A genome-wide association analysis reveals new pathogenic pathways in gout.
Journal
Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904
Informations de publication
Date de publication:
15 Oct 2024
15 Oct 2024
Historique:
received:
17
01
2023
accepted:
21
08
2024
medline:
16
10
2024
pubmed:
16
10
2024
entrez:
15
10
2024
Statut:
aheadofprint
Résumé
Gout is a chronic disease that is caused by an innate immune response to deposited monosodium urate crystals in the setting of hyperuricemia. Here, we provide insights into the molecular mechanism of the poorly understood inflammatory component of gout from a genome-wide association study (GWAS) of 2.6 million people, including 120,295 people with prevalent gout. We detected 377 loci and 410 genetically independent signals (149 previously unreported loci in urate and gout). An additional 65 loci with signals in urate (from a GWAS of 630,117 individuals) but not gout were identified. A prioritization scheme identified candidate genes in the inflammatory process of gout, including genes involved in epigenetic remodeling, cell osmolarity and regulation of NOD-like receptor protein 3 (NLRP3) inflammasome activity. Mendelian randomization analysis provided evidence for a causal role of clonal hematopoiesis of indeterminate potential in gout. Our study identifies candidate genes and molecular processes in the inflammatory pathogenesis of gout suitable for follow-up studies.
Identifiants
pubmed: 39406924
doi: 10.1038/s41588-024-01921-5
pii: 10.1038/s41588-024-01921-5
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Investigateurs
Suyash Shringapure
(S)
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Kuo, C. F. et al. Global epidemiology of gout: prevalence, incidence and risk factors. Nat. Rev. Rheumatol. 11, 649–662 (2015).
pubmed: 26150127
doi: 10.1038/nrrheum.2015.91
Safiri, S. et al. Prevalence, incidence, and years lived with disability due to gout and its attributable risk factors for 195 countries and territories 1990–2017: a systematic analysis of the Global Burden of Disease Study 2017. Arthritis Rheumatol. 72, 1916–1927 (2020).
pubmed: 32755051
doi: 10.1002/art.41404
Zhu, Y. et al. Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007–2008. Am. J. Med. 125, 679–687 (2012).
pubmed: 22626509
doi: 10.1016/j.amjmed.2011.09.033
Dalbeth, N. et al. Gout. Lancet 388, 2039–2052 (2016).
pubmed: 27112094
doi: 10.1016/S0140-6736(16)00346-9
Martinon, F. et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).
pubmed: 16407889
doi: 10.1038/nature04516
Cabău, G. et al. Urate‐induced immune programming: consequences for gouty arthritis and hyperuricemia. Immunol. Rev. 294, 92–105 (2020).
pubmed: 31853991
doi: 10.1111/imr.12833
Tin, A. et al. Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat. Genet. 51, 1459–1474 (2019).
pubmed: 31578528
pmcid: 6858555
doi: 10.1038/s41588-019-0504-x
Nakayama, A. et al. Subtype-specific gout susceptibility loci and enrichment of selection pressure on ABCG2 and ALDH2 identified by subtype genome-wide meta-analyses of clinically defined gout patients. Ann. Rheum. Dis. 79, 657–665 (2020).
pubmed: 32238385
doi: 10.1136/annrheumdis-2019-216644
Li, C. et al. Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese. Nat. Commun. 6, 7041 (2015).
pubmed: 25967671
doi: 10.1038/ncomms8041
Sulem, P. et al. Identification of low-frequency variants associated with gout and serum uric acid levels. Nat. Genet. 43, 1127–1130 (2011).
pubmed: 21983786
doi: 10.1038/ng.972
Zhou, W. et al. Global Biobank Meta-analysis Initiative: powering genetic discovery across human disease. Cell Genom. 2, 100192 (2022).
pubmed: 36777996
pmcid: 9903716
doi: 10.1016/j.xgen.2022.100192
Dalbeth, N. et al. Relationship between serum urate concentration and clinically evident incident gout: an individual participant data analysis. Ann. Rheum. Dis. 77, 1048–1052 (2018).
pubmed: 29463518
doi: 10.1136/annrheumdis-2017-212288
Dalbeth, N. et al. Urate crystal deposition in asymptomatic hyperuricaemia and symptomatic gout: a dual energy CT study. Ann. Rheum. Dis. 74, 908–911 (2015).
pubmed: 25637002
doi: 10.1136/annrheumdis-2014-206397
Major, T. J. et al. An update on the genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol. 14, 341–353 (2018).
pubmed: 29740155
doi: 10.1038/s41584-018-0004-x
Yang, Q. O. et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ. Cardiovasc. Genet. 3, 523–530 (2010).
pubmed: 20884846
pmcid: 3371395
doi: 10.1161/CIRCGENETICS.109.934455
Oliva, M. et al. The impact of sex on gene expression across human tissues. Science 369, eaba3066 (2020).
pubmed: 32913072
pmcid: 8136152
doi: 10.1126/science.aba3066
Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).
pubmed: 26773131
pmcid: 4866522
doi: 10.1093/bioinformatics/btw018
Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014).
pubmed: 25357204
pmcid: 4214605
doi: 10.1371/journal.pgen.1004722
Kanai, M. et al. Meta-analysis fine-mapping is often miscalibrated at single-variant resolution. Cell Genom. 12, 100210 (2022).
doi: 10.1016/j.xgen.2022.100210
Yuan, S. et al. Genetically predicted sex hormone levels and health outcomes: phenome-wide Mendelian randomization investigation. Int. J. Epidemiol. 51, 1931–1942 (2022).
pubmed: 35218343
pmcid: 9749729
doi: 10.1093/ije/dyac036
Luo, Y. et al. Estimating heritability and its enrichment in tissue-specific gene sets in admixed populations. Hum. Mol. Genet. 30, 1521–1534 (2021).
pubmed: 33987664
pmcid: 8330913
Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).
pubmed: 25597830
doi: 10.1038/ncomms6890
Qiu, C. et al. Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease. Nat. Med. 24, 1721–1731 (2018).
pubmed: 30275566
pmcid: 6301011
doi: 10.1038/s41591-018-0194-4
Nakayama, A. et al. Common missense variant of monocarboxylate transporter 9 (MCT9/SLC16A9) gene is associated with renal overload gout, but not with all gout susceptibility. Hum. Cell 26, 133–136 (2013).
pubmed: 23990105
pmcid: 3844819
doi: 10.1007/s13577-013-0073-8
Ahmed, M. et al. Accelerated transcription of PRPS1 in X-linked overactivity of normal human phosphoribosylpyrophosphate synthetase.J. Biol. Chem. 274, 7284–7488 (1999).
doi: 10.1074/jbc.274.11.7482
Halperin Kuhns, V. L. et al. Differential expression of renal urate transporters in male and female mice. FASEB J. 34, S1 (2020).
doi: 10.1096/fasebj.2020.34.s1.06423
Badii, M. et al. Urate-induced epigenetic modifications in myeloid cells. Arthritis Res. Ther. 23, 202 (2021).
pubmed: 34321071
pmcid: 8317351
doi: 10.1186/s13075-021-02580-1
Wang, Z. et al. Differential DNA methylation of networked signaling, transcriptional, innate and adaptive immunity, and osteoclastogenesis genes and pathways in gout. Arthritis Rheumatol. 72, 802–814 (2020).
pubmed: 31738005
pmcid: 7323903
doi: 10.1002/art.41173
Min, J. L. et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat. Genet. 53, 1311–1321 (2021).
pubmed: 34493871
pmcid: 7612069
doi: 10.1038/s41588-021-00923-x
Sakaue, S. & Okada, Y. GREP: genome for REPositioning drugs. Bioinformatics 35, 3821–3823 (2019).
pubmed: 30859178
pmcid: 6761931
doi: 10.1093/bioinformatics/btz166
Agrawal, A. et al. TET2-mutant clonal hematopoiesis and risk of gout. Blood 140, 1094–1103 (2022).
pubmed: 35714308
pmcid: 9461470
doi: 10.1182/blood.2022015384
Kessler, M. D. et al. Common and rare variant associations with clonal haematopoiesis phenotypes. Nature 612, 301–309 (2022).
pubmed: 36450978
pmcid: 9713173
doi: 10.1038/s41586-022-05448-9
Fanucchi, S. et al. Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. Nat. Genet. 51, 138–150 (2019).
pubmed: 30531872
doi: 10.1038/s41588-018-0298-2
Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease genes. Nature 593, 238–243 (2021).
pubmed: 33828297
pmcid: 9153265
doi: 10.1038/s41586-021-03446-x
Gazal, S. et al. Combining SNP-to-gene linking strategies to identify disease genes and assess disease omnigenicity. Nat. Genet. 54, 827–836 (2022).
pubmed: 35668300
pmcid: 9894581
doi: 10.1038/s41588-022-01087-y
Mountjoy, E. et al. An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci. Nat. Genet. 53, 1527–1533 (2021).
pubmed: 34711957
pmcid: 7611956
doi: 10.1038/s41588-021-00945-5
Legrand-Poels, S. et al. Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem. Pharmacol. 92, 131–141 (2014).
pubmed: 25175736
doi: 10.1016/j.bcp.2014.08.013
Chu, X. et al. Integration of metabolomics, genomics, and immune phenotypes reveals the causal roles of metabolites in disease. Genome Biol. 22, 198 (2021).
pubmed: 34229738
pmcid: 8259168
doi: 10.1186/s13059-021-02413-z
Sibbons, C. M. et al. Polyunsaturated fatty acid biosynthesis involving Δ8 desaturation and differential DNA methylation of FADS2 regulates proliferation of human peripheral blood mononuclear cells. Front. Immunol. 9, 432 (2018).
pubmed: 29556240
pmcid: 5844933
doi: 10.3389/fimmu.2018.00432
Gotfryd, K. et al. Human adipose glycerol flux is regulated by a pH gate in AQP10. Nat. Commun. 9, 4749 (2018).
pubmed: 30420639
pmcid: 6232157
doi: 10.1038/s41467-018-07176-z
Compan, V. et al. Cell volume regulation modulates NLRP3 inflammasome activation. Immunity 37, 487–500 (2012).
pubmed: 22981536
doi: 10.1016/j.immuni.2012.06.013
Chirayath, T. et al. The inflammation induced by monosodium urate and calcium pyrophosphate crystals depends on osmolarity and aquaporin channels. Arthritis Rheumatol. 74, S9 (2022).
Pearson, D. L. et al. Neonatal pulmonary hypertension: urea-cycle intermediates, nitric oxide production, and carbamoyl-phosphate synthetase function. N. Engl. J. Med. 344, 1832–1838 (2001).
pubmed: 11407344
doi: 10.1056/NEJM200106143442404
Kettunen, J. et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat. Commun. 7, 11122 (2016).
pubmed: 27005778
pmcid: 4814583
doi: 10.1038/ncomms11122
Riksen, N. P. & Netea, M. G. Immunometabolic control of trained immunity. Mol. Asp. Med. 77, 100897 (2021).
doi: 10.1016/j.mam.2020.100897
Segovia, M. et al. Targeting TMEM176B enhances antitumor immunity and augments the efficacy of immune checkpoint blockers by unleashing inflammasome activation. Cancer Cell 35, 767–781 (2019).
pubmed: 31085177
pmcid: 6521897
doi: 10.1016/j.ccell.2019.04.003
Guo, C. et al. Cholesterol homeostatic regulator SCAP–SREBP2 integrates NLRP3 inflammasome activation and cholesterol biosynthetic signaling in macrophages. Immunity 49, 842–856 (2018).
pubmed: 30366764
doi: 10.1016/j.immuni.2018.08.021
Yan, R. et al. A structure of human Scap bound to Insig-2 suggests how their interaction is regulated by sterols. Science 371, eabb2224 (2021).
pubmed: 33446483
doi: 10.1126/science.abb2224
Zhang, H. et al. Role of NINJ1 in gout flare and potential as a drug target. J. Inflamm. Res. 15, 5611–5620 (2022).
pubmed: 36199745
pmcid: 9527815
doi: 10.2147/JIR.S378341
Sehgal, A., Irvine, K. M. & Hume, D. A. Functions of macrophage colony-stimulating factor (CSF1) in development, homeostasis and tissue repair. Semin. Immunol. 54, 101509 (2021).
pubmed: 34742624
doi: 10.1016/j.smim.2021.101509
Hwang, J.-Y. & Zukin, R. S. REST, a master transcriptional factor in neurodegenerative disease. Curr. Opin. Neurobiol. 48, 193–200 (2018).
pubmed: 29351877
pmcid: 5892838
doi: 10.1016/j.conb.2017.12.008
Ji, A. et al. Novel genetic loci in early-onset gout derived from whole-genome sequencing of an adolescent gout cohort. Arthritis Rheumatol. https://doi.org/10.1002/art.42969 (2024).
Chang, W.-C. et al. Genetic variants of PPAR-γ coactivator 1B augment NLRP3-mediated inflammation in gouty arthritis. Rheumatology 56, 457–466 (2017).
pubmed: 28394398
Castel, S. E. et al. A vast resource of allelic expression data spanning human tissues. Genome Biol. 21, 234 (2020).
pubmed: 32912332
pmcid: 7488534
doi: 10.1186/s13059-020-02122-z
Shang, K. et al. IL-33 ameliorates the development of MSU-induced inflammation through expanding MDSCs-like cells. Front. Endocrinol. 10, 36 (2019).
doi: 10.3389/fendo.2019.00036
Cadzow, M. et al. Performance of gout definitions for genetic epidemiological studies: analysis of UK Biobank. Arthritis Res. Ther. 19, 181 (2017).
pubmed: 28793914
pmcid: 5551011
doi: 10.1186/s13075-017-1390-1
Dalbeth, N. et al. Survey definitions of gout for epidemiologic studies: comparison with crystal identification as the gold standard.Arthritis Care Res. 68, 1894–1898 (2016).
doi: 10.1002/acr.22896
He, B. et al. Hypercholesterolemia risk associated Abca6 does not regulate lipoprotein metabolism in mice or hamster. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1866, 159006 (2021).
pubmed: 34274505
doi: 10.1016/j.bbalip.2021.159006
Basseville, A. et al. Histone deacetylase inhibitors influence chemotherapy transport by modulating expression and trafficking of a common polymorphic variant of the ABCG2 efflux transporter. Cancer Res. 72, 3642–3651 (2012).
pubmed: 22472121
pmcid: 4163836
doi: 10.1158/0008-5472.CAN-11-2008
Matsuo, H. et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci. Transl. Med. 1, 5ra11 (2009).
pubmed: 20368174
doi: 10.1126/scitranslmed.3000237
Wallace, M. C. et al. Association between ABCG2 rs2231142 and poor response to allopurinol: replication and meta-analysis. Rheumatology 57, 656–660 (2018).
pubmed: 29342288
doi: 10.1093/rheumatology/kex467
Takeshita, T. et al. The contribution of polymorphism in the alcohol dehydrogenase β subunit to alcohol sensitivity in a Japanese population. Hum. Genet. 97, 409–413 (1996).
pubmed: 8834233
doi: 10.1007/BF02267057
Farrés, J. et al. Effects of changing glutamate 487 to lysine in rat and human liver mitochondrial aldehyde dehydrogenase. A model to study human (Oriental type) class 2 aldehyde dehydrogenase. J. Biol. Chem. 269, 13854–13860 (1994).
pubmed: 7910607
doi: 10.1016/S0021-9258(17)36725-X
Yamanaka, H. et al. Analysis of the genotypes for aldehyde dehydrogenase 2 in Japanese patients with primary gout. Adv. Exp. Med. Biol. 370, 53–56 (1994).
pubmed: 7660963
doi: 10.1007/978-1-4615-2584-4_13
Rees, M. et al. Cellular characterisation of the GCKR P446L variant associated with type 2 diabetes risk. Diabetologia 55, 114–122 (2012).
pubmed: 22038520
doi: 10.1007/s00125-011-2348-5
Xiang, Z. et al. Pharmacological characterization of 40 human melanocortin-4 receptor polymorphisms with the endogenous proopiomelanocortin-derived agonists and the agouti-related protein (AGRP) antagonist. Biochemistry 45, 7277–7288 (2006).
pubmed: 16752916
doi: 10.1021/bi0600300
Pirazzi, C. et al. Patatin-like phospholipase domain-containing 3 (PNPLA3) I148M (rs738409) affects hepatic VLDL secretion in humans and in vitro. J. Hepatol. 57, 1276–1282 (2012).
pubmed: 22878467
doi: 10.1016/j.jhep.2012.07.030
Allenspach, E. J. et al. The autoimmune risk R262W variant of the adaptor SH2B3 improves survival in sepsis. J. Immunol. 207, 2710–2719 (2021).
pubmed: 34740959
doi: 10.4049/jimmunol.2100454
Wang, W. et al. LNK/SH2B3 loss of function promotes atherosclerosis and thrombosis. Circ. Res. 119, e91–e103 (2016).
pubmed: 27430239
pmcid: 5016083
doi: 10.1161/CIRCRESAHA.116.308955
Chiba, T. et al. NPT1/SLC17A1 is a renal urate exporter in humans and its common gain-of-function variant decreases the risk of renal underexcretion gout. Arthritis Rheumatol. 67, 281–287 (2015).
pubmed: 25252215
doi: 10.1002/art.38884
Jutabha, P. et al. Functional analysis of human sodium–phosphate transporter 4 (NPT4/SLC17A3) polymorphisms. J. Pharmacol. Sci. 115, 249–253 (2011).
pubmed: 21282933
doi: 10.1254/jphs.10228SC
Matsuo, H. et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am. J. Hum. Genet. 83, 744–751 (2008).
pubmed: 19026395
pmcid: 2668068
doi: 10.1016/j.ajhg.2008.11.001
Hurba, O. et al. Complex analysis of urate transporters SLC2A9, SLC22A12 and functional characterization of non-synonymous allelic variants of GLUT9 in the Czech population: no evidence of effect on hyperuricemia and gout. PLoS ONE 9, e107902 (2014).
pubmed: 25268603
pmcid: 4182324
doi: 10.1371/journal.pone.0107902
Hall, S. C. et al. Critical role of zinc transporter (ZIP8) in myeloid innate immune cell function and the host response against bacterial pneumonia. J. Immunol. 207, 1357–1370 (2021).
pubmed: 34380651
doi: 10.4049/jimmunol.2001395
Fujishiro, H. et al. Effects of individual amino acid mutations of zinc transporter ZIP8 on manganese- and cadmium-transporting activity. Biochem. Biophys. Res. Commun. 616, 26–32 (2022).
pubmed: 35636252
doi: 10.1016/j.bbrc.2022.05.068
Türkmen, D. et al. Statin treatment effectiveness and the SLCO1B1*5 reduced function genotype: long‐term outcomes in women and men. Br. J. Clin. Pharmacol. 88, 3230–3240 (2022).
pubmed: 35083771
doi: 10.1111/bcp.15245
Zhao, B. et al. Identification of potential megalin/cubilin substrates using extensive proteomics quantification from kidney megalin-knockdown mice. AAPS J. 24, 109 (2022).
pubmed: 36253507
doi: 10.1208/s12248-022-00758-2
Simonson, B. et al. DDiT4L promotes autophagy and inhibits pathological cardiac hypertrophy in response to stress. Sci. Signal. 10, eaaf5967 (2017).
pubmed: 28246202
pmcid: 5509050
doi: 10.1126/scisignal.aaf5967
Scoville, D. W. & Jetten, A. M. GLIS3: a critical transcription factor in islet β-cell generation. Cells 10, 3471 (2021).
pubmed: 34943978
pmcid: 8700524
doi: 10.3390/cells10123471
Adelmann, C. H. et al. MFSD12 mediates the import of cysteine into melanosomes and lysosomes. Nature 588, 699–704 (2020).
pubmed: 33208952
pmcid: 7770032
doi: 10.1038/s41586-020-2937-x
Ge, W. et al. POM121 inhibits the macrophage inflammatory response by impacting NF-κB P65 nuclear accumulation. Exp. Cell Res. 377, 17–23 (2019).
pubmed: 30802453
doi: 10.1016/j.yexcr.2019.02.021
Moon, J.-S. et al. ANT2 drives proinflammatory macrophage activation in obesity. JCI Insight 6, e147033 (2021).
pubmed: 34676827
pmcid: 8564915
doi: 10.1172/jci.insight.147033
Ghossoub, R. et al. Tetraspanin-6 negatively regulates exosome production. Proc. Natl Acad. Sci. USA 117, 5913–5922 (2020).
pubmed: 32108028
pmcid: 7084133
doi: 10.1073/pnas.1922447117
Bhatt-Wessel, B. et al. Role of DGAT enzymes in triacylglycerol metabolism. Arch. Biochem. Biophys. 655, 1–11 (2018).
pubmed: 30077544
doi: 10.1016/j.abb.2018.08.001
Inoue, H. et al. γ-SNAP stimulates disassembly of endosomal SNARE complexes and regulates endocytic trafficking pathways. J. Cell Sci. 128, 2781–2794 (2015).
pubmed: 26101353
Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
pubmed: 25642630
pmcid: 4495769
doi: 10.1038/ng.3211
Mackenzie, I. S. et al. Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): a multicentre, prospective, randomised, open-label, non-inferiority trial. Lancet 396, 1745–1757 (2020).
pubmed: 33181081
doi: 10.1016/S0140-6736(20)32234-0
Kvale, M. N. et al. Genotyping informatics and quality control for 100,000 subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. Genetics 200, 1051–1060 (2015).
pubmed: 26092718
pmcid: 4574249
doi: 10.1534/genetics.115.178905
Toyoda, Y. et al. SNP-based heritability estimates of gout and its subtypes determined by genome-wide association studies of clinically defined gout. Rheumatol. 62, e144–e146 (2023).
doi: 10.1093/rheumatology/keac597
Köttgen, A. et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 45, 145–154 (2013).
pubmed: 23263486
doi: 10.1038/ng.2500
Lindström, S. et al. A comprehensive survey of genetic variation in 20,691 subjects from four large cohorts. PLoS ONE 12, e0173997 (2017).
pubmed: 28301549
pmcid: 5354293
doi: 10.1371/journal.pone.0173997
Boutin, N. T. et al. The evolution of a large biobank at Mass General Brigham. J. Pers. Med. 12, 1323 (2022).
pubmed: 36013271
pmcid: 9410531
doi: 10.3390/jpm12081323
Shin, J. et al. Genetic architecture for susceptibility to gout in the KARE cohort study. J. Hum. Genet. 57, 379–384 (2012).
pubmed: 22513714
doi: 10.1038/jhg.2012.39
Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).
pubmed: 36653562
pmcid: 9849126
doi: 10.1038/s41586-022-05473-8
Neogi, T. et al. 2015 gout classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheumatol. 67, 2557–2568 (2015).
pubmed: 26352873
pmcid: 4566153
doi: 10.1002/art.39254
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743
pmcid: 6786975
doi: 10.1038/s41586-018-0579-z
Eriksson, N. et al. Web-based, participant-driven studies yield novel genetic associations for common traits. PLoS Genet. 6, e1000993 (2010).
pubmed: 20585627
pmcid: 2891811
doi: 10.1371/journal.pgen.1000993
Walter, K. et al. The UK10K project identifies rare variants in health and disease. Nature 526, 82–90 (2015).
pubmed: 26367797
doi: 10.1038/nature14962
Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
pubmed: 26432245
doi: 10.1038/nature15393
McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).
pubmed: 27548312
pmcid: 5388176
doi: 10.1038/ng.3643
Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).
pubmed: 17943122
doi: 10.1038/nature06258
Lim, E. T. et al. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet. 10, e1004494 (2014).
pubmed: 25078778
pmcid: 4117444
doi: 10.1371/journal.pgen.1004494
Deng, J.-E. et al. SNPTracker: a swift tool for comprehensive tracking and unifying dbSNP rs IDs and genomic coordinates of massive sequence variants. G3 6, 205–207 (2016).
doi: 10.1534/g3.115.021832
Broad Institute GitHub Repository. Picard Toolkit broadinstitute.github.io/picard/ (2019).
Willer, C. J. et al. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
pubmed: 20616382
pmcid: 2922887
doi: 10.1093/bioinformatics/btq340
Morris, A. P. Transethnic meta‐analysis of genomewide association studies. Genet. Epidemiol. 35, 809–822 (2011).
pubmed: 22125221
pmcid: 3460225
doi: 10.1002/gepi.20630
Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comp. Biol. 9, e1003118 (2013).
doi: 10.1371/journal.pcbi.1003118
Wang, X. et al. Comparing methods for performing trans-ethnic meta-analysis of genome-wide association studies. Hum. Mol. Genet. 22, 2303–2311 (2013).
pubmed: 23406875
doi: 10.1093/hmg/ddt064
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
pubmed: 17701901
pmcid: 1950838
doi: 10.1086/519795
Major, T. J. & Takei, R. LocusZoom-like plots for GWAS results (v2.1). Zenodo https://doi.org/10.5281/zenodo.5154379 (2021).
Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).
pubmed: 30357393
doi: 10.1093/nar/gky955
de Leeuw et al. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comp. Biol. 11, e1004219 (2015).
doi: 10.1371/journal.pcbi.1004219
Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).
pubmed: 22426310
pmcid: 3593158
doi: 10.1038/ng.2213
Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).
pubmed: 30445434
doi: 10.1093/nar/gky1120
Machiela, M. J. & Chanock, S. J. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31, 3555–3557 (2015).
pubmed: 26139635
pmcid: 4626747
doi: 10.1093/bioinformatics/btv402
ter Horst, R. et al. Host and environmental factors influencing individual human cytokine responses. Cell 167, 1111–1124 (2016).
pubmed: 27814508
pmcid: 5787854
doi: 10.1016/j.cell.2016.10.018
Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018).
pubmed: 29846171
pmcid: 5976434
doi: 10.7554/eLife.34408
Kichaev, G. et al. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet. 104, 65–75 (2019).
pubmed: 30595370
doi: 10.1016/j.ajhg.2018.11.008
Mahajan, A. et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 46, 234–244 (2014).
pubmed: 24509480
doi: 10.1038/ng.2897
Wakefield, J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am. J. Hum. Genet. 81, 208–227 (2007).
pubmed: 17668372
pmcid: 1950810
doi: 10.1086/519024
Ormond, C. et al. Converting single nucleotide variants between genome builds: from cautionary tale to solution. Brief. Bioinform. 22, bbab069 (2021).
pubmed: 33822888
pmcid: 8425424
doi: 10.1093/bib/bbab069
Chen, W. et al. Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors. Nat. Commun. 12, 7117 (2021).
pubmed: 34880243
pmcid: 8654883
doi: 10.1038/s41467-021-27438-7
Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).
pubmed: 24830394
pmcid: 4022491
doi: 10.1371/journal.pgen.1004383
Pirinen, M. GWAS 3: Statistical Power www.mv.helsinki.fi/home/mjxpirin/GWAS_course/material/GWAS3.html (2023).
Boocock, J. et al. Genomic dissection of 43 serum urate-associated loci provides multiple insights into molecular mechanisms of urate control. Hum. Mol. Genet. 29, 923–943 (2020).
pubmed: 31985003
doi: 10.1093/hmg/ddaa013
Fadason, T. et al. Physical interactions and expression quantitative traits loci identify regulatory connections for obesity and type 2 diabetes associated SNPs. Front. Genet. 8, 150 (2017).
pubmed: 29081791
pmcid: 5645506
doi: 10.3389/fgene.2017.00150
Harley, J. B. et al. Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat. Genet. 50, 699–707 (2018).
pubmed: 29662164
pmcid: 6022759
doi: 10.1038/s41588-018-0102-3
Astle, W. J. et al. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 167, 1415–1429 (2016).
pubmed: 27863252
pmcid: 5300907
doi: 10.1016/j.cell.2016.10.042
rikutakei. MerrimanLab/Gout_GWAS_Code: Gout_GWAS_code. Zenodo https://doi.org/10.5281/zenodo.13350995 (2024).