The triglyceride glucose related index is an indicator of Sarcopenia.
Body mass index
Insulin resistance
Sarcopenia
Triglyceride glucose index
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
15 10 2024
15 10 2024
Historique:
received:
10
05
2024
accepted:
08
10
2024
medline:
16
10
2024
pubmed:
16
10
2024
entrez:
15
10
2024
Statut:
epublish
Résumé
The triglyceride glucose (TyG) related index, a metric used to evaluate assessing insulin resistance (IR), has received limited attention in its association with sarcopenia. Our study aims to explore the predictive potential of the TyG index for sarcopenia. This study utilized data from the China Health and Retirement Longitudinal Study, a nationally representative, community-based cohort study, including a sample size of 10,537 participants aged 45 years and older. Associations between TyG related index and sacopenia was explored using multivariate logistic regression. Analysis of the predictive value of TyG related index for sarcopenia using receiver-operating characteristic curve (ROC). We evaluated the correlation between the TyG related index and the risk of sarcopenia using Cox proportional hazards models. Additionally, we utilized restricted cubic spline (RCS) regression analyses to explore the connections between the TyG-related index and sarcopenia. Logistic regression analysis showed an association between TyG (OR 0.961[0.955,0.968], P < 0.001), TyG-body mass index (TyG-BMI) (OR 0.872[0.867,0.878], P < 0.001), TyG- waist circumference (TyG-WC) (OR 0.896[0.890,0.902], P < 0.001) and sarcopenia. The results of the ROC analysis indicated that the area under the curve values for TyG, TyG-BMI, and TyG-WC were 0.659, 0.903, and 0.819, respectively. Compared to those without sarcopenia, patients with sarcopenia had a 37.7% (HR 0.623[0.502,0.774], P < 0.001), 4.8% (HR 0.952[0.947,0.958], P < 0.001), and 0.4% (HR 0.996[0.995,0.996], P < 0.001) lower risk with increasing TyG, TyG-BMI, and TyG-WC, respectively. RCS results show nonlinear relationship between TyG-BMI (P < 0.001) and TyG-WC (P < 0.001) and risk of sarcopenia. We observed a correlation between the TyG-related index and sarcopenia, with the TyG-BMI index demonstrating strong predictive capability for sarcopenia.
Identifiants
pubmed: 39406884
doi: 10.1038/s41598-024-75873-5
pii: 10.1038/s41598-024-75873-5
doi:
Substances chimiques
Triglycerides
0
Blood Glucose
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
24126Subventions
Organisme : Shanghai Education Science Project
ID : C2022240
Informations de copyright
© 2024. The Author(s).
Références
Chen, L. K. et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 21 (3), 300–307e302 (2020).
doi: 10.1016/j.jamda.2019.12.012
pubmed: 32033882
Beaudart, C., Rizzoli, R., Bruyère, O., Reginster, J. Y. & Biver, E. Sarcopenia: burden and challenges for public health. Archives Public. Health = Archives belges de sante Publique. 72 (1), 45 (2014).
doi: 10.1186/2049-3258-72-45
Wilson, D., Jackson, T., Sapey, E. & Lord, J. M. Frailty and Sarcopenia: the potential role of an aged immune system. Ageing Res. Rev. 36, 1–10 (2017).
doi: 10.1016/j.arr.2017.01.006
pubmed: 28223244
Nishikawa, H., Asai, A., Fukunishi, S., Nishiguchi, S. & Higuchi, K. Metabolic syndrome and Sarcopenia. Nutrients 13(10). (2021).
Liu, Z. J. & Zhu, C. F. Causal relationship between insulin resistance and sarcopenia. Diabetol. Metab. Syndr. 15 (1), 46 (2023).
doi: 10.1186/s13098-023-01022-z
pubmed: 36918975
pmcid: 10015682
Kubota, T. et al. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metabol. 13 (3), 294–307 (2011).
doi: 10.1016/j.cmet.2011.01.018
Gwin, J. A., Church, D. D., Wolfe, R. R., Ferrando, A. A. & Pasiakos, S. M. Muscle Protein Synthesis and Whole-Body Protein Turnover Responses to Ingesting Essential Amino Acids, Intact Protein, and Protein-Containing Mixed Meals with Considerations for Energy Deficit. Nutrients 12(8), (2020).
Rasmussen, B. B. et al. Insulin resistance of muscle protein metabolism in aging. FASEB Journal: Official Publication Federation Am. Soc. Experimental Biology. 20 (6), 768–769 (2006).
doi: 10.1096/fj.05-4607fje
Venkatasamy, V. V., Pericherla, S., Manthuruthil, S., Mishra, S. & Hanno, R. Effect of physical activity on insulin resistance, inflammation and oxidative stress in diabetes Mellitus. J. Clin. Diagn. Research: JCDR. 7 (8), 1764–1766 (2013).
Onyango, A. N. Cellular Stresses and Stress Responses in the Pathogenesis of Insulin Resistance. Oxidative medicine and cellular longevity 2018:4321714. (2018).
Wang, M. et al. Independent and joint associations between the triglyceride-glucose index and NT-proBNP with the risk of adverse cardiovascular events in patients with diabetes and acute coronary syndrome: a prospective cohort study. Cardiovasc. Diabetol. 22 (1), 149 (2023).
doi: 10.1186/s12933-023-01890-9
pubmed: 37365593
pmcid: 10294423
Sánchez-García, A. et al. González-González JG: Diagnostic Accuracy of the Triglyceride and Glucose Index for Insulin Resistance: A Systematic Review. International journal of endocrinology 2020:4678526. (2020).
DeFronzo, R. A., Tobin, J. D. & Andres, R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am. J. Physiol. 237 (3), E214–223 (1979).
pubmed: 382871
Kim, B. et al. Triglyceride-glucose index as a potential Indicator of Sarcopenic obesity in older people. Nutrients 15(3). (2023).
Kashani, K. B. et al. Evaluating muscle Mass by using markers of kidney function: development of the Sarcopenia Index. Crit. Care Med. 45 (1), e23–e29 (2017).
doi: 10.1097/CCM.0000000000002013
pubmed: 27611976
Wu, X. et al. Sarcopenia prevalence and associated factors among older Chinese population: findings from the China Health and Retirement Longitudinal Study. PLoS One. 16 (3), e0247617 (2021).
doi: 10.1371/journal.pone.0247617
pubmed: 33661964
pmcid: 7932529
Er, L. K. et al. Triglyceride glucose-body Mass Index is a simple and clinically useful surrogate marker for insulin resistance in nondiabetic individuals. PLoS One. 11 (3), e0149731 (2016).
doi: 10.1371/journal.pone.0149731
pubmed: 26930652
pmcid: 4773118
Kim, H. S. et al. Triglyceride glucose-Waist circumference is Superior to the Homeostasis Model Assessment of Insulin Resistance in identifying nonalcoholic fatty liver disease in healthy subjects. J. Clin. Med. 11(1). (2021).
Zhao, Y., Hu, Y., Smith, J. P., Strauss, J. & Yang, G. Cohort profile: the China Health and Retirement Longitudinal Study (CHARLS). Int. J. Epidemiol. 43 (1), 61–68 (2014).
doi: 10.1093/ije/dys203
pubmed: 23243115
Wen, X., Wang, M., Jiang, C. M. & Zhang, Y. M. Anthropometric equation for estimation of appendicular skeletal muscle mass in Chinese adults. Asia Pac. J. Clin. Nutr. 20 (4), 551–556 (2011).
pubmed: 22094840
Newman, A. B. et al. Sarcopenia: alternative definitions and associations with lower extremity function. J. Am. Geriatr. Soc. 51 (11), 1602–1609 (2003).
doi: 10.1046/j.1532-5415.2003.51534.x
pubmed: 14687390
Zuo, M. et al. Physical predictors of cognitive function in individuals with hypertension: evidence from the CHARLS Basline Survey. West. J. Nurs. Res. 41 (4), 592–614 (2019).
doi: 10.1177/0193945918770794
pubmed: 29742988
Yang, J. et al. The association between the triglyceride-glucose index and sarcopenia: data from the NHANES 2011–2018. Lipids Health Dis. 23 (1), 219 (2024).
doi: 10.1186/s12944-024-02201-1
pubmed: 39030624
pmcid: 11264742
Widajanti, N. et al. Association between Sarcopenia and Insulin-Like Growth Factor-1, Myostatin, and Insulin Resistance in Elderly Patients Undergoing Hemodialysis. J Aging Res 2022:1327332. (2022).
Lin, Y., Zhong, S. & Sun, Z. Association between serum triglyceride to high-density lipoprotein cholesterol ratio and sarcopenia among elderly patients with diabetes: a secondary data analysis of the China Health and Retirement Longitudinal Study. BMJ Open. 13 (8), e075311 (2023).
doi: 10.1136/bmjopen-2023-075311
pubmed: 37652587
pmcid: 10476130
Chen, Y., Liu, C. & Hu, M. Association between triglyceride-glucose index and sarcopenia in China: a nationally representative cohort study. Exp. Gerontol. 190, 112419 (2024).
doi: 10.1016/j.exger.2024.112419
pubmed: 38588750
Lee, S. W. et al. Appendicular skeletal muscle mass and insulin resistance in an elderly Korean population: the Korean social life, health and aging project-health examination cohort. Diabetes Metabolism J. 39 (1), 37–45 (2015).
doi: 10.4093/dmj.2015.39.1.37
Kim, K. & Park, S. M. Association of muscle mass and fat mass with insulin resistance and the prevalence of metabolic syndrome in Korean adults: a cross-sectional study. Sci. Rep. 8 (1), 2703 (2018).
doi: 10.1038/s41598-018-21168-5
pubmed: 29426839
pmcid: 5807388
Park, J. H. et al. Lower skeletal muscle mass is associated with diabetes and insulin resistance: a cross-sectional study. Diab./Metab. Res. Rev. 39 (7), e3681 (2023).
doi: 10.1002/dmrr.3681
Chen, R. et al. The triglyceride-glucose index as a novel marker associated with Sarcopenia in non-diabetic patients on maintenance hemodialysis. Ren. Fail. 44 (1), 1615–1621 (2022).
doi: 10.1080/0886022X.2022.2128373
pubmed: 36191303
pmcid: 9543127
Hsu, B. G., Wang, C. H., Lai, Y. H., Kuo, C. H. & Lin, Y. L. Novel equations incorporating the Sarcopenia index based on serum creatinine and cystatin C to predict appendicular skeletal muscle mass in patients with nondialysis CKD. Clin. Nutr. 43 (3), 765–772 (2024).
doi: 10.1016/j.clnu.2024.01.029
pubmed: 38335801
Srikanthan, P., Horwich, T. B. & Tseng, C. H. Relation of muscle Mass and Fat Mass to Cardiovascular Disease Mortality. Am. J. Cardiol. 117 (8), 1355–1360 (2016).
doi: 10.1016/j.amjcard.2016.01.033
pubmed: 26949037
Lavie, C. J., McAuley, P. A., Church, T. S., Milani, R. V. & Blair, S. N. Obesity and cardiovascular diseases: implications regarding fitness, fatness, and severity in the obesity paradox. J. Am. Coll. Cardiol. 63 (14), 1345–1354 (2014).
doi: 10.1016/j.jacc.2014.01.022
pubmed: 24530666
Fain, J. N. Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam. Horm. 74, 443–477 (2006).
doi: 10.1016/S0083-6729(06)74018-3
pubmed: 17027526
Wang, X., Hu, Z., Hu, J., Du, J. & Mitch, W. E. Insulin resistance accelerates muscle protein degradation: activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology. 147 (9), 4160–4168 (2006).
doi: 10.1210/en.2006-0251
pubmed: 16777975
Glass, D. J. Molecular mechanisms modulating muscle mass. Trends Mol. Med. 9 (8), 344–350 (2003).
doi: 10.1016/S1471-4914(03)00138-2
pubmed: 12928036
Greenberg, A. S. & Obin, M. S. Obesity and the role of adipose tissue in inflammation and metabolism. Am. J. Clin. Nutr. 83 (2), 461s–465s (2006).
doi: 10.1093/ajcn/83.2.461S
pubmed: 16470013
Saltiel, A. R. & Kahn, C. R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 414 (6865), 799–806 (2001).
doi: 10.1038/414799a
pubmed: 11742412
Boden, G. Fatty acid-induced inflammation and insulin resistance in skeletal muscle and liver. Curr. Diab. Rep. 6 (3), 177–181 (2006).
doi: 10.1007/s11892-006-0031-x
pubmed: 16898568
Samuel, V. T. & Shulman, G. I. Mechanisms for insulin resistance: common threads and missing links. Cell. 148 (5), 852–871 (2012).
doi: 10.1016/j.cell.2012.02.017
pubmed: 22385956
pmcid: 3294420