Immunometabolic Rewiring: A Tale of Macronutrients and Macrophages.

Immunometabolism Macronutrient intake Resident tissue macrophages (RTMs)

Journal

Results and problems in cell differentiation
ISSN: 0080-1844
Titre abrégé: Results Probl Cell Differ
Pays: Germany
ID NLM: 0173555

Informations de publication

Date de publication:
2024
Historique:
medline: 16 10 2024
pubmed: 16 10 2024
entrez: 15 10 2024
Statut: ppublish

Résumé

Myeloid cells, including monocytes, macrophages, dendritic cells, and polymorphonuclear cells are key components of homeostasis maintenance and immune response. Among the myeloid lineage, macrophages stand out as highly versatile cells that safeguard tissue functions but also sense and respond to potentially harmful microenvironmental cues. Numerous studies have demonstrated that the nutritional status and macronutrient availability affect macrophage identity and function. However, the exact mechanistic links between macronutrient intake and cellular metabolic shifts are only beginning to be understood. In this chapter, we explore how dietary "macros"-carbohydrates, fats, and amino acids-impact the immunomodulatory activity of macrophages in healthy and inflamed tissues.

Identifiants

pubmed: 39406902
doi: 10.1007/978-3-031-65944-7_3
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

89-118

Informations de copyright

© 2024. The Author(s), under exclusive license to Springer Nature Switzerland AG.

Références

Adolph S, Fuhrmann H, Schumann J (2012) Unsaturated fatty acids promote the phagocytosis of P. aeruginosa and R. equi by RAW264.7 Bieghs macrophages. Curr Microbiol 65(6):649–655
doi: 10.1007/s00284-012-0207-3
Ahl PJ, Hopkins RA, Xiang WW, Au B, Kaliaperumal N, Fairhurst AM et al (2020) Met-flow, a strategy for single-cell metabolic analysis highlights dynamic changes in immune subpopulations. Commun Biol 3(1):305
doi: 10.1038/s42003-020-1027-9
Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10(12):1538–1543
doi: 10.1038/nn2014
Argüello RJ, Combes AJ, Char R, Gigan JP, Baaziz AI, Bousiquot E et al (2020) SCENITH: a flow cytometry-based method to functionally profile energy metabolism with single-cell resolution. Cell Metab 32(6):1063–1075.e7
doi: 10.1016/j.cmet.2020.11.007
Arts RJ, Novakovic B, Ter Horst R, Carvalho A, Bekkering S, Lachmandas E et al (2016) Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab 24(6):807–819
doi: 10.1016/j.cmet.2016.10.008
Bain CC, Bravo-Blas A, Scott CL, Perdiguero EG, Geissmann F, Henri S et al (2014) Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol 15(10):929–937
doi: 10.1038/ni.2967
Baker AD, Malur A, Barna BP, Ghosh S, Kavuru MS, Malur AG et al (2010) Targeted PPAR{gamma} deficiency in alveolar macrophages disrupts surfactant catabolism. J Lipid Res 51(6):1325–1331
doi: 10.1194/jlr.M001651
Beckermann KE, Hongo R, Ye X, Young K, Carbonell K, Healey DCC et al (2020) CD28 costimulation drives tumor-infiltrating T cell glycolysis to promote inflammation. JCI Insight 5(16):e138729
doi: 10.1172/jci.insight.138729
Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141
doi: 10.1016/j.cell.2014.03.011
Bieghs V, Verheyen F, van Gorp PJ, Hendrikx T, Wouters K, Lütjohann D et al (2012) Internalization of modified lipids by CD36 and SR-A leads to hepatic inflammation and lysosomal cholesterol storage in Kupffer cells. PLoS One 7(3):e34378
doi: 10.1371/journal.pone.0034378
Blériot C, Chakarov S, Ginhoux F (2020) Determinants of resident tissue macrophage identity and function. Immunity 52(6):957–970
doi: 10.1016/j.immuni.2020.05.014
Blériot C, Barreby E, Dunsmore G, Ballaire R, Chakarov S, Ficht X et al (2021) A subset of Kupffer cells regulates metabolism through the expression of CD36. Immunity 54(9):2101–2116.e6
doi: 10.1016/j.immuni.2021.08.006
Brial F, Le Lay A, Dumas ME, Gauguier D (2018) Implication of gut microbiota metabolites in cardiovascular and metabolic diseases. Cell Mol Life Sci 75(21):3977–3990
doi: 10.1007/s00018-018-2901-1
Brown HA, Marnett LJ (2011) Introduction to lipid biochemistry, metabolism, and signaling. Chem Rev 111(10):5817–5820
doi: 10.1021/cr200363s
Buck MD, Sowell RT, Kaech SM, Pearce EL (2017) Metabolic instruction of immunity. Cell 169(4):570–586
doi: 10.1016/j.cell.2017.04.004
Buescher JM, Antoniewicz MR, Boros LG, Burgess SC, Brunengraber H, Clish CB et al (2015) A roadmap for interpreting (13)C metabolite labeling patterns from cells. Curr Opin Biotechnol 34:189–201
doi: 10.1016/j.copbio.2015.02.003
Calderon B, Carrero JA, Ferris ST, Sojka DK, Moore L, Epelman S et al (2015) The pancreas anatomy conditions the origin and properties of resident macrophages. J Exp Med 212(10):1497–1512
doi: 10.1084/jem.20150496
Carroll RG, Zasłona Z, Galván-Peña S, Koppe EL, Sévin DC, Angiari S et al (2018) An unexpected link between fatty acid synthase and cholesterol synthesis in proinflammatory macrophage activation. J Biol Chem 293(15):5509–5521
doi: 10.1074/jbc.RA118.001921
Caslin HL, Bhanot M, Bolus WR, Hasty AH (2020) Adipose tissue macrophages: unique polarization and bioenergetics in obesity. Immunol Rev 295(1):101–113
doi: 10.1111/imr.12853
Chait A, den Hartigh LJ (2020) Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front Cardiovasc Med 7:22
doi: 10.3389/fcvm.2020.00022
Chaneton B, Hillmann P, Zheng L, Martin ACL, Maddocks ODK, Chokkathukalam A et al (2012) Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491(7424):458–462
doi: 10.1038/nature11540
Charrez B, Qiao L, Hebbard L (2015) The role of fructose in metabolism and cancer. Horm Mol Biol Clin Investig 22(2):79–89
doi: 10.1515/hmbci-2015-0009
Choi I, Son H, Baek JH (2021) Tricarboxylic acid (TCA) cycle intermediates: regulators of immune responses. Life (Basel) 11(1):69
Christ A, Lauterbach M, Latz E (2019) Western diet and the immune system: an inflammatory connection. Immunity 51(5):794–811
doi: 10.1016/j.immuni.2019.09.020
Cox CL, Stanhope KL, Schwarz JM, Graham JL, Hatcher B, Griffen SC et al (2011) Circulating concentrations of monocyte chemoattractant protein-1, plasminogen activator inhibitor-1, and soluble leukocyte adhesion molecule-1 in overweight/obese men and women consuming fructose- or glucose-sweetened beverages for 10 weeks. J Clin Endocrinol Metab 96(12):E2034–E2038
doi: 10.1210/jc.2011-1050
Davies LC, Rice CM, Palmieri EM, Taylor PR, Kuhns DB, McVicar DW (2017) Peritoneal tissue-resident macrophages are metabolically poised to engage microbes using tissue-niche fuels. Nat Commun 8(1):2074
doi: 10.1038/s41467-017-02092-0
Demetz E, Tymoszuk P, Hilbe R, Volani C, Haschka D, Heim C et al (2020) The haemochromatosis gene Hfe and Kupffer cells control LDL cholesterol homeostasis and impact on atherosclerosis development. Eur Heart J 41(40):3949–3959
doi: 10.1093/eurheartj/ehaa140
Diehl KL, Vorac J, Hofmann K, Meiser P, Unterweger I, Kuerschner L et al (2020) Kupffer cells sense free fatty acids and regulate hepatic lipid metabolism in high-fat diet and inflammation. Cells 9(10):2258
doi: 10.3390/cells9102258
Donath MY, Böni-Schnetzler M, Ellingsgaard H, Halban PA, Ehses JA (2010) Cytokine production by islets in health and diabetes: cellular origin, regulation and function. Trends Endocrinol Metab 21(5):261–267
doi: 10.1016/j.tem.2009.12.010
Eguchi K, Manabe I, Oishi-Tanaka Y, Ohsugi M, Kono N, Ogata F et al (2012) Saturated fatty acid and TLR signaling link β cell dysfunction and islet inflammation. Cell Metab 15(4):518–533
doi: 10.1016/j.cmet.2012.01.023
Ehses JA, Perren A, Eppler E, Ribaux P, Pospisilik JA, Maor-Cahn R et al (2007) Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56(9):2356–2370
doi: 10.2337/db06-1650
Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B et al (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40(1):91–104
doi: 10.1016/j.immuni.2013.11.019
Erny D, Dokalis N, Mezö C, Castoldi A, Mossad O, Staszewski O et al (2021) Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metab 33(11):2260–2276.e7
doi: 10.1016/j.cmet.2021.10.010
Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR, Shimizu T et al (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50(Suppl):S9–S14
doi: 10.1194/jlr.R800095-JLR200
Faubert B, Solmonson A, DeBerardinis RJ (2020) Metabolic reprogramming and cancer progression. Science 368(6487):eaaw5473
doi: 10.1126/science.aaw5473
Fhu CW, Ali A (2020) Fatty acid synthase: an emerging target in cancer. Molecules 25(17):3935
doi: 10.3390/molecules25173935
Freemerman AJ, Johnson AR, Sacks GN, Milner JJ, Kirk EL, Troester MA et al (2014) Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem 289(11):7884–7896
doi: 10.1074/jbc.M113.522037
Gan LT, Van Rooyen DM, Koina ME, McCuskey RS, Teoh NC, Farrell GC (2014) Hepatocyte free cholesterol lipotoxicity results from JNK1-mediated mitochondrial injury and is HMGB1 and TLR4-dependent. J Hepatol 61(6):1376–1384
doi: 10.1016/j.jhep.2014.07.024
Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S et al (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13(11):1118–1128
doi: 10.1038/ni.2419
Gautier EL, Ivanov S, Williams JW, Huang SC, Marcelin G, Fairfax K et al (2014) Gata6 regulates aspartoacylase expression in resident peritoneal macrophages and controls their survival. J Exp Med 211(8):1525–1531
doi: 10.1084/jem.20140570
Ginhoux F, Guilliams M (2016) Tissue-resident macrophage ontogeny and homeostasis. Immunity 44(3):439–449
doi: 10.1016/j.immuni.2016.02.024
Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845
doi: 10.1126/science.1194637
Gonzalez-Bohorquez D, Gallego López IM, Jaeger BN, Pfammatter S, Bowers M, Semenkovich CF et al (2022) FASN-dependent de novo lipogenesis is required for brain development. Proc Natl Acad Sci USA 119(2):e2112040119
doi: 10.1073/pnas.2112040119
Guilliams M, De Kleer I, Henri S, Post S, Vanhoutte L, De Prijck S et al (2013) Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J Exp Med 210(10):1977–1992
doi: 10.1084/jem.20131199
Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG et al (2008) “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med 205(6):1261–1268
doi: 10.1084/jem.20080108
Hamanaka RB, O’Leary EM, Witt LJ, Tian Y, Gökalp GA, Meliton AY et al (2019) Glutamine metabolism is required for collagen protein synthesis in lung fibroblasts. Am J Respir Cell Mol Biol 61(5):597–606
doi: 10.1165/rcmb.2019-0008OC
Hartmann FJ, Bendall SC (2020) Immune monitoring using mass cytometry and related high-dimensional imaging approaches. Nat Rev Rheumatol 16(2):87–99
doi: 10.1038/s41584-019-0338-z
Hartmann FJ, Mrdjen D, McCaffrey E, Glass DR, Greenwald NF, Bharadwaj A et al (2021) Single-cell metabolic profiling of human cytotoxic T cells. Nat Biotechnol 39(2):186–197
doi: 10.1038/s41587-020-0651-8
Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M et al (2013) Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38(4):792–804
doi: 10.1016/j.immuni.2013.04.004
Hoeffel G, Wang Y, Greter M, See P, Teo P, Malleret B et al (2012) Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med 209(6):1167–1181
doi: 10.1084/jem.20120340
Honda KL, Lamon-Fava S, Matthan NR, Wu D, Lichtenstein AH (2015) EPA and DHA exposure alters the inflammatory response but not the surface expression of toll-like receptor 4 in macrophages. Lipids 50(2):121–129
doi: 10.1007/s11745-014-3971-y
Huang SC, Everts B, Ivanova Y, O’Sullivan D, Nascimento M, Smith AM et al (2014) Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol 15(9):846–855
doi: 10.1038/ni.2956
Ikonen E (2008) Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol 9(2):125–138
doi: 10.1038/nrm2336
Imamura F, Micha R, Wu JH, de Oliveira Otto MC, Otite FO, Abioye AI et al (2016) Effects of saturated fat, polyunsaturated fat, monounsaturated fat, and carbohydrate on glucose-insulin homeostasis: a systematic review and meta-analysis of randomised controlled feeding trials. PLoS Med 13(7):e1002087
doi: 10.1371/journal.pmed.1002087
Ioannou GN, Haigh WG, Thorning D, Savard C (2013) Hepatic cholesterol crystals and crown-like structures distinguish NASH from simple steatosis. J Lipid Res 54(5):1326–1334
doi: 10.1194/jlr.M034876
Jakubzick C, Gautier EL, Gibbings SL, Sojka DK, Schlitzer A, Johnson TE et al (2013) Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39(3):599–610
doi: 10.1016/j.immuni.2013.08.007
Jang C, Chen L, Rabinowitz JD (2018) Metabolomics and isotope tracing. Cell 173(4):822–837
doi: 10.1016/j.cell.2018.03.055
Ji J, Shu D, Zheng M, Wang J, Luo C, Wang Y et al (2016) Microbial metabolite butyrate facilitates M2 macrophage polarization and function. Sci Rep 6:24838
doi: 10.1038/srep24838
Jordan S, Tung N, Casanova-Acebes M, Chang C, Cantoni C, Zhang D et al (2019) Dietary intake regulates the circulating inflammatory monocyte pool. Cell 178(5):1102–1114.e17
doi: 10.1016/j.cell.2019.07.050
Kang K, Reilly SM, Karabacak V, Gangl MR, Fitzgerald K, Hatano B et al (2008) Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab 7(6):485–495
doi: 10.1016/j.cmet.2008.04.002
Kelly B, Pearce EL (2020) Amino assets: how amino acids support immunity. Cell Metab 32(2):154–175
doi: 10.1016/j.cmet.2020.06.010
Keshvari S, Caruso M, Teakle N, Batoon L, Sehgal A, Patkar OL et al (2021) CSF1R-dependent macrophages control postnatal somatic growth and organ maturation. PLoS Genet 17(6):e1009605
doi: 10.1371/journal.pgen.1009605
Kimmey SC, Borges L, Baskar R, Bendall SC (2019) Parallel analysis of tri-molecular biosynthesis with cell identity and function in single cells. Nat Commun 10(1):1185
doi: 10.1038/s41467-019-09128-7
Koyama Y, Brenner DA (2017) Liver inflammation and fibrosis. J Clin Invest 127(1):55–64
doi: 10.1172/JCI88881
Kumar A, Gupta P, Rana M, Chandra T, Dikshit M, Barthwal MK (2020) Role of pyruvate kinase M2 in oxidized LDL-induced macrophage foam cell formation and inflammation. J Lipid Res 61(3):351–364
doi: 10.1194/jlr.RA119000382
Kwak Y, Kim HE, Park SG (2015) Insights into myeloid-derived suppressor cells in inflammatory diseases. Arch Immunol Ther Exp 63(4):269–285
doi: 10.1007/s00005-015-0342-1
Lampropoulou V, Sergushichev A, Bambouskova M, Nair S, Vincent EE, Loginicheva E et al (2016) Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab 24(1):158–166
doi: 10.1016/j.cmet.2016.06.004
Lee JY, Plakidas A, Lee WH, Heikkinen A, Chanmugam P, Bray G et al (2003) Differential modulation of toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids. J Lipid Res 44(3):479–486
doi: 10.1194/jlr.M200361-JLR200
Lercher A, Baazim H, Bergthaler A (2020) Systemic immunometabolism: challenges and opportunities. Immunity 53(3):496–509
doi: 10.1016/j.immuni.2020.08.012
Levine LS, Hiam-Galvez KJ, Marquez DM, Tenvooren I, Madden MZ, Contreras DC et al (2021) Single-cell analysis by mass cytometry reveals metabolic states of early-activated CD8+ T cells during the primary immune response. Immunity 54(4):829–844.e5
doi: 10.1016/j.immuni.2021.02.018
Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H et al (2008) Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA 105(6):2117–2122
doi: 10.1073/pnas.0712038105
Li Z, Zheng W, Kong W, Zeng T (2023) Itaconate: a potent macrophage immunomodulator. Inflammation 46(4):1177–1191
doi: 10.1007/s10753-023-01819-0
Liao X, Sharma N, Kapadia F, Zhou G, Lu Y, Hong H et al (2011) Krüppel-like factor 4 regulates macrophage polarization. J Clin Invest 121(7):2736–2749
doi: 10.1172/JCI45444
Liu PS, Wang H, Li X, Chao T, Teav T, Christen S et al (2017) α-Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol 18(9):985–994
doi: 10.1038/ni.3796
Loft A, Schmidt SF, Caratti G, Stifel U, Havelund J, Sekar R et al (2022) A macrophage-hepatocyte glucocorticoid receptor axis coordinates fasting ketogenesis. Cell Metab 34(3):473–486.e9
doi: 10.1016/j.cmet.2022.01.004
Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117(1):175–184
doi: 10.1172/JCI29881
Luo J, Yang H, Song BL (2020) Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol 21(4):225–245
doi: 10.1038/s41580-019-0190-7
Ma J, Wei K, Liu J, Tang K, Zhang H, Zhu L et al (2020) Glycogen metabolism regulates macrophage-mediated acute inflammatory responses. Nat Commun 11(1):1769
doi: 10.1038/s41467-020-15636-8
Meijer K, de Vos P, Priebe MG (2010) Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health. Curr Opin Clin Nutr Metab Care 13(6):715–721
doi: 10.1097/MCO.0b013e32833eebe5
Merad M, Manz MG, Karsunky H, Wagers A, Peters W, Charo I et al (2002) Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol 3(12):1135–1141
doi: 10.1038/ni852
Micha R, Mozaffarian D (2010) Saturated fat and cardiometabolic risk factors, coronary heart disease, stroke, and diabetes: a fresh look at the evidence. Lipids 45(10):893–905
doi: 10.1007/s11745-010-3393-4
Michaudel C, Sokol H (2020) The gut microbiota at the service of immunometabolism. Cell Metab 32(4):514–523
doi: 10.1016/j.cmet.2020.09.004
Minhas PS, Latif-Hernandez A, McReynolds MR, Durairaj AS, Wang Q, Rubin A et al (2021) Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature 590(7844):122–128
doi: 10.1038/s41586-020-03160-0
Molawi K, Wolf Y, Kandalla PK, Favret J, Hagemeyer N, Frenzel K et al (2014) Progressive replacement of embryo-derived cardiac macrophages with age. J Exp Med 211(11):2151–2158
doi: 10.1084/jem.20140639
Moon JS, Lee S, Park MA, Siempos II, Haslip M, Lee PJ et al (2015) UCP2-induced fatty acid synthase promotes NLRP3 inflammasome activation during sepsis. J Clin Invest 125(2):665–680
doi: 10.1172/JCI78253
Mulder K, Patel AA, Kong WT, Piot C, Halitzki E, Dunsmore G et al (2021) Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity 54(8):1883–1900.e5
doi: 10.1016/j.immuni.2021.07.007
Munteanu C, Schwartz B (2022) The relationship between nutrition and the immune system. Front Nutr 9:1082500
doi: 10.3389/fnut.2022.1082500
Newsholme P, Curi R, Gordon S, Newsholme EA (1986) Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem J 239(1):121–125
doi: 10.1042/bj2390121
Nieman DC, Mitmesser SH (2017) Potential impact of nutrition on immune system recovery from heavy exertion: a metabolomics perspective. Nutrients 9(5):513
doi: 10.3390/nu9050513
Nordmann TM, Dror E, Schulze F, Traub S, Berishvili E, Barbieux C et al (2017) The role of inflammation in β-cell dedifferentiation. Sci Rep 7(1):6285
doi: 10.1038/s41598-017-06731-w
Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L et al (2007) Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447(7148):1116–1120
doi: 10.1038/nature05894
Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A, Vats D, Morel CR, Goforth MH et al (2008) Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab 7(6):496–507
doi: 10.1016/j.cmet.2008.04.003
Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W et al (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142(5):687–698
doi: 10.1016/j.cell.2010.07.041
Oliver E, McGillicuddy FC, Harford KA, Reynolds CM, Phillips CM, Ferguson JF et al (2012) Docosahexaenoic acid attenuates macrophage-induced inflammation and improves insulin sensitivity in adipocytes-specific differential effects between LC n-3 PUFA. J Nutr Biochem 23(9):1192–1200
doi: 10.1016/j.jnutbio.2011.06.014
O’Neill LAJ, Artyomov MN (2019) Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat Rev Immunol 19(5):273–281
doi: 10.1038/s41577-019-0128-5
O’Neill LA, Kishton RJ, Rathmell J (2016) A guide to immunometabolism for immunologists. Nat Rev Immunol 16(9):553–565
doi: 10.1038/nri.2016.70
Orillion A, Damayanti NP, Shen L, Adelaiye-Ogala R, Affronti H, Elbanna M et al (2018) Dietary protein restriction reprograms tumor-associated macrophages and enhances immunotherapy. Clin Cancer Res 24(24):6383–6395
doi: 10.1158/1078-0432.CCR-18-0980
Orliaguet L, Ejlalmanesh T, Humbert A, Ballaire R, Diedisheim M, Julla JB et al (2022) Early macrophage response to obesity encompasses interferon regulatory factor 5 regulated mitochondrial architecture remodelling. Nat Commun 13(1):5089
doi: 10.1038/s41467-022-32813-z
Pacella I, Procaccini C, Focaccetti C, Miacci S, Timperi E, Faicchia D et al (2018) Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth. Proc Natl Acad Sci USA 115(28):E6546–E6555
doi: 10.1073/pnas.1720113115
Palmer CS, Anzinger JJ, Butterfield TR, McCune JM, Crowe SM (2016) A simple flow cytometric method to measure glucose uptake and glucose transporter expression for monocyte subpopulations in whole blood. J Vis Exp (114):54255
Pålsson-McDermott EM, O’Neill LAJ (2020) Targeting immunometabolism as an anti-inflammatory strategy. Cell Res 30(4):300–314
doi: 10.1038/s41422-020-0291-z
Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MA, Sheedy FJ, Gleeson LE et al (2015) Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab 21(1):65–80
doi: 10.1016/j.cmet.2014.12.005
Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G et al (2019) Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 10:277
doi: 10.3389/fimmu.2019.00277
Pavlou S, Lindsay J, Ingram R, Xu H, Chen M (2018) Sustained high glucose exposure sensitizes macrophage responses to cytokine stimuli but reduces their phagocytic activity. BMC Immunol 19(1):24
doi: 10.1186/s12865-018-0261-0
Pearce EL, Pearce EJ (2013) Metabolic pathways in immune cell activation and quiescence. Immunity 38(4):633–643
doi: 10.1016/j.immuni.2013.04.005
Penders J, Vink C, Driessen C, London N, Thijs C, Stobberingh EE (2005) Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiol Lett 243(1):141–147
doi: 10.1016/j.femsle.2004.11.052
Pérez-Pérez A, Vilariño-García T, Fernández-Riejos P, Martín-González J, Segura-Egea JJ, Sánchez-Margalet V (2017) Role of leptin as a link between metabolism and the immune system. Cytokine Growth Factor Rev 35:71–84
doi: 10.1016/j.cytogfr.2017.03.001
Rakoff-Nahoum S, Medzhitov R (2006) Role of the innate immune system and host-commensal mutualism. Curr Top Microbiol Immunol 308:1–18
Rath M, Müller I, Kropf P, Closs EI, Munder M (2014) Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol 5:532
doi: 10.3389/fimmu.2014.00532
Remmerie A, Scott CL (2018) Macrophages and lipid metabolism. Cell Immunol 330:27–42
doi: 10.1016/j.cellimm.2018.01.020
Remmerie A, Martens L, Thoné T, Castoldi A, Seurinck R, Pavie B et al (2020) Osteopontin expression identifies a subset of recruited macrophages distinct from Kupffer cells in the fatty liver. Immunity 53(3):641–657.e14
doi: 10.1016/j.immuni.2020.08.004
Repa JJ, Turley SD, Lobaccaro JA, Medina J, Li L, Lustig K et al (2000) Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 289(5484):1524–1529
doi: 10.1126/science.289.5484.1524
Ringel AE, Drijvers JM, Baker GJ, Catozzi A, García-Cañaveras JC, Gassaway BM et al (2020) Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell 183(7):1848–1866.e26
doi: 10.1016/j.cell.2020.11.009
Rinschen MM, Ivanisevic J, Giera M, Siuzdak G (2019) Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol 20(6):353–367
doi: 10.1038/s41580-019-0108-4
Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444(7121):847–853
doi: 10.1038/nature05483
Ryan DG, O’Neill LAJ (2017) Krebs cycle rewired for macrophage and dendritic cell effector functions. FEBS Lett 591(19):2992–3006
doi: 10.1002/1873-3468.12744
Saini A, Harjai K, Chhibber S (2013) Inhibitory effect of polyunsaturated fatty acids on apoptosis induced by Streptococcus pneumoniae in alveolar macrophages. Indian J Med Res 137(6):1193–1198
Sakai A, Kusumoto A, Kiso Y, Furuya E (2004) Itaconate reduces visceral fat by inhibiting fructose 2,6-bisphosphate synthesis in rat liver. Nutrition 20(11–12):997–1002
doi: 10.1016/j.nut.2004.08.007
Samblas M, Carraro JC, Martínez JA, Milagro FI (2019) The regulation of inflammation-related genes after palmitic acid and DHA treatments is not mediated by DNA methylation. J Physiol Biochem 75(3):341–349
doi: 10.1007/s13105-019-00685-5
Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K et al (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336(6077):86–90
doi: 10.1126/science.1219179
Severo JS, da Silva Barros VJ, Alves da Silva AC, Luz Parente JM, Lima MM, Moreira Lima AÂ et al (2021) Effects of glutamine supplementation on inflammatory bowel disease: a systematic review of clinical trials. Clin Nutr ESPEN 42:53–60
doi: 10.1016/j.clnesp.2020.12.023
Shrestha N, Chand L, Han MK, Lee SO, Kim CY, Jeong YJ (2016) Glutamine inhibits CCl4 induced liver fibrosis in mice and TGF-β1 mediated epithelial-mesenchymal transition in mouse hepatocytes. Food Chem Toxicol 93:129–137
doi: 10.1016/j.fct.2016.04.024
Singer BD, Chandel NS (2019) Immunometabolism of pro-repair cells. J Clin Invest 129(7):2597–2607
doi: 10.1172/JCI124613
Siska PJ, Kim B, Ji X, Hoeksema MD, Massion PP, Beckermann KE et al (2016) Fluorescence-based measurement of cystine uptake through xCT shows requirement for ROS detoxification in activated lymphocytes. J Immunol Methods 438:51–58
doi: 10.1016/j.jim.2016.08.013
Snodgrass RG, Huang S, Choi IW, Rutledge JC, Hwang DH (2013) Inflammasome-mediated secretion of IL-1β in human monocytes through TLR2 activation; modulation by dietary fatty acids. J Immunol 191(8):4337–4347
doi: 10.4049/jimmunol.1300298
Soehnlein O, Lindbom L (2010) Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10(6):427–439
doi: 10.1038/nri2779
Subrahmanyam PB, Maecker HT (2017) CyTOF measurement of immunocompetence across major immune cell types. Curr Protoc Cytom 82:9.54.1–9.54.12
Suganami T, Tanimoto-Koyama K, Nishida J, Itoh M, Yuan X, Mizuarai S et al (2007) Role of the toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol 27(1):84–91
doi: 10.1161/01.ATV.0000251608.09329.9a
Sun K, Kusminski CM, Scherer PE (2011) Adipose tissue remodeling and obesity. J Clin Invest 121(6):2094–2101
doi: 10.1172/JCI45887
Svedberg FR, Brown SL, Krauss MZ, Campbell L, Sharpe C, Clausen M et al (2019) The lung environment controls alveolar macrophage metabolism and responsiveness in type 2 inflammation. Nat Immunol 20(5):571–580
doi: 10.1038/s41590-019-0352-y
Talchai C, Xuan S, Lin HV, Sussel L, Accili D (2012) Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 150(6):1223–1234
doi: 10.1016/j.cell.2012.07.029
Talukdar S, Oh DY, Bandyopadhyay G, Li D, Xu J, McNelis J et al (2012) Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med 18(9):1407–1412
doi: 10.1038/nm.2885
Tamoutounour S, Guilliams M, Montanana Sanchis F, Liu H, Terhorst D, Malosse C et al (2013) Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39(5):925–938
doi: 10.1016/j.immuni.2013.10.004
Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G et al (2013) Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496(7444):238–242
doi: 10.1038/nature11986
Teratani T, Tomita K, Suzuki T, Oshikawa T, Yokoyama H, Shimamura K et al (2012) A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells. Gastroenterology 142(1):152–164.e10
doi: 10.1053/j.gastro.2011.09.049
Thion MS, Low D, Silvin A, Chen J, Grisel P, Schulte-Schrepping J et al (2018) Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell 172(3):500–516.e16
doi: 10.1016/j.cell.2017.11.042
Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1(6):6ra14
doi: 10.1126/scitranslmed.3000322
Van Rooyen DM, Gan LT, Yeh MM, Haigh WG, Larter CZ, Ioannou G et al (2013) Pharmacological cholesterol lowering reverses fibrotic NASH in obese, diabetic mice with metabolic syndrome. J Hepatol 59(1):144–152
doi: 10.1016/j.jhep.2013.02.024
Vannice G, Rasmussen H (2014) Position of the academy of nutrition and dietetics: dietary fatty acids for healthy adults. J Acad Nutr Diet 114(1):136–153
doi: 10.1016/j.jand.2013.11.001
Vasiljević A, Bursać B, Djordjevic A, Milutinović DV, Nikolić M, Matić G et al (2014) Hepatic inflammation induced by high-fructose diet is associated with altered 11βHSD1 expression in the liver of Wistar rats. Eur J Nutr 53(6):1393–1402
doi: 10.1007/s00394-013-0641-4
Voss K, Hong HS, Bader JE, Sugiura A, Lyssiotis CA, Rathmell JC (2021) A guide to interrogating immunometabolism. Nat Rev Immunol 21(10):637–652
doi: 10.1038/s41577-021-00529-8
Wardle EN (1987) Kupffer cells and their function. Liver 7(2):63–75
doi: 10.1111/j.1600-0676.1987.tb00319.x
Wei X, Song H, Yin L, Rizzo MG, Sidhu R, Covey DF et al (2016) Fatty acid synthesis configures the plasma membrane for inflammation in diabetes. Nature 539(7628):294–298
doi: 10.1038/nature20117
Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112(12):1796–1808
doi: 10.1172/JCI200319246
Weitz JR, Makhmutova M, Almaça J, Stertmann J, Aamodt K, Brissova M et al (2018) Mouse pancreatic islet macrophages use locally released ATP to monitor beta cell activity. Diabetologia 61(1):182–192
doi: 10.1007/s00125-017-4416-y
Westwell-Roper CY, Ehses JA, Verchere CB (2014) Resident macrophages mediate islet amyloid polypeptide-induced islet IL-1β production and β-cell dysfunction. Diabetes 63(5):1698–1711
doi: 10.2337/db13-0863
Whelan J, Rust C (2006) Innovative dietary sources of n-3 fatty acids. Annu Rev Nutr 26:75–103
doi: 10.1146/annurev.nutr.25.050304.092605
Wu JY, Huang TW, Hsieh YT, Wang YF, Yen CC, Lee GL et al (2020) Cancer-derived succinate promotes macrophage polarization and cancer metastasis via succinate receptor. Mol Cell 77(2):213–227.e5
doi: 10.1016/j.molcel.2019.10.023
Xiong W, Sun KY, Zhu Y, Zhang X, Zhou YH, Zou X (2021) Metformin alleviates inflammation through suppressing FASN-dependent palmitoylation of Akt. Cell Death Dis 12(10):934
doi: 10.1038/s41419-021-04235-0
Ye R, Gordillo R, Shao M, Onodera T, Chen Z, Chen S et al (2018) Intracellular lipid metabolism impairs β cell compensation during diet-induced obesity. J Clin Invest 128(3):1178–1189
doi: 10.1172/JCI97702
Yeramian A, Martin L, Arpa L, Bertran J, Soler C, McLeod C et al (2006) Macrophages require distinct arginine catabolism and transport systems for proliferation and for activation. Eur J Immunol 36(6):1516–1526
doi: 10.1002/eji.200535694
Ying W, Lee YS, Dong Y, Seidman JS, Yang M, Isaac R et al (2019) Expansion of islet-resident macrophages leads to inflammation affecting β cell proliferation and function in obesity. Cell Metab 29(2):457–474.e5
doi: 10.1016/j.cmet.2018.12.003
Ying W, Fu W, Lee YS, Olefsky JM (2020) The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities. Nat Rev Endocrinol 16(2):81–90
doi: 10.1038/s41574-019-0286-3
Yoshida GJ (2015) Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res 34:111
doi: 10.1186/s13046-015-0221-y
Yuan M, Kremer DM, Huang H, Breitkopf SB, Ben-Sahra I, Manning BD et al (2019) Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC-MS/MS. Nat Protoc 14(2):313–330
doi: 10.1038/s41596-018-0102-x
Yucel N, Wang YX, Mai T, Porpiglia E, Lund PJ, Markov G et al (2019) Glucose metabolism drives histone acetylation landscape transitions that dictate muscle stem cell function. Cell Rep 27(13):3939–3955.e6
doi: 10.1016/j.celrep.2019.05.092
Yurdagul A, Subramanian M, Wang X, Crown SB, Ilkayeva OR, Darville L et al (2020) Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metab 31(3):518–533.e10
doi: 10.1016/j.cmet.2020.01.001
Yvan-Charvet L, Wang N, Tall AR (2010) Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol 30(2):139–143
doi: 10.1161/ATVBAHA.108.179283
Zhang N, Kim SH, Gainullina A, Erlich EC, Onufer EJ, Kim J et al (2021) LYVE1+ macrophages of murine peritoneal mesothelium promote omentum-independent ovarian tumor growth. J Exp Med 218(12):e20210924
doi: 10.1084/jem.20210924

Auteurs

Gerasimos Anagnostopoulos (G)

Institut Gustave Roussy, INSERM U1015, Villejuif, France.

Camille Blériot (C)

Institut Gustave Roussy, INSERM U1015, Villejuif, France.
Institut Necker Enfants Malades (INEM), INSERM, CNRS, Université Paris Cité, Paris, France.

Nicolas Venteclef (N)

Institut Necker Enfants Malades (INEM), INSERM, CNRS, Université Paris Cité, Paris, France.

Florent Ginhoux (F)

Institut Gustave Roussy, INSERM U1015, Villejuif, France. florent.ginhoux@gustaveroussy.fr.
Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore. florent.ginhoux@gustaveroussy.fr.
Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. florent.ginhoux@gustaveroussy.fr.
Translational Immunology Institute, SingHealth Duke-NUS, Singapore, Singapore. florent.ginhoux@gustaveroussy.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH