, V. A., Friedman, L. & BIRN, F. Measurement of signal-to-noise and contrast-to-noise in the fbirn multicenter imaging study. Journal of digital imaging 19, 140–147 (2006).
doi: 10.1007/s10278-006-0264-x pubmed: 16598643 pmcid: 3045184
Mesbah, S. et al. Neuroanatomical mapping of the lumbosacral spinal cord in individuals with chronic spinal cord injury. Brain Communications 5, fcac330 (2023).
doi: 10.1093/braincomms/fcac330 pubmed: 36632181

Auteurs

Jionghui Liu (J)

Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.

Wenqi Zhang (W)

Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.

Yuxing Zhou (Y)

Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.

Linhao Xu (L)

Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.

Ying-Hua Chu (YH)

MR Research Collaboration Team, Siemens Healthineers Ltd., Shanghai, China.

Fumin Jia (F)

Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China. jfmin@fudan.edu.cn.
State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China. jfmin@fudan.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH