A genome-wide association analysis reveals new pathogenic pathways in gout.


Journal

Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904

Informations de publication

Date de publication:
15 Oct 2024
Historique:
received: 17 01 2023
accepted: 21 08 2024
medline: 16 10 2024
pubmed: 16 10 2024
entrez: 15 10 2024
Statut: aheadofprint

Résumé

Gout is a chronic disease that is caused by an innate immune response to deposited monosodium urate crystals in the setting of hyperuricemia. Here, we provide insights into the molecular mechanism of the poorly understood inflammatory component of gout from a genome-wide association study (GWAS) of 2.6 million people, including 120,295 people with prevalent gout. We detected 377 loci and 410 genetically independent signals (149 previously unreported loci in urate and gout). An additional 65 loci with signals in urate (from a GWAS of 630,117 individuals) but not gout were identified. A prioritization scheme identified candidate genes in the inflammatory process of gout, including genes involved in epigenetic remodeling, cell osmolarity and regulation of NOD-like receptor protein 3 (NLRP3) inflammasome activity. Mendelian randomization analysis provided evidence for a causal role of clonal hematopoiesis of indeterminate potential in gout. Our study identifies candidate genes and molecular processes in the inflammatory pathogenesis of gout suitable for follow-up studies.

Identifiants

pubmed: 39406924
doi: 10.1038/s41588-024-01921-5
pii: 10.1038/s41588-024-01921-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Investigateurs

Suyash Shringapure (S)

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Kuo, C. F. et al. Global epidemiology of gout: prevalence, incidence and risk factors. Nat. Rev. Rheumatol. 11, 649–662 (2015).
pubmed: 26150127 doi: 10.1038/nrrheum.2015.91
Safiri, S. et al. Prevalence, incidence, and years lived with disability due to gout and its attributable risk factors for 195 countries and territories 1990–2017: a systematic analysis of the Global Burden of Disease Study 2017. Arthritis Rheumatol. 72, 1916–1927 (2020).
pubmed: 32755051 doi: 10.1002/art.41404
Zhu, Y. et al. Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007–2008. Am. J. Med. 125, 679–687 (2012).
pubmed: 22626509 doi: 10.1016/j.amjmed.2011.09.033
Dalbeth, N. et al. Gout. Lancet 388, 2039–2052 (2016).
pubmed: 27112094 doi: 10.1016/S0140-6736(16)00346-9
Martinon, F. et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).
pubmed: 16407889 doi: 10.1038/nature04516
Cabău, G. et al. Urate‐induced immune programming: consequences for gouty arthritis and hyperuricemia. Immunol. Rev. 294, 92–105 (2020).
pubmed: 31853991 doi: 10.1111/imr.12833
Tin, A. et al. Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat. Genet. 51, 1459–1474 (2019).
pubmed: 31578528 pmcid: 6858555 doi: 10.1038/s41588-019-0504-x
Nakayama, A. et al. Subtype-specific gout susceptibility loci and enrichment of selection pressure on ABCG2 and ALDH2 identified by subtype genome-wide meta-analyses of clinically defined gout patients. Ann. Rheum. Dis. 79, 657–665 (2020).
pubmed: 32238385 doi: 10.1136/annrheumdis-2019-216644
Li, C. et al. Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese. Nat. Commun. 6, 7041 (2015).
pubmed: 25967671 doi: 10.1038/ncomms8041
Sulem, P. et al. Identification of low-frequency variants associated with gout and serum uric acid levels. Nat. Genet. 43, 1127–1130 (2011).
pubmed: 21983786 doi: 10.1038/ng.972
Zhou, W. et al. Global Biobank Meta-analysis Initiative: powering genetic discovery across human disease. Cell Genom. 2, 100192 (2022).
pubmed: 36777996 pmcid: 9903716 doi: 10.1016/j.xgen.2022.100192
Dalbeth, N. et al. Relationship between serum urate concentration and clinically evident incident gout: an individual participant data analysis. Ann. Rheum. Dis. 77, 1048–1052 (2018).
pubmed: 29463518 doi: 10.1136/annrheumdis-2017-212288
Dalbeth, N. et al. Urate crystal deposition in asymptomatic hyperuricaemia and symptomatic gout: a dual energy CT study. Ann. Rheum. Dis. 74, 908–911 (2015).
pubmed: 25637002 doi: 10.1136/annrheumdis-2014-206397
Major, T. J. et al. An update on the genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol. 14, 341–353 (2018).
pubmed: 29740155 doi: 10.1038/s41584-018-0004-x
Yang, Q. O. et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ. Cardiovasc. Genet. 3, 523–530 (2010).
pubmed: 20884846 pmcid: 3371395 doi: 10.1161/CIRCGENETICS.109.934455
Oliva, M. et al. The impact of sex on gene expression across human tissues. Science 369, eaba3066 (2020).
pubmed: 32913072 pmcid: 8136152 doi: 10.1126/science.aba3066
Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).
pubmed: 26773131 pmcid: 4866522 doi: 10.1093/bioinformatics/btw018
Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014).
pubmed: 25357204 pmcid: 4214605 doi: 10.1371/journal.pgen.1004722
Kanai, M. et al. Meta-analysis fine-mapping is often miscalibrated at single-variant resolution. Cell Genom. 12, 100210 (2022).
doi: 10.1016/j.xgen.2022.100210
Yuan, S. et al. Genetically predicted sex hormone levels and health outcomes: phenome-wide Mendelian randomization investigation. Int. J. Epidemiol. 51, 1931–1942 (2022).
pubmed: 35218343 pmcid: 9749729 doi: 10.1093/ije/dyac036
Luo, Y. et al. Estimating heritability and its enrichment in tissue-specific gene sets in admixed populations. Hum. Mol. Genet. 30, 1521–1534 (2021).
pubmed: 33987664 pmcid: 8330913
Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).
pubmed: 25597830 doi: 10.1038/ncomms6890
Qiu, C. et al. Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease. Nat. Med. 24, 1721–1731 (2018).
pubmed: 30275566 pmcid: 6301011 doi: 10.1038/s41591-018-0194-4
Nakayama, A. et al. Common missense variant of monocarboxylate transporter 9 (MCT9/SLC16A9) gene is associated with renal overload gout, but not with all gout susceptibility. Hum. Cell 26, 133–136 (2013).
pubmed: 23990105 pmcid: 3844819 doi: 10.1007/s13577-013-0073-8
Ahmed, M. et al. Accelerated transcription of PRPS1 in X-linked overactivity of normal human phosphoribosylpyrophosphate synthetase.J. Biol. Chem. 274, 7284–7488 (1999).
doi: 10.1074/jbc.274.11.7482
Halperin Kuhns, V. L. et al. Differential expression of renal urate transporters in male and female mice. FASEB J. 34, S1 (2020).
doi: 10.1096/fasebj.2020.34.s1.06423
Badii, M. et al. Urate-induced epigenetic modifications in myeloid cells. Arthritis Res. Ther. 23, 202 (2021).
pubmed: 34321071 pmcid: 8317351 doi: 10.1186/s13075-021-02580-1
Wang, Z. et al. Differential DNA methylation of networked signaling, transcriptional, innate and adaptive immunity, and osteoclastogenesis genes and pathways in gout. Arthritis Rheumatol. 72, 802–814 (2020).
pubmed: 31738005 pmcid: 7323903 doi: 10.1002/art.41173
Min, J. L. et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat. Genet. 53, 1311–1321 (2021).
pubmed: 34493871 pmcid: 7612069 doi: 10.1038/s41588-021-00923-x
Sakaue, S. & Okada, Y. GREP: genome for REPositioning drugs. Bioinformatics 35, 3821–3823 (2019).
pubmed: 30859178 pmcid: 6761931 doi: 10.1093/bioinformatics/btz166
Agrawal, A. et al. TET2-mutant clonal hematopoiesis and risk of gout. Blood 140, 1094–1103 (2022).
pubmed: 35714308 pmcid: 9461470 doi: 10.1182/blood.2022015384
Kessler, M. D. et al. Common and rare variant associations with clonal haematopoiesis phenotypes. Nature 612, 301–309 (2022).
pubmed: 36450978 pmcid: 9713173 doi: 10.1038/s41586-022-05448-9
Fanucchi, S. et al. Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. Nat. Genet. 51, 138–150 (2019).
pubmed: 30531872 doi: 10.1038/s41588-018-0298-2
Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease genes. Nature 593, 238–243 (2021).
pubmed: 33828297 pmcid: 9153265 doi: 10.1038/s41586-021-03446-x
Gazal, S. et al. Combining SNP-to-gene linking strategies to identify disease genes and assess disease omnigenicity. Nat. Genet. 54, 827–836 (2022).
pubmed: 35668300 pmcid: 9894581 doi: 10.1038/s41588-022-01087-y
Mountjoy, E. et al. An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci. Nat. Genet. 53, 1527–1533 (2021).
pubmed: 34711957 pmcid: 7611956 doi: 10.1038/s41588-021-00945-5
Legrand-Poels, S. et al. Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem. Pharmacol. 92, 131–141 (2014).
pubmed: 25175736 doi: 10.1016/j.bcp.2014.08.013
Chu, X. et al. Integration of metabolomics, genomics, and immune phenotypes reveals the causal roles of metabolites in disease. Genome Biol. 22, 198 (2021).
pubmed: 34229738 pmcid: 8259168 doi: 10.1186/s13059-021-02413-z
Sibbons, C. M. et al. Polyunsaturated fatty acid biosynthesis involving Δ8 desaturation and differential DNA methylation of FADS2 regulates proliferation of human peripheral blood mononuclear cells. Front. Immunol. 9, 432 (2018).
pubmed: 29556240 pmcid: 5844933 doi: 10.3389/fimmu.2018.00432
Gotfryd, K. et al. Human adipose glycerol flux is regulated by a pH gate in AQP10. Nat. Commun. 9, 4749 (2018).
pubmed: 30420639 pmcid: 6232157 doi: 10.1038/s41467-018-07176-z
Compan, V. et al. Cell volume regulation modulates NLRP3 inflammasome activation. Immunity 37, 487–500 (2012).
pubmed: 22981536 doi: 10.1016/j.immuni.2012.06.013
Chirayath, T. et al. The inflammation induced by monosodium urate and calcium pyrophosphate crystals depends on osmolarity and aquaporin channels. Arthritis Rheumatol. 74, S9 (2022).
Pearson, D. L. et al. Neonatal pulmonary hypertension: urea-cycle intermediates, nitric oxide production, and carbamoyl-phosphate synthetase function. N. Engl. J. Med. 344, 1832–1838 (2001).
pubmed: 11407344 doi: 10.1056/NEJM200106143442404
Kettunen, J. et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat. Commun. 7, 11122 (2016).
pubmed: 27005778 pmcid: 4814583 doi: 10.1038/ncomms11122
Riksen, N. P. & Netea, M. G. Immunometabolic control of trained immunity. Mol. Asp. Med. 77, 100897 (2021).
doi: 10.1016/j.mam.2020.100897
Segovia, M. et al. Targeting TMEM176B enhances antitumor immunity and augments the efficacy of immune checkpoint blockers by unleashing inflammasome activation. Cancer Cell 35, 767–781 (2019).
pubmed: 31085177 pmcid: 6521897 doi: 10.1016/j.ccell.2019.04.003
Guo, C. et al. Cholesterol homeostatic regulator SCAP–SREBP2 integrates NLRP3 inflammasome activation and cholesterol biosynthetic signaling in macrophages. Immunity 49, 842–856 (2018).
pubmed: 30366764 doi: 10.1016/j.immuni.2018.08.021
Yan, R. et al. A structure of human Scap bound to Insig-2 suggests how their interaction is regulated by sterols. Science 371, eabb2224 (2021).
pubmed: 33446483 doi: 10.1126/science.abb2224
Zhang, H. et al. Role of NINJ1 in gout flare and potential as a drug target. J. Inflamm. Res. 15, 5611–5620 (2022).
pubmed: 36199745 pmcid: 9527815 doi: 10.2147/JIR.S378341
Sehgal, A., Irvine, K. M. & Hume, D. A. Functions of macrophage colony-stimulating factor (CSF1) in development, homeostasis and tissue repair. Semin. Immunol. 54, 101509 (2021).
pubmed: 34742624 doi: 10.1016/j.smim.2021.101509
Hwang, J.-Y. & Zukin, R. S. REST, a master transcriptional factor in neurodegenerative disease. Curr. Opin. Neurobiol. 48, 193–200 (2018).
pubmed: 29351877 pmcid: 5892838 doi: 10.1016/j.conb.2017.12.008
Ji, A. et al. Novel genetic loci in early-onset gout derived from whole-genome sequencing of an adolescent gout cohort. Arthritis Rheumatol. https://doi.org/10.1002/art.42969 (2024).
Chang, W.-C. et al. Genetic variants of PPAR-γ coactivator 1B augment NLRP3-mediated inflammation in gouty arthritis. Rheumatology 56, 457–466 (2017).
pubmed: 28394398
Castel, S. E. et al. A vast resource of allelic expression data spanning human tissues. Genome Biol. 21, 234 (2020).
pubmed: 32912332 pmcid: 7488534 doi: 10.1186/s13059-020-02122-z
Shang, K. et al. IL-33 ameliorates the development of MSU-induced inflammation through expanding MDSCs-like cells. Front. Endocrinol. 10, 36 (2019).
doi: 10.3389/fendo.2019.00036
Cadzow, M. et al. Performance of gout definitions for genetic epidemiological studies: analysis of UK Biobank. Arthritis Res. Ther. 19, 181 (2017).
pubmed: 28793914 pmcid: 5551011 doi: 10.1186/s13075-017-1390-1
Dalbeth, N. et al. Survey definitions of gout for epidemiologic studies: comparison with crystal identification as the gold standard.Arthritis Care Res. 68, 1894–1898 (2016).
doi: 10.1002/acr.22896
He, B. et al. Hypercholesterolemia risk associated Abca6 does not regulate lipoprotein metabolism in mice or hamster. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1866, 159006 (2021).
pubmed: 34274505 doi: 10.1016/j.bbalip.2021.159006
Basseville, A. et al. Histone deacetylase inhibitors influence chemotherapy transport by modulating expression and trafficking of a common polymorphic variant of the ABCG2 efflux transporter. Cancer Res. 72, 3642–3651 (2012).
pubmed: 22472121 pmcid: 4163836 doi: 10.1158/0008-5472.CAN-11-2008
Matsuo, H. et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci. Transl. Med. 1, 5ra11 (2009).
pubmed: 20368174 doi: 10.1126/scitranslmed.3000237
Wallace, M. C. et al. Association between ABCG2 rs2231142 and poor response to allopurinol: replication and meta-analysis. Rheumatology 57, 656–660 (2018).
pubmed: 29342288 doi: 10.1093/rheumatology/kex467
Takeshita, T. et al. The contribution of polymorphism in the alcohol dehydrogenase β subunit to alcohol sensitivity in a Japanese population. Hum. Genet. 97, 409–413 (1996).
pubmed: 8834233 doi: 10.1007/BF02267057
Farrés, J. et al. Effects of changing glutamate 487 to lysine in rat and human liver mitochondrial aldehyde dehydrogenase. A model to study human (Oriental type) class 2 aldehyde dehydrogenase. J. Biol. Chem. 269, 13854–13860 (1994).
pubmed: 7910607 doi: 10.1016/S0021-9258(17)36725-X
Yamanaka, H. et al. Analysis of the genotypes for aldehyde dehydrogenase 2 in Japanese patients with primary gout. Adv. Exp. Med. Biol. 370, 53–56 (1994).
pubmed: 7660963 doi: 10.1007/978-1-4615-2584-4_13
Rees, M. et al. Cellular characterisation of the GCKR P446L variant associated with type 2 diabetes risk. Diabetologia 55, 114–122 (2012).
pubmed: 22038520 doi: 10.1007/s00125-011-2348-5
Xiang, Z. et al. Pharmacological characterization of 40 human melanocortin-4 receptor polymorphisms with the endogenous proopiomelanocortin-derived agonists and the agouti-related protein (AGRP) antagonist. Biochemistry 45, 7277–7288 (2006).
pubmed: 16752916 doi: 10.1021/bi0600300
Pirazzi, C. et al. Patatin-like phospholipase domain-containing 3 (PNPLA3) I148M (rs738409) affects hepatic VLDL secretion in humans and in vitro. J. Hepatol. 57, 1276–1282 (2012).
pubmed: 22878467 doi: 10.1016/j.jhep.2012.07.030
Allenspach, E. J. et al. The autoimmune risk R262W variant of the adaptor SH2B3 improves survival in sepsis. J. Immunol. 207, 2710–2719 (2021).
pubmed: 34740959 doi: 10.4049/jimmunol.2100454
Wang, W. et al. LNK/SH2B3 loss of function promotes atherosclerosis and thrombosis. Circ. Res. 119, e91–e103 (2016).
pubmed: 27430239 pmcid: 5016083 doi: 10.1161/CIRCRESAHA.116.308955
Chiba, T. et al. NPT1/SLC17A1 is a renal urate exporter in humans and its common gain-of-function variant decreases the risk of renal underexcretion gout. Arthritis Rheumatol. 67, 281–287 (2015).
pubmed: 25252215 doi: 10.1002/art.38884
Jutabha, P. et al. Functional analysis of human sodium–phosphate transporter 4 (NPT4/SLC17A3) polymorphisms. J. Pharmacol. Sci. 115, 249–253 (2011).
pubmed: 21282933 doi: 10.1254/jphs.10228SC
Matsuo, H. et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am. J. Hum. Genet. 83, 744–751 (2008).
pubmed: 19026395 pmcid: 2668068 doi: 10.1016/j.ajhg.2008.11.001
Hurba, O. et al. Complex analysis of urate transporters SLC2A9, SLC22A12 and functional characterization of non-synonymous allelic variants of GLUT9 in the Czech population: no evidence of effect on hyperuricemia and gout. PLoS ONE 9, e107902 (2014).
pubmed: 25268603 pmcid: 4182324 doi: 10.1371/journal.pone.0107902
Hall, S. C. et al. Critical role of zinc transporter (ZIP8) in myeloid innate immune cell function and the host response against bacterial pneumonia. J. Immunol. 207, 1357–1370 (2021).
pubmed: 34380651 doi: 10.4049/jimmunol.2001395
Fujishiro, H. et al. Effects of individual amino acid mutations of zinc transporter ZIP8 on manganese- and cadmium-transporting activity. Biochem. Biophys. Res. Commun. 616, 26–32 (2022).
pubmed: 35636252 doi: 10.1016/j.bbrc.2022.05.068
Türkmen, D. et al. Statin treatment effectiveness and the SLCO1B1*5 reduced function genotype: long‐term outcomes in women and men. Br. J. Clin. Pharmacol. 88, 3230–3240 (2022).
pubmed: 35083771 doi: 10.1111/bcp.15245
Zhao, B. et al. Identification of potential megalin/cubilin substrates using extensive proteomics quantification from kidney megalin-knockdown mice. AAPS J. 24, 109 (2022).
pubmed: 36253507 doi: 10.1208/s12248-022-00758-2
Simonson, B. et al. DDiT4L promotes autophagy and inhibits pathological cardiac hypertrophy in response to stress. Sci. Signal. 10, eaaf5967 (2017).
pubmed: 28246202 pmcid: 5509050 doi: 10.1126/scisignal.aaf5967
Scoville, D. W. & Jetten, A. M. GLIS3: a critical transcription factor in islet β-cell generation. Cells 10, 3471 (2021).
pubmed: 34943978 pmcid: 8700524 doi: 10.3390/cells10123471
Adelmann, C. H. et al. MFSD12 mediates the import of cysteine into melanosomes and lysosomes. Nature 588, 699–704 (2020).
pubmed: 33208952 pmcid: 7770032 doi: 10.1038/s41586-020-2937-x
Ge, W. et al. POM121 inhibits the macrophage inflammatory response by impacting NF-κB P65 nuclear accumulation. Exp. Cell Res. 377, 17–23 (2019).
pubmed: 30802453 doi: 10.1016/j.yexcr.2019.02.021
Moon, J.-S. et al. ANT2 drives proinflammatory macrophage activation in obesity. JCI Insight 6, e147033 (2021).
pubmed: 34676827 pmcid: 8564915 doi: 10.1172/jci.insight.147033
Ghossoub, R. et al. Tetraspanin-6 negatively regulates exosome production. Proc. Natl Acad. Sci. USA 117, 5913–5922 (2020).
pubmed: 32108028 pmcid: 7084133 doi: 10.1073/pnas.1922447117
Bhatt-Wessel, B. et al. Role of DGAT enzymes in triacylglycerol metabolism. Arch. Biochem. Biophys. 655, 1–11 (2018).
pubmed: 30077544 doi: 10.1016/j.abb.2018.08.001
Inoue, H. et al. γ-SNAP stimulates disassembly of endosomal SNARE complexes and regulates endocytic trafficking pathways. J. Cell Sci. 128, 2781–2794 (2015).
pubmed: 26101353
Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
pubmed: 25642630 pmcid: 4495769 doi: 10.1038/ng.3211
Mackenzie, I. S. et al. Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): a multicentre, prospective, randomised, open-label, non-inferiority trial. Lancet 396, 1745–1757 (2020).
pubmed: 33181081 doi: 10.1016/S0140-6736(20)32234-0
Kvale, M. N. et al. Genotyping informatics and quality control for 100,000 subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. Genetics 200, 1051–1060 (2015).
pubmed: 26092718 pmcid: 4574249 doi: 10.1534/genetics.115.178905
Toyoda, Y. et al. SNP-based heritability estimates of gout and its subtypes determined by genome-wide association studies of clinically defined gout. Rheumatol. 62, e144–e146 (2023).
doi: 10.1093/rheumatology/keac597
Köttgen, A. et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 45, 145–154 (2013).
pubmed: 23263486 doi: 10.1038/ng.2500
Lindström, S. et al. A comprehensive survey of genetic variation in 20,691 subjects from four large cohorts. PLoS ONE 12, e0173997 (2017).
pubmed: 28301549 pmcid: 5354293 doi: 10.1371/journal.pone.0173997
Boutin, N. T. et al. The evolution of a large biobank at Mass General Brigham. J. Pers. Med. 12, 1323 (2022).
pubmed: 36013271 pmcid: 9410531 doi: 10.3390/jpm12081323
Shin, J. et al. Genetic architecture for susceptibility to gout in the KARE cohort study. J. Hum. Genet. 57, 379–384 (2012).
pubmed: 22513714 doi: 10.1038/jhg.2012.39
Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).
pubmed: 36653562 pmcid: 9849126 doi: 10.1038/s41586-022-05473-8
Neogi, T. et al. 2015 gout classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheumatol. 67, 2557–2568 (2015).
pubmed: 26352873 pmcid: 4566153 doi: 10.1002/art.39254
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743 pmcid: 6786975 doi: 10.1038/s41586-018-0579-z
Eriksson, N. et al. Web-based, participant-driven studies yield novel genetic associations for common traits. PLoS Genet. 6, e1000993 (2010).
pubmed: 20585627 pmcid: 2891811 doi: 10.1371/journal.pgen.1000993
Walter, K. et al. The UK10K project identifies rare variants in health and disease. Nature 526, 82–90 (2015).
pubmed: 26367797 doi: 10.1038/nature14962
Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
pubmed: 26432245 doi: 10.1038/nature15393
McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).
pubmed: 27548312 pmcid: 5388176 doi: 10.1038/ng.3643
Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).
pubmed: 17943122 doi: 10.1038/nature06258
Lim, E. T. et al. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet. 10, e1004494 (2014).
pubmed: 25078778 pmcid: 4117444 doi: 10.1371/journal.pgen.1004494
Deng, J.-E. et al. SNPTracker: a swift tool for comprehensive tracking and unifying dbSNP rs IDs and genomic coordinates of massive sequence variants. G3 6, 205–207 (2016).
doi: 10.1534/g3.115.021832
Broad Institute GitHub Repository. Picard Toolkit broadinstitute.github.io/picard/ (2019).
Willer, C. J. et al. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
pubmed: 20616382 pmcid: 2922887 doi: 10.1093/bioinformatics/btq340
Morris, A. P. Transethnic meta‐analysis of genomewide association studies. Genet. Epidemiol. 35, 809–822 (2011).
pubmed: 22125221 pmcid: 3460225 doi: 10.1002/gepi.20630
Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comp. Biol. 9, e1003118 (2013).
doi: 10.1371/journal.pcbi.1003118
Wang, X. et al. Comparing methods for performing trans-ethnic meta-analysis of genome-wide association studies. Hum. Mol. Genet. 22, 2303–2311 (2013).
pubmed: 23406875 doi: 10.1093/hmg/ddt064
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
pubmed: 17701901 pmcid: 1950838 doi: 10.1086/519795
Major, T. J. & Takei, R. LocusZoom-like plots for GWAS results (v2.1). Zenodo https://doi.org/10.5281/zenodo.5154379 (2021).
Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).
pubmed: 30357393 doi: 10.1093/nar/gky955
de Leeuw et al. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comp. Biol. 11, e1004219 (2015).
doi: 10.1371/journal.pcbi.1004219
Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).
pubmed: 22426310 pmcid: 3593158 doi: 10.1038/ng.2213
Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).
pubmed: 30445434 doi: 10.1093/nar/gky1120
Machiela, M. J. & Chanock, S. J. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31, 3555–3557 (2015).
pubmed: 26139635 pmcid: 4626747 doi: 10.1093/bioinformatics/btv402
ter Horst, R. et al. Host and environmental factors influencing individual human cytokine responses. Cell 167, 1111–1124 (2016).
pubmed: 27814508 pmcid: 5787854 doi: 10.1016/j.cell.2016.10.018
Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018).
pubmed: 29846171 pmcid: 5976434 doi: 10.7554/eLife.34408
Kichaev, G. et al. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet. 104, 65–75 (2019).
pubmed: 30595370 doi: 10.1016/j.ajhg.2018.11.008
Mahajan, A. et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 46, 234–244 (2014).
pubmed: 24509480 doi: 10.1038/ng.2897
Wakefield, J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am. J. Hum. Genet. 81, 208–227 (2007).
pubmed: 17668372 pmcid: 1950810 doi: 10.1086/519024
Ormond, C. et al. Converting single nucleotide variants between genome builds: from cautionary tale to solution. Brief. Bioinform. 22, bbab069 (2021).
pubmed: 33822888 pmcid: 8425424 doi: 10.1093/bib/bbab069
Chen, W. et al. Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors. Nat. Commun. 12, 7117 (2021).
pubmed: 34880243 pmcid: 8654883 doi: 10.1038/s41467-021-27438-7
Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).
pubmed: 24830394 pmcid: 4022491 doi: 10.1371/journal.pgen.1004383
Pirinen, M. GWAS 3: Statistical Power www.mv.helsinki.fi/home/mjxpirin/GWAS_course/material/GWAS3.html (2023).
Boocock, J. et al. Genomic dissection of 43 serum urate-associated loci provides multiple insights into molecular mechanisms of urate control. Hum. Mol. Genet. 29, 923–943 (2020).
pubmed: 31985003 doi: 10.1093/hmg/ddaa013
Fadason, T. et al. Physical interactions and expression quantitative traits loci identify regulatory connections for obesity and type 2 diabetes associated SNPs. Front. Genet. 8, 150 (2017).
pubmed: 29081791 pmcid: 5645506 doi: 10.3389/fgene.2017.00150
Harley, J. B. et al. Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat. Genet. 50, 699–707 (2018).
pubmed: 29662164 pmcid: 6022759 doi: 10.1038/s41588-018-0102-3
Astle, W. J. et al. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 167, 1415–1429 (2016).
pubmed: 27863252 pmcid: 5300907 doi: 10.1016/j.cell.2016.10.042
rikutakei. MerrimanLab/Gout_GWAS_Code: Gout_GWAS_code. Zenodo https://doi.org/10.5281/zenodo.13350995 (2024).

Auteurs

Tanya J Major (TJ)

Department of Biochemistry, University of Otago, Dunedin, New Zealand.

Riku Takei (R)

Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA.

Hirotaka Matsuo (H)

Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan.
Department of Biomedical Information Management, National Defense Medical College Research Institute, National Defense Medical College, Saitama, Japan.

Megan P Leask (MP)

Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA.

Nicholas A Sumpter (NA)

Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA.

Ruth K Topless (RK)

Department of Biochemistry, University of Otago, Dunedin, New Zealand.

Yuya Shirai (Y)

Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan.

Wei Wang (W)

Genomics R&D, 23andMe, Inc, Sunnyvale, CA, USA.

Murray J Cadzow (MJ)

Department of Biochemistry, University of Otago, Dunedin, New Zealand.

Amanda J Phipps-Green (AJ)

Department of Biochemistry, University of Otago, Dunedin, New Zealand.

Zhiqiang Li (Z)

The Biomedical Sciences Institute and The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China.

Aichang Ji (A)

Shandong Provincial Key Laboratory of Metabolic Diseases, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
The Institute of Metabolic Diseases, Qingdao University, Qingdao, Shandong, China.

Marilyn E Merriman (ME)

Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA.

Emily Morice (E)

Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA.

Eric E Kelley (EE)

Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA.

Wen-Hua Wei (WH)

Department of Biochemistry, University of Otago, Dunedin, New Zealand.
Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand.

Sally P A McCormick (SPA)

Department of Biochemistry, University of Otago, Dunedin, New Zealand.

Matthew J Bixley (MJ)

Department of Biochemistry, University of Otago, Dunedin, New Zealand.

Richard J Reynolds (RJ)

Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA.

Kenneth G Saag (KG)

Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA.

Tayaza Fadason (T)

Liggins Institute, University of Auckland, Auckland, New Zealand.

Evgenia Golovina (E)

Liggins Institute, University of Auckland, Auckland, New Zealand.

Justin M O'Sullivan (JM)

Liggins Institute, University of Auckland, Auckland, New Zealand.
MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom.
Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore.
Australian Parkinsons Mission, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.

Lisa K Stamp (LK)

Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand.

Nicola Dalbeth (N)

Department of Medicine, University of Auckland, Auckland, New Zealand.

Abhishek Abhishek (A)

Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.

Michael Doherty (M)

Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.

Edward Roddy (E)

School of Medicine, Keele University, Keele, Staffordshire, United Kingdom.
Haywood Academic Rheumatology Centre, Midlands Partnership University NHS Foundation Trust, Stoke-on-Trent, UK.

Lennart T H Jacobsson (LTH)

Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Meliha C Kapetanovic (MC)

Department of Clinical Sciences Lund, Section of Rheumatology, Lund University and Skåne University Hospital, Lund, Sweden.

Olle Melander (O)

Department of Clinical Sciences, Lund University, Malmö, Sweden.
Department of Emergency and Internal Medicine, Skåne University Hospital, Malmö, Sweden.

Mariano Andrés (M)

Rheumatology Department, Dr Balmis General University Hospital-ISABIAL, Alicante, Spain.
Department of Clinical Medicine, Miguel Hernandez University, Alicante, Spain.

Fernando Pérez-Ruiz (F)

Osakidetza, OSI-EE-Cruces, BIOBizkaia Health Research Institute and Medicine Department of Medicine and Nursery School, University of the Basque Country, Biskay, Spain.

Rosa J Torres (RJ)

Department of Biochemistry, Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain.
Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.

Timothy Radstake (T)

Department of Rheumatology and Clinical Immunology, University Medical Center, Utrecht, The Netherlands.

Timothy L Jansen (TL)

Department of Rheumatology, VieCuri Medical Centre, Venlo, The Netherlands.

Matthijs Janssen (M)

Department of Rheumatology, VieCuri Medical Centre, Venlo, The Netherlands.

Leo A B Joosten (LAB)

Department of Internal Medicine and Radboud Institute of Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.
Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.

Ruiqi Liu (R)

Department of Internal Medicine and Radboud Institute of Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.

Orsolya I Gaal (OI)

Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.

Tania O Crişan (TO)

Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.

Simona Rednic (S)

Department of Rheumatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Cluj, Romania.

Fina Kurreeman (F)

Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.

Tom W J Huizinga (TWJ)

Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.

René Toes (R)

Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.

Frédéric Lioté (F)

Rheumatology Department, Feel'Gout, GH Paris Saint Joseph, Paris, France.
Rheumatology Department, INSERM U1132, BIOSCAR, University Paris Cité, Lariboisière Hospital, Paris, France.

Pascal Richette (P)

Rheumatology Department, INSERM U1132, BIOSCAR, University Paris Cité, Lariboisière Hospital, Paris, France.

Thomas Bardin (T)

Rheumatology Department, INSERM U1132, BIOSCAR, University Paris Cité, Lariboisière Hospital, Paris, France.

Hang Korng Ea (HK)

Rheumatology Department, INSERM U1132, BIOSCAR, University Paris Cité, Lariboisière Hospital, Paris, France.

Tristan Pascart (T)

Department of Rheumatology, Hopital Saint-Philibert, Lille Catholic University, Lille, France.

Geraldine M McCarthy (GM)

Department of Rheumatology, Mater Misericordiae University Hospital and School of Medicine, University College, Dublin, Ireland.

Laura Helbert (L)

Department of Rheumatology, Mater Misericordiae University Hospital and School of Medicine, University College, Dublin, Ireland.

Blanka Stibůrková (B)

Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
Institute of Rheumatology, Prague, Czech Republic.

Anne-K Tausche (AK)

Department of Rheumatology, University Clinic 'Carl Gustav Carus' at the Technical University, Dresden, Germany.

Till Uhlig (T)

Center for Treatment of Rheumatic and Musculoskeletal Diseases, Diakonhjemmet Hospital, Oslo, Norway.

Véronique Vitart (V)

Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.

Thibaud S Boutin (TS)

Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.

Caroline Hayward (C)

Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.

Philip L Riches (PL)

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

Stuart H Ralston (SH)

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

Archie Campbell (A)

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

Thomas M MacDonald (TM)

MEMO Research, Division of Molecular and Clinical Medicine, University of Dundee Medical School, Ninewells Hospital, Dundee, United Kingdom.

Akiyoshi Nakayama (A)

Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan.

Tappei Takada (T)

Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan.

Masahiro Nakatochi (M)

Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Aichi, Japan.

Seiko Shimizu (S)

Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan.

Yusuke Kawamura (Y)

Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA.
Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan.
Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation, Tokyo, Japan.

Yu Toyoda (Y)

Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan.

Hirofumi Nakaoka (H)

Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation, Tokyo, Japan.

Ken Yamamoto (K)

Department of Medical Biochemistry, Kurume University School of Medicine, Fukuoka, Japan.

Keitaro Matsuo (K)

Division of Cancer Epidemiology & Prevention, Aichi Cancer Center, Aichi, Japan.
Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Aichi, Japan.
The Japan Multi-Institutional Collaborative Cohort (J-MICC) Study, Tokyo, Japan.

Nariyoshi Shinomiya (N)

Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan.

Kimiyoshi Ichida (K)

Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.

Chaeyoung Lee (C)

Department of Bioinformatics and Life Science, Soongsil University, Seoul, South Korea.

Linda A Bradbury (LA)

Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, Australia.

Matthew A Brown (MA)

Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, Australia.

Philip C Robinson (PC)

School of Clinical Medicine, Faculty of Medicine, University of Queensland, Brisbane, Australia.

Russell R C Buchanan (RRC)

Department of Rheumatology, Austin Hospital, Melbourne, Victoria, Australia.

Catherine L Hill (CL)

Rheumatology Department, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia.
Discipline of Medicine, University of Adelaide, Adelaide, Australia.

Susan Lester (S)

Rheumatology Department, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia.
Discipline of Medicine, University of Adelaide, Adelaide, Australia.

Malcolm D Smith (MD)

Flinders University, Adelaide, South Australia, Australia.

Maureen Rischmueller (M)

Rheumatology Department, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia.
Discipline of Medicine, University of Adelaide, Adelaide, Australia.

Hyon K Choi (HK)

Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Eli A Stahl (EA)

Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Jeff N Miner (JN)

Viscient Biosciences, 5752 Oberlin Dr., Suite 111, San Diego, CA, 92121, USA.

Daniel H Solomon (DH)

Division of Rheumatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Jing Cui (J)

Division of Rheumatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Kathleen M Giacomini (KM)

Department of Bioengineering and Therapeutic Sciences and Institute for Human Genetics, University of California, San Francisco, CA, USA.

Deanna J Brackman (DJ)

Department of Bioengineering and Therapeutic Sciences and Institute for Human Genetics, University of California, San Francisco, CA, USA.

Eric M Jorgenson (EM)

Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.

Hongbo Liu (H)

Penn / The Children's Hospital of Pennsylvania Kidney Innovation Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19101, USA.
Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19101, USA.

Katalin Susztak (K)

Penn / The Children's Hospital of Pennsylvania Kidney Innovation Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19101, USA.
Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19101, USA.

Suyash Shringarpure (S)

Genomics R&D, 23andMe, Inc, Sunnyvale, CA, USA.

Alexander So (A)

Service of Rheumatology, Center Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
University of Lausanne, Lausanne, Switzerland.

Yukinori Okada (Y)

Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan.
Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.

Changgui Li (C)

Shandong Provincial Key Laboratory of Metabolic Diseases, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
The Institute of Metabolic Diseases, Qingdao University, Qingdao, Shandong, China.

Yongyong Shi (Y)

Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China.
Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China.

Tony R Merriman (TR)

Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA. tony.merriman@otago.ac.nz.
The Institute of Metabolic Diseases, Qingdao University, Qingdao, Shandong, China. tony.merriman@otago.ac.nz.
Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand. tony.merriman@otago.ac.nz.

Classifications MeSH