A guide to studying 3D genome structure and dynamics in the kidney.
Journal
Nature reviews. Nephrology
ISSN: 1759-507X
Titre abrégé: Nat Rev Nephrol
Pays: England
ID NLM: 101500081
Informations de publication
Date de publication:
15 Oct 2024
15 Oct 2024
Historique:
accepted:
30
08
2024
medline:
16
10
2024
pubmed:
16
10
2024
entrez:
15
10
2024
Statut:
aheadofprint
Résumé
The human genome is tightly packed into the 3D environment of the cell nucleus. Rapidly evolving and sophisticated methods of mapping 3D genome architecture have shed light on fundamental principles of genome organization and gene regulation. The genome is physically organized on different scales, from individual genes to entire chromosomes. Nuclear landmarks such as the nuclear envelope and nucleoli have important roles in compartmentalizing the genome within the nucleus. Genome activity (for example, gene transcription) is also functionally partitioned within this 3D organization. Rather than being static, the 3D organization of the genome is tightly regulated over various time scales. These dynamic changes in genome structure over time represent the fourth dimension of the genome. Innovative methods have been used to map the dynamic regulation of genome structure during important cellular processes including organism development, responses to stimuli, cell division and senescence. Furthermore, disruptions to the 4D genome have been linked to various diseases, including of the kidney. As tools and approaches to studying the 4D genome become more readily available, future studies that apply these methods to study kidney biology will provide insights into kidney function in health and disease.
Identifiants
pubmed: 39406927
doi: 10.1038/s41581-024-00894-2
pii: 10.1038/s41581-024-00894-2
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. Springer Nature Limited.
Références
Yang, J. H. et al. Loss of epigenetic information as a cause of mammalian aging. Cell 186, 305–326.e27 (2023).
pubmed: 36638792
pmcid: 10166133
doi: 10.1016/j.cell.2022.12.027
Krijger, P. H. & de Laat, W. Regulation of disease-associated gene expression in the 3D genome. Nat. Rev. Mol. Cell Biol. 17, 771–782 (2016).
pubmed: 27826147
doi: 10.1038/nrm.2016.138
Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).
pubmed: 22955828
pmcid: 3771521
doi: 10.1126/science.1222794
Lambert, S. A. et al. The human transcription factors. Cell 175, 598–599 (2018).
pubmed: 30290144
doi: 10.1016/j.cell.2018.09.045
Kim, S. & Shendure, J. Mechanisms of interplay between transcription factors and the 3D genome. Mol. Cell 76, 306–319 (2019).
pubmed: 31521504
doi: 10.1016/j.molcel.2019.08.010
Dekker, J. et al. Spatial and temporal organization of the genome: current state and future aims of the 4D nucleome project. Mol. Cell 83, 2624–2640 (2023).
pubmed: 37419111
pmcid: 10528254
doi: 10.1016/j.molcel.2023.06.018
Mescher, A. L. in: Junqueira’s Basic Histology: Text and Atlas, 17th Edition. (McGraw Hill, 2024).
Markaki, Y. et al. Functional nuclear organization of transcription and DNA replication: a topographical marriage between chromatin domains and the interchromatin compartment. Cold Spring Harb. Symp. Quant. Biol. 75, 475–492 (2010).
pubmed: 21467142
doi: 10.1101/sqb.2010.75.042
Gall, J. G. & Pardue, M. L. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc. Natl Acad. Sci. USA 63, 378–383 (1969).
pubmed: 4895535
pmcid: 223575
doi: 10.1073/pnas.63.2.378
Rudkin, G. T. & Stollar, B. D. High resolution detection of DNA-RNA hybrids in situ by indirect immunofluorescence. Nature 265, 472–473 (1977).
pubmed: 401954
doi: 10.1038/265472a0
Singer, R. H. & Ward, D. C. Actin gene expression visualized in chicken muscle tissue culture by using in situ hybridization with a biotinated nucleotide analog. Proc. Natl Acad. Sci. USA 79, 7331–7335 (1982).
pubmed: 6961411
pmcid: 347333
doi: 10.1073/pnas.79.23.7331
Tanner, M. et al. Chromogenic in situ hybridization: a practical alternative for fluorescence in situ hybridization to detect HER-2/neu oncogene amplification in archival breast cancer samples. Am. J. Pathol. 157, 1467–1472 (2000).
pubmed: 11073807
pmcid: 1885742
doi: 10.1016/S0002-9440(10)64785-2
Moyzis, R. K. et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl Acad. Sci. USA 85, 6622–6626 (1988).
pubmed: 3413114
pmcid: 282029
doi: 10.1073/pnas.85.18.6622
Rigby, P. W., Dieckmann, M., Rhodes, C. & Berg, P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113, 237–251 (1977).
pubmed: 881736
doi: 10.1016/0022-2836(77)90052-3
Beliveau, B. J. et al. Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc. Natl Acad. Sci. USA 109, 21301–21306 (2012).
pubmed: 23236188
pmcid: 3535588
doi: 10.1073/pnas.1213818110
Boyle, S., Rodesch, M. J., Halvensleben, H. A., Jeddeloh, J. A. & Bickmore, W. A. Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis. Chromosome Res. 19, 901–909 (2011).
pubmed: 22006037
pmcid: 3210351
doi: 10.1007/s10577-011-9245-0
Yamada, N. A. et al. Visualization of fine-scale genomic structure by oligonucleotide-based high-resolution FISH. Cytogenet. Genome Res. 132, 248–254 (2011).
pubmed: 21178330
doi: 10.1159/000322717
Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).
pubmed: 18806792
pmcid: 3126653
doi: 10.1038/nmeth.1253
Solovei, I. et al. Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp. Cell Res. 276, 10–23 (2002).
pubmed: 11978004
doi: 10.1006/excr.2002.5513
Takei, Y. et al. Integrated spatial genomics reveals global architecture of single nuclei. Nature 590, 344–350 (2021).
pubmed: 33505024
pmcid: 7878433
doi: 10.1038/s41586-020-03126-2
Nguyen, H. Q. et al. 3D mapping and accelerated super-resolution imaging of the human genome using in situ sequencing. Nat. Methods 17, 822–832 (2020).
pubmed: 32719531
pmcid: 7537785
doi: 10.1038/s41592-020-0890-0
Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. R. N. A imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).
pubmed: 25858977
pmcid: 4662681
doi: 10.1126/science.aaa6090
Lee, J. H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014).
pubmed: 24578530
pmcid: 4140943
doi: 10.1126/science.1250212
Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 38, 586–599 (2020).
pubmed: 32393914
doi: 10.1038/s41587-020-0472-9
Beliveau, B. J. et al. Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat. Commun. 6, 7147 (2015).
pubmed: 25962338
doi: 10.1038/ncomms8147
Kishi, J. Y. et al. SABER amplifies FISH: enhanced multiplexed imaging of RNA and DNA in cells and tissues. Nat. Methods 16, 533–544 (2019).
pubmed: 31110282
pmcid: 6544483
doi: 10.1038/s41592-019-0404-0
Payne, A. C. et al. In situ genome sequencing resolves DNA sequence and structure in intact biological samples. Science 371, eaay3446 (2021).
pubmed: 33384301
doi: 10.1126/science.aay3446
Mateo, L. J. et al. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568, 49–54 (2019).
pubmed: 30886393
pmcid: 6556380
doi: 10.1038/s41586-019-1035-4
Mateo, L. J., Sinnott-Armstrong, N. & Boettiger, A. N. Tracing DNA paths and RNA profiles in cultured cells and tissues with ORCA. Nat. Protoc. 16, 1647–1713 (2021).
pubmed: 33619390
pmcid: 8525907
doi: 10.1038/s41596-020-00478-x
Cardozo Gizzi, A. M. et al. Microscopy-based chromosome conformation capture enables simultaneous visualization of genome organization and transcription in intact organisms. Mol. Cell 74, 212–222.e5 (2019).
pubmed: 30795893
doi: 10.1016/j.molcel.2019.01.011
Cardozo Gizzi, A. M. et al. Direct and simultaneous observation of transcription and chromosome architecture in single cells with Hi-M. Nat. Protoc. 15, 840–876 (2020).
pubmed: 31969721
doi: 10.1038/s41596-019-0269-9
Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).
pubmed: 25497547
pmcid: 5635824
doi: 10.1016/j.cell.2014.11.021
Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).
pubmed: 11847345
doi: 10.1126/science.1067799
Dostie, J. et al. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309 (2006).
pubmed: 16954542
pmcid: 1581439
doi: 10.1101/gr.5571506
Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–1354 (2006).
pubmed: 17033623
doi: 10.1038/ng1896
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).
pubmed: 19815776
pmcid: 2858594
doi: 10.1126/science.1181369
Fiorillo, L. et al. Comparison of the Hi-C, GAM and SPRITE methods using polymer models of chromatin. Nat. Methods 18, 482–490 (2021).
pubmed: 33963348
pmcid: 8416658
doi: 10.1038/s41592-021-01135-1
Belaghzal, H., Dekker, J. & Gibcus, J. H. Hi-C 2.0: an optimized Hi-C procedure for high-resolution genome-wide mapping of chromosome conformation. Methods 123, 56–65 (2017).
pubmed: 28435001
pmcid: 5522765
doi: 10.1016/j.ymeth.2017.04.004
Krietenstein, N. et al. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78, 554–565.e7 (2020).
pubmed: 32213324
pmcid: 7222625
doi: 10.1016/j.molcel.2020.03.003
Hansen, A. S. et al. Distinct classes of chromatin loops revealed by deletion of an RNA-binding region in CTCF. Mol. Cell 76, 395–411.e13 (2019).
pubmed: 31522987
pmcid: 7251926
doi: 10.1016/j.molcel.2019.07.039
Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757.e24 (2018).
pubmed: 29887377
pmcid: 6548320
doi: 10.1016/j.cell.2018.05.024
Ramani, V. et al. Massively multiplex single-cell Hi-C. Nat. Methods 14, 263–266 (2017).
pubmed: 28135255
pmcid: 5330809
doi: 10.1038/nmeth.4155
Nagano, T. et al. Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell. Nat. Protoc. 10, 1986–2003 (2015).
pubmed: 26540590
doi: 10.1038/nprot.2015.127
Liu, Z. et al. Linking genome structures to functions by simultaneous single-cell Hi-C and RNA-seq. Science 380, 1070–1076 (2023).
pubmed: 37289875
doi: 10.1126/science.adg3797
Beagrie, R. A. et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519–524 (2017).
pubmed: 28273065
pmcid: 5366070
doi: 10.1038/nature21411
Gross, D. S. & Garrard, W. T. Nuclease hypersensitive sites in chromatin. Annu. Rev. Biochem. 57, 159–197 (1988).
pubmed: 3052270
doi: 10.1146/annurev.bi.57.070188.001111
Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).
pubmed: 22955617
pmcid: 3721348
doi: 10.1038/nature11232
Chen, X. et al. ATAC-see reveals the accessible genome by transposase-mediated imaging and sequencing. Nat. Methods 13, 1013–1020 (2016).
pubmed: 27749837
pmcid: 5509561
doi: 10.1038/nmeth.4031
Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).
pubmed: 21321607
pmcid: 3193420
doi: 10.1038/cr.2011.22
Hebbes, T. R., Thorne, A. W. & Crane-Robinson, C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 7, 1395–1402 (1988).
pubmed: 3409869
pmcid: 458389
doi: 10.1002/j.1460-2075.1988.tb02956.x
Tessarz, P. & Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 15, 703–708 (2014).
pubmed: 25315270
doi: 10.1038/nrm3890
Zhang, X. et al. The loss of heterochromatin is associated with multiscale three-dimensional genome reorganization and aberrant transcription during cellular senescence. Genome Res. 31, 1121–1135 (2021).
pubmed: 34140314
pmcid: 8256869
doi: 10.1101/gr.275235.121
Padeken, J., Methot, S. P. & Gasser, S. M. Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat. Rev. Mol. Cell Biol. 23, 623–640 (2022).
pubmed: 35562425
pmcid: 9099300
doi: 10.1038/s41580-022-00483-w
Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572–576 (2007).
pubmed: 17392789
doi: 10.1038/nature05632
Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).
pubmed: 31036827
pmcid: 6488672
doi: 10.1038/s41467-019-09982-5
Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. Elife 6, e21856 (2017).
pubmed: 28079019
pmcid: 5310842
doi: 10.7554/eLife.21856
Fullwood, M. J. et al. An oestrogen-receptor-α-bound human chromatin interactome. Nature 462, 58–64 (2009).
pubmed: 19890323
pmcid: 2774924
doi: 10.1038/nature08497
Greil, F., Moorman, C. & van Steensel, B. DamID: mapping of in vivo protein-genome interactions using tethered DNA adenine methyltransferase. Methods Enzymol. 410, 342–359 (2006).
pubmed: 16938559
doi: 10.1016/S0076-6879(06)10016-6
Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).
pubmed: 18463634
doi: 10.1038/nature06947
Bersaglieri, C. et al. Genome-wide maps of nucleolus interactions reveal distinct layers of repressive chromatin domains. Nat. Commun. 13, 1483 (2022).
pubmed: 35304483
pmcid: 8933459
doi: 10.1038/s41467-022-29146-2
Wu, W. et al. Mapping RNA-chromatin interactions by sequencing with iMARGI. Nat. Protoc. 14, 3243–3272 (2019).
pubmed: 31619811
pmcid: 7314528
doi: 10.1038/s41596-019-0229-4
Chen, Y. et al. Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler. J. Cell Biol. 217, 4025–4048 (2018).
pubmed: 30154186
pmcid: 6219710
doi: 10.1083/jcb.201807108
Tsue, A. F. et al. Oligonucleotide-directed proximity-interactome mapping (O-MAP): a unified method for discovering RNA-interacting proteins, transcripts and genomic loci in situ. Preprint at bioRxiv https://doi.org/10.1101/2023.01.19.524825 (2023).
Belaghzal, H. et al. Liquid chromatin Hi-C characterizes compartment-dependent chromatin interaction dynamics. Nat. Genet. 53, 367–378 (2021).
pubmed: 33574602
pmcid: 7946813
doi: 10.1038/s41588-021-00784-4
Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013).
pubmed: 24067610
doi: 10.1038/nature12593
Flyamer, I. M. et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110–114 (2017).
pubmed: 28355183
pmcid: 5639698
doi: 10.1038/nature21711
Tan, L., Xing, D., Chang, C. H., Li, H. & Xie, X. S. Three-dimensional genome structures of single diploid human cells. Science 361, 924–928 (2018).
pubmed: 30166492
pmcid: 6360088
doi: 10.1126/science.aat5641
Zhang, C. et al. tagHi-C reveals 3D chromatin architecture dynamics during mouse hematopoiesis. Cell Rep. 32, 108206 (2020).
pubmed: 32997998
doi: 10.1016/j.celrep.2020.108206
Nagano, T. et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547, 61–67 (2017).
pubmed: 28682332
pmcid: 5567812
doi: 10.1038/nature23001
Kirschenbaum, D. et al. Time-resolved single-cell transcriptomics defines immune trajectories in glioblastoma. Cell 187, 149–165.e23 (2024).
pubmed: 38134933
doi: 10.1016/j.cell.2023.11.032
Ma, H., Reyes-Gutierrez, P. & Pederson, T. Visualization of repetitive DNA sequences in human chromosomes with transcription activator-like effectors. Proc. Natl Acad. Sci. USA 110, 21048–21053 (2013).
pubmed: 24324157
pmcid: 3876203
doi: 10.1073/pnas.1319097110
Miyanari, Y., Ziegler-Birling, C. & Torres-Padilla, M. E. Live visualization of chromatin dynamics with fluorescent TALEs. Nat. Struct. Mol. Biol. 20, 1321–1324 (2013).
pubmed: 24096363
doi: 10.1038/nsmb.2680
Fu, Y. et al. CRISPR-dCas9 and sgRNA scaffolds enable dual-colour live imaging of satellite sequences and repeat-enriched individual loci. Nat. Commun. 7, 11707 (2016).
pubmed: 27222091
pmcid: 4894952
doi: 10.1038/ncomms11707
Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).
pubmed: 24360272
pmcid: 3918502
doi: 10.1016/j.cell.2013.12.001
Ma, H. et al. Multicolor CRISPR labeling of chromosomal loci in human cells. Proc. Natl Acad. Sci. USA 112, 3002–3007 (2015).
pubmed: 25713381
pmcid: 4364232
doi: 10.1073/pnas.1420024112
Ma, H. et al. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat. Biotechnol. 34, 528–530 (2016).
pubmed: 27088723
pmcid: 4864854
doi: 10.1038/nbt.3526
Chen, B. et al. Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Res. 44, e75 (2016).
pubmed: 26740581
pmcid: 4856973
doi: 10.1093/nar/gkv1533
Gu, B. et al. Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science 359, 1050–1055 (2018).
pubmed: 29371426
pmcid: 6590518
doi: 10.1126/science.aao3136
Ye, H., Rong, Z. & Lin, Y. Live cell imaging of genomic loci using dCas9-SunTag system and a bright fluorescent protein. Protein Cell 8, 853–855 (2017).
pubmed: 28828720
pmcid: 5676592
doi: 10.1007/s13238-017-0460-0
Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).
pubmed: 25307933
pmcid: 4252608
doi: 10.1016/j.cell.2014.09.039
Janicki, S. M. et al. From silencing to gene expression: real-time analysis in single cells. Cell 116, 683–698 (2004).
pubmed: 15006351
pmcid: 4942132
doi: 10.1016/S0092-8674(04)00171-0
Shav-Tal, Y. et al. Dynamics of single mRNPs in nuclei of living cells. Science 304, 1797–1800 (2004).
pubmed: 15205532
pmcid: 4765737
doi: 10.1126/science.1099754
Park, H. Y. et al. Visualization of dynamics of single endogenous mRNA labeled in live mouse. Science 343, 422–424 (2014).
pubmed: 24458643
pmcid: 4111226
doi: 10.1126/science.1239200
Duan, J. et al. Live imaging and tracking of genome regions in CRISPR/dCas9 knock-in mice. Genome Biol. 19, 192 (2018).
pubmed: 30409154
pmcid: 6225728
doi: 10.1186/s13059-018-1530-1
Gibcus, J. H. & Dekker, J. The hierarchy of the 3D genome. Mol. Cell 49, 773–782 (2013).
pubmed: 23473598
pmcid: 3741673
doi: 10.1016/j.molcel.2013.02.011
Gilbert, N., Gilchrist, S. & Bickmore, W. A. Chromatin organization in the mammalian nucleus. Int. Rev. Cytol. 242, 283–336 (2005).
pubmed: 15598472
doi: 10.1016/S0074-7696(04)42007-5
Carter, C. W. Jr. Histone packing in the nucleosome core particle of chromatin. Proc. Natl Acad. Sci. USA 75, 3649–3653 (1978).
pubmed: 278980
pmcid: 392843
doi: 10.1073/pnas.75.8.3649
Stein, A., Bina-Stein, M. & Simpson, R. T. Crosslinked histone octamer as a model of the nucleosome core. Proc. Natl Acad. Sci. USA 74, 2780–2784 (1977).
pubmed: 197520
pmcid: 431287
doi: 10.1073/pnas.74.7.2780
Leffak, I. M., Grainger, R. & Weintraub, H. Conservative assembly and segregation of nucleosomal histones. Cell 12, 837–845 (1977).
pubmed: 562720
doi: 10.1016/0092-8674(77)90282-3
Oudet, P., Gross-Bellard, M. & Chambon, P. Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4, 281–300 (1975).
pubmed: 1122558
doi: 10.1016/0092-8674(75)90149-X
Axel, R., Melchior, W. Jr., Sollner-Webb, B. & Felsenfeld, G. Specific sites of interaction between histones and DNA in chromatin. Proc. Natl Acad. Sci. USA 71, 4101–4105 (1974).
pubmed: 4530287
pmcid: 434336
doi: 10.1073/pnas.71.10.4101
Kornberg, R. D. Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871 (1974).
pubmed: 4825889
doi: 10.1126/science.184.4139.868
Baldwin, J. P., Boseley, P. G., Bradbury, E. M. & Ibel, K. The subunit structure of the eukaryotic chromosome. Nature 253, 245–249 (1975).
pubmed: 1167623
doi: 10.1038/253245a0
Oosterhof, D. K., Hozier, J. C. & Rill, R. L. Nucleas action on chromatin: evidence for discrete, repeated nucleoprotein units along chromatin fibrils. Proc. Natl Acad. Sci. USA 72, 633–637 (1975).
pubmed: 1054845
pmcid: 432368
doi: 10.1073/pnas.72.2.633
Allan, J., Hartman, P. G., Crane-Robinson, C. & Aviles, F. X. The structure of histone H1 and its location in chromatin. Nature 288, 675–679 (1980).
pubmed: 7453800
doi: 10.1038/288675a0
Davidson, I. F. et al. DNA loop extrusion by human cohesin. Science 366, 1338–1345 (2019).
pubmed: 31753851
doi: 10.1126/science.aaz3418
Hao, X. et al. Super-resolution visualization and modeling of human chromosomal regions reveals cohesin-dependent loop structures. Genome Biol. 22, 150 (2021).
pubmed: 33975635
pmcid: 8111965
doi: 10.1186/s13059-021-02343-w
Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015).
pubmed: 26499245
pmcid: 4664323
doi: 10.1073/pnas.1518552112
Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).
pubmed: 22495300
pmcid: 3356448
doi: 10.1038/nature11082
Zhang, Y. et al. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148, 908–921 (2012).
pubmed: 22341456
pmcid: 3320767
doi: 10.1016/j.cell.2012.02.002
Hafner, A. et al. Loop stacking organizes genome folding from TADs to chromosomes. Mol. Cell 83, 1377–1392 e1376 (2023).
pubmed: 37146570
pmcid: 10167645
doi: 10.1016/j.molcel.2023.04.008
Wang, S. et al. Spatial organization of chromatin domains and compartments in single chromosomes. Science 353, 598–602 (2016).
pubmed: 27445307
pmcid: 4991974
doi: 10.1126/science.aaf8084
Falk, M. et al. Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature 570, 395–399 (2019).
pubmed: 31168090
pmcid: 7206897
doi: 10.1038/s41586-019-1275-3
Manuelidis, L. Individual interphase chromosome domains revealed by in situ hybridization. Hum. Genet. 71, 288–293 (1985).
pubmed: 3908288
doi: 10.1007/BF00388453
Lichter, P., Cremer, T., Borden, J., Manuelidis, L. & Ward, D. C. Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum. Genet. 80, 224–234 (1988).
pubmed: 3192212
doi: 10.1007/BF01790090
Zink, D. et al. Structure and dynamics of human interphase chromosome territories in vivo. Hum. Genet. 102, 241–251 (1998).
pubmed: 9521598
doi: 10.1007/s004390050686
Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292–301 (2001).
pubmed: 11283701
doi: 10.1038/35066075
Gasser, S. M. Visualizing chromatin dynamics in interphase nuclei. Science 296, 1412–1416 (2002).
pubmed: 12029120
doi: 10.1126/science.1067703
Pickersgill, H. et al. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat. Genet. 38, 1005–1014 (2006).
pubmed: 16878134
doi: 10.1038/ng1852
Reddy, K. L., Zullo, J. M., Bertolino, E. & Singh, H. Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452, 243–247 (2008).
pubmed: 18272965
doi: 10.1038/nature06727
Peric-Hupkes, D. et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell 38, 603–613 (2010).
pubmed: 20513434
pmcid: 5975946
doi: 10.1016/j.molcel.2010.03.016
Peric-Hupkes, D. & van Steensel, B. Role of the nuclear lamina in genome organization and gene expression. Cold Spring Harb. Symp. Quant. Biol. 75, 517–524 (2010).
pubmed: 21209388
doi: 10.1101/sqb.2010.75.014
Pliss, A. et al. Spatio-temporal dynamics at rDNA foci: global switching between DNA replication and transcription. J. Cell Biochem. 94, 554–565 (2005).
pubmed: 15543556
doi: 10.1002/jcb.20317
van Koningsbruggen, S. et al. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol. Biol. Cell 21, 3735–3748 (2010).
pubmed: 20826608
pmcid: 2965689
doi: 10.1091/mbc.e10-06-0508
Vertii, A. et al. Two contrasting classes of nucleolus-associated domains in mouse fibroblast heterochromatin. Genome Res. 29, 1235–1249 (2019).
pubmed: 31201210
pmcid: 6673712
doi: 10.1101/gr.247072.118
Spector, D. L. & Lamond, A. I. Nuclear speckles. Cold Spring Harb. Perspect. Biol. 3, a000646 (2011).
pubmed: 20926517
pmcid: 3039535
doi: 10.1101/cshperspect.a000646
Berry, J., Weber, S. C., Vaidya, N., Haataja, M. & Brangwynne, C. P. RNA transcription modulates phase transition-driven nuclear body assembly. Proc. Natl Acad. Sci. USA 112, E5237–E5245 (2015).
pubmed: 26351690
pmcid: 4586886
doi: 10.1073/pnas.1509317112
Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).
pubmed: 27212236
pmcid: 5127388
doi: 10.1016/j.cell.2016.04.047
Riback, J. A. et al. Composition-dependent thermodynamics of intracellular phase separation. Nature 581, 209–214 (2020).
pubmed: 32405004
pmcid: 7733533
doi: 10.1038/s41586-020-2256-2
Osborne, C. S. et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat. Genet. 36, 1065–1071 (2004).
pubmed: 15361872
doi: 10.1038/ng1423
Carter, K. C. et al. A three-dimensional view of precursor messenger RNA metabolism within the mammalian nucleus. Science 259, 1330–1335 (1993).
pubmed: 8446902
doi: 10.1126/science.8446902
Dillinger, S., Straub, T. & Nemeth, A. Nucleolus association of chromosomal domains is largely maintained in cellular senescence despite massive nuclear reorganisation. PLoS ONE 12, e0178821 (2017).
pubmed: 28575119
pmcid: 5456395
doi: 10.1371/journal.pone.0178821
Croft, J. A. et al. Differences in the localization and morphology of chromosomes in the human nucleus. J. Cell Biol. 145, 1119–1131 (1999).
pubmed: 10366586
pmcid: 2133153
doi: 10.1083/jcb.145.6.1119
Du, Z. et al. Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547, 232–235 (2017).
pubmed: 28703188
doi: 10.1038/nature23263
Bonev, B. et al. Multiscale 3D genome rewiring during mouse neural development. Cell 171, 557–572.e24 (2017).
pubmed: 29053968
pmcid: 5651218
doi: 10.1016/j.cell.2017.09.043
Phanstiel, D. H. et al. Static and dynamic DNA loops form AP-1-bound activation hubs during macrophage development. Mol. Cell 67, 1037–1048.e6 (2017).
pubmed: 28890333
pmcid: 5610110
doi: 10.1016/j.molcel.2017.08.006
Zhang, Y. et al. Dynamic epigenomic landscapes during early lineage specification in mouse embryos. Nat. Genet. 50, 96–105 (2018).
pubmed: 29203909
doi: 10.1038/s41588-017-0003-x
Guan, Y. et al. Senescence-activated enhancer landscape orchestrates the senescence-associated secretory phenotype in murine fibroblasts. Nucleic Acids Res. 48, 10909–10923 (2020).
pubmed: 33045748
pmcid: 7641768
doi: 10.1093/nar/gkaa858
Tomimatsu, K. et al. Locus-specific induction of gene expression from heterochromatin loci during cellular senescence. Nat. Aging 2, 31–45 (2022).
pubmed: 37118356
doi: 10.1038/s43587-021-00147-y
Zirkel, A. et al. HMGB2 loss upon senescence entry disrupts genomic organization and induces CTCF clustering across cell types. Mol. Cell 70, 730–744.e6 (2018).
pubmed: 29706538
doi: 10.1016/j.molcel.2018.03.030
Liu, G. H. et al. Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature 472, 221–225 (2011).
pubmed: 21346760
pmcid: 3088088
doi: 10.1038/nature09879
Tavares-Cadete, F., Norouzi, D., Dekker, B., Liu, Y. & Dekker, J. Multi-contact 3C reveals that the human genome during interphase is largely not entangled. Nat. Struct. Mol. Biol. 27, 1105–1114 (2020).
pubmed: 32929283
pmcid: 7718335
doi: 10.1038/s41594-020-0506-5
Hansen, R. S. et al. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc. Natl Acad. Sci. USA 107, 139–144 (2010).
pubmed: 19966280
doi: 10.1073/pnas.0912402107
Liang, Z. et al. Chromosomes progress to metaphase in multiple discrete steps via global compaction/expansion cycles. Cell 161, 1124–1137 (2015).
pubmed: 26000485
pmcid: 4448932
doi: 10.1016/j.cell.2015.04.030
Kschonsak, M. et al. Structural basis for a safety-belt mechanism that anchors condensin to chromosomes. Cell 171, 588–600 e524 (2017).
pubmed: 28988770
pmcid: 5651216
doi: 10.1016/j.cell.2017.09.008
Gibcus, J. H. et al. A pathway for mitotic chromosome formation. Science 359, eaao6135 (2018).
pubmed: 29348367
pmcid: 5924687
doi: 10.1126/science.aao6135
Golfier, S., Quail, T., Kimura, H. & Brugues, J. Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner. Elife 9, e53885 (2020).
pubmed: 32396063
pmcid: 7316503
doi: 10.7554/eLife.53885
Martinez-Balbas, M. A., Dey, A., Rabindran, S. K., Ozato, K. & Wu, C. Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 83, 29–38 (1995).
pubmed: 7553870
doi: 10.1016/0092-8674(95)90231-7
Palozola, K. C. et al. Mitotic transcription and waves of gene reactivation during mitotic exit. Science 358, 119–122 (2017).
pubmed: 28912132
pmcid: 5727891
doi: 10.1126/science.aal4671
van Schaik, T., Vos, M., Peric-Hupkes, D., Hn Celie, P. & van Steensel, B. Cell cycle dynamics of lamina-associated DNA. EMBO Rep. 21, e50636 (2020).
pubmed: 32893442
pmcid: 7645246
doi: 10.15252/embr.202050636
Caravaca, J. M. et al. Bookmarking by specific and nonspecific binding of FoxA1 pioneer factor to mitotic chromosomes. Genes. Dev. 27, 251–260 (2013).
pubmed: 23355396
pmcid: 3576511
doi: 10.1101/gad.206458.112
Deluz, C. et al. A role for mitotic bookmarking of SOX2 in pluripotency and differentiation. Genes. Dev. 30, 2538–2550 (2016).
pubmed: 27920086
pmcid: 5159668
doi: 10.1101/gad.289256.116
Festuccia, N. et al. Mitotic binding of Esrrb marks key regulatory regions of the pluripotency network. Nat. Cell Biol. 18, 1139–1148 (2016).
pubmed: 27723719
doi: 10.1038/ncb3418
Raccaud, M. et al. Mitotic chromosome binding predicts transcription factor properties in interphase. Nat. Commun. 10, 487 (2019).
pubmed: 30700703
pmcid: 6353955
doi: 10.1038/s41467-019-08417-5
Young, D. W. et al. Mitotic retention of gene expression patterns by the cell fate-determining transcription factor Runx2. Proc. Natl Acad. Sci. USA 104, 3189–3194 (2007).
pubmed: 17360627
pmcid: 1805558
doi: 10.1073/pnas.0611419104
Abramo, K. et al. A chromosome folding intermediate at the condensin-to-cohesin transition during telophase. Nat. Cell Biol. 21, 1393–1402 (2019).
pubmed: 31685986
pmcid: 6858582
doi: 10.1038/s41556-019-0406-2
Zhang, H. et al. Chromatin structure dynamics during the mitosis-to-G1 phase transition. Nature 576, 158–162 (2019).
pubmed: 31776509
pmcid: 6895436
doi: 10.1038/s41586-019-1778-y
Paul, J. & Gilmour, R. S. Organ-specific restriction of transcription in mammalian chromatin. J. Mol. Biol. 34, 305–316 (1968).
pubmed: 5761390
doi: 10.1016/0022-2836(68)90255-6
Balsalobre, A. & Drouin, J. Pioneer factors as master regulators of the epigenome and cell fate. Nat. Rev. Mol. Cell Biol. 23, 449–464 (2022).
pubmed: 35264768
doi: 10.1038/s41580-022-00464-z
Iwafuchi-Doi, M. & Zaret, K. S. Cell fate control by pioneer transcription factors. Development 143, 1833–1837 (2016).
pubmed: 27246709
pmcid: 6514407
doi: 10.1242/dev.133900
Vos, S. M. Understanding transcription across scales: from base pairs to chromosomes. Mol. Cell 81, 1601–1616 (2021).
pubmed: 33770487
doi: 10.1016/j.molcel.2021.03.002
Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
doi: 10.1038/nature11247
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).
pubmed: 24097267
pmcid: 3959825
doi: 10.1038/nmeth.2688
Neph, S. et al. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489, 83–90 (2012).
pubmed: 22955618
pmcid: 3736582
doi: 10.1038/nature11212
Bulger, M. & Groudine, M. Functional and mechanistic diversity of distal transcription enhancers. Cell 144, 327–339 (2011).
pubmed: 21295696
pmcid: 3742076
doi: 10.1016/j.cell.2011.01.024
Ghirlando, R. et al. Chromatin domains, insulators, and the regulation of gene expression. Biochim. Biophys. Acta 1819, 644–651 (2012).
pubmed: 22326678
pmcid: 3484685
doi: 10.1016/j.bbagrm.2012.01.016
Wu, C. The 5’ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature 286, 854–860 (1980).
pubmed: 6774262
doi: 10.1038/286854a0
Keene, M. A., Corces, V., Lowenhaupt, K. & Elgin, S. C. DNase I hypersensitive sites in Drosophila chromatin occur at the 5’ ends of regions of transcription. Proc. Natl Acad. Sci. USA 78, 143–146 (1981).
pubmed: 6264428
pmcid: 319007
doi: 10.1073/pnas.78.1.143
Shermoen, A. W. & Beckendorf, S. K. A complex of interacting DNAase I-hypersensitive sites near the Drosophila glue protein gene, Sgs4. Cell 29, 601–607 (1982).
pubmed: 6214314
doi: 10.1016/0092-8674(82)90176-3
Muskavitch, M. A. & Hogness, D. S. An expandable gene that encodes a Drosophila glue protein is not expressed in variants lacking remote upstream sequences. Cell 29, 1041–1051 (1982).
pubmed: 6817924
doi: 10.1016/0092-8674(82)90467-6
McGinnis, W., Shermoen, A. W., Heemskerk, J. & Beckendorf, S. K. DNA sequence changes in an upstream DNase I-hypersensitive region are correlated with reduced gene expression. Proc. Natl Acad. Sci. USA 80, 1063–1067 (1983).
pubmed: 6405379
pmcid: 393528
doi: 10.1073/pnas.80.4.1063
McGinnis, W., Shermoen, A. W. & Beckendorf, S. K. A transposable element inserted just 5’ to a Drosophila glue protein gene alters gene expression and chromatin structure. Cell 34, 75–84 (1983).
pubmed: 6309414
doi: 10.1016/0092-8674(83)90137-X
Ptashne, M. Gene regulation by proteins acting nearby and at a distance. Nature 322, 697–701 (1986).
pubmed: 3018583
doi: 10.1038/322697a0
Narlikar, G. J., Fan, H. Y. & Kingston, R. E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).
pubmed: 11909519
doi: 10.1016/S0092-8674(02)00654-2
Gorkin, D. U. et al. An atlas of dynamic chromatin landscapes in mouse fetal development. Nature 583, 744–751 (2020).
pubmed: 32728240
pmcid: 7398618
doi: 10.1038/s41586-020-2093-3
Banerji, J., Rusconi, S. & Schaffner, W. Expression of a β-globin gene is enhanced by remote SV40 DNA sequences. Cell 27, 299–308 (1981).
pubmed: 6277502
doi: 10.1016/0092-8674(81)90413-X
Bulger, M. & Groudine, M. Looping versus linking: toward a model for long-distance gene activation. Genes. Dev. 13, 2465–2477 (1999).
pubmed: 10521391
doi: 10.1101/gad.13.19.2465
Cullen, K. E., Kladde, M. P. & Seyfred, M. A. Interaction between transcription regulatory regions of prolactin chromatin. Science 261, 203–206 (1993).
pubmed: 8327891
doi: 10.1126/science.8327891
Morgan, G. T. Imaging the dynamics of transcription loops in living chromosomes. Chromosoma 127, 361–374 (2018).
pubmed: 29610944
pmcid: 6096578
doi: 10.1007/s00412-018-0667-8
Chen, H. et al. Dynamic interplay between enhancer-promoter topology and gene activity. Nat. Genet. 50, 1296–1303 (2018).
pubmed: 30038397
pmcid: 6119122
doi: 10.1038/s41588-018-0175-z
Deng, W. et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149, 1233–1244 (2012).
pubmed: 22682246
pmcid: 3372860
doi: 10.1016/j.cell.2012.03.051
Bartman, C. R. et al. Transcriptional burst initiation and polymerase pause release are key control points of transcriptional regulation. Mol. Cell 73, 519–532.e4 (2019).
pubmed: 30554946
doi: 10.1016/j.molcel.2018.11.004
Jerabek, H. & Heermann, D. W. Expression-dependent folding of interphase chromatin. PLoS ONE 7, e37525 (2012).
pubmed: 22649534
pmcid: 3359300
doi: 10.1371/journal.pone.0037525
Racko, D., Benedetti, F., Dorier, J. & Stasiak, A. Transcription-induced supercoiling as the driving force of chromatin loop extrusion during formation of TADs in interphase chromosomes. Nucleic Acids Res. 46, 1648–1660 (2018).
pubmed: 29140466
doi: 10.1093/nar/gkx1123
Calandrelli, R. et al. Genome-wide analysis of the interplay between chromatin-associated RNA and 3D genome organization in human cells. Nat. Commun. 14, 6519 (2023).
pubmed: 37845234
pmcid: 10579264
doi: 10.1038/s41467-023-42274-7
Zhang, S., Ubelmesser, N., Barbieri, M. & Papantonis, A. Enhancer-promoter contact formation requires RNAPII and antagonizes loop extrusion. Nat. Genet. 55, 832–840 (2023).
pubmed: 37012454
doi: 10.1038/s41588-023-01364-4
Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).
pubmed: 20720539
pmcid: 2953795
doi: 10.1038/nature09380
Richter, W. F., Nayak, S., Iwasa, J. & Taatjes, D. J. The mediator complex as a master regulator of transcription by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 23, 732–749 (2022).
pubmed: 35725906
pmcid: 9207880
doi: 10.1038/s41580-022-00498-3
Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science 360, 102–105 (2018).
pubmed: 29472443
pmcid: 6329450
doi: 10.1126/science.aar7831
Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707 e614 (2017).
pubmed: 28475897
pmcid: 5422210
doi: 10.1016/j.cell.2017.04.013
Winick-Ng, W. et al. Cell-type specialization is encoded by specific chromatin topologies. Nature 599, 684–691 (2021).
pubmed: 34789882
pmcid: 8612935
doi: 10.1038/s41586-021-04081-2
Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320 e324 (2017).
pubmed: 28985562
pmcid: 5846482
doi: 10.1016/j.cell.2017.09.026
Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944.e22 (2017).
pubmed: 28525758
pmcid: 5538188
doi: 10.1016/j.cell.2017.05.004
Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017).
pubmed: 29094699
pmcid: 5687303
doi: 10.1038/nature24281
Gong, Y. et al. Stratification of TAD boundaries reveals preferential insulation of super-enhancers by strong boundaries. Nat. Commun. 9, 542 (2018).
pubmed: 29416042
pmcid: 5803259
doi: 10.1038/s41467-018-03017-1
Nanni, L., Ceri, S. & Logie, C. Spatial patterns of CTCF sites define the anatomy of TADs and their boundaries. Genome Biol. 21, 197 (2020).
pubmed: 32782014
pmcid: 7422557
doi: 10.1186/s13059-020-02108-x
Thiecke, M. J. et al. Cohesin-dependent and -independent mechanisms mediate chromosomal contacts between promoters and enhancers. Cell Rep. 32, 107929 (2020).
pubmed: 32698000
pmcid: 7383238
doi: 10.1016/j.celrep.2020.107929
Busslinger, G. A. et al. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature 544, 503–507 (2017).
pubmed: 28424523
pmcid: 6080695
doi: 10.1038/nature22063
Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341–1345 (2018).
pubmed: 30262496
pmcid: 6986801
doi: 10.1126/science.aau0320
Wang, D. et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474, 390–394 (2011).
pubmed: 21572438
pmcid: 3117022
doi: 10.1038/nature10006
Kim, T. K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).
pubmed: 20393465
pmcid: 3020079
doi: 10.1038/nature09033
De Santa, F. et al. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol. 8, e1000384 (2010).
pubmed: 20485488
pmcid: 2867938
doi: 10.1371/journal.pbio.1000384
Zoller, B., Little, S. C. & Gregor, T. Diverse spatial expression patterns emerge from unified kinetics of transcriptional bursting. Cell 175, 835–847 e825 (2018).
pubmed: 30340044
pmcid: 6779125
doi: 10.1016/j.cell.2018.09.056
Rodriguez, J. et al. Intrinsic dynamics of a human gene reveal the basis of expression heterogeneity. Cell 176, 213–226.e18 (2019).
pubmed: 30554876
doi: 10.1016/j.cell.2018.11.026
Hakim, O. et al. Diverse gene reprogramming events occur in the same spatial clusters of distal regulatory elements. Genome Res. 21, 697–706 (2011).
pubmed: 21471403
pmcid: 3083086
doi: 10.1101/gr.111153.110
D’Ippolito, A. M. et al. Pre-established chromatin interactions mediate the genomic response to glucocorticoids. Cell Syst. 7, 146–160.e7 (2018).
pubmed: 30031775
doi: 10.1016/j.cels.2018.06.007
Alexander, J. M. et al. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. Elife 8, e41769 (2019).
pubmed: 31124784
pmcid: 6534382
doi: 10.7554/eLife.41769
Fukaya, T., Lim, B. & Levine, M. Enhancer control of transcriptional bursting. Cell 166, 358–368 (2016).
pubmed: 27293191
pmcid: 4970759
doi: 10.1016/j.cell.2016.05.025
Goel, V. Y., Huseyin, M. K. & Hansen, A. S. Region capture micro-C reveals coalescence of enhancers and promoters into nested microcompartments. Nat. Genet. 55, 1048–1056 (2023).
pubmed: 37157000
pmcid: 10424778
doi: 10.1038/s41588-023-01391-1
Kawasaki, K. & Fukaya, T. Functional coordination between transcription factor clustering and gene activity. Mol. Cell 83, 1605–1622 e1609 (2023).
pubmed: 37207625
doi: 10.1016/j.molcel.2023.04.018
Cho, W. K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).
pubmed: 29930094
pmcid: 6543815
doi: 10.1126/science.aar4199
Stadhouders, R., Filion, G. J. & Graf, T. Transcription factors and 3D genome conformation in cell-fate decisions. Nature 569, 345–354 (2019).
pubmed: 31092938
doi: 10.1038/s41586-019-1182-7
Cardozo Gizzi, A. M. A shift in paradigms: spatial genomics approaches to reveal single-cell principles of genome organization. Front. Genet. 12, 780822 (2021).
pubmed: 34868269
pmcid: 8640135
doi: 10.3389/fgene.2021.780822
Finn, E. H. & Misteli, T. Molecular basis and biological function of variability in spatial genome organization. Science 365, eaaw9498 (2019).
pubmed: 31488662
pmcid: 7421438
doi: 10.1126/science.aaw9498
Bintu, B. et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, eaau1783 (2018).
pubmed: 30361340
pmcid: 6535145
doi: 10.1126/science.aau1783
Bintu, L. et al. Dynamics of epigenetic regulation at the single-cell level. Science 351, 720–724 (2016).
pubmed: 26912859
pmcid: 5108652
doi: 10.1126/science.aab2956
Vierstra, J. et al. Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science 346, 1007–1012 (2014).
pubmed: 25411453
pmcid: 4337786
doi: 10.1126/science.1246426
Cheng, Y. et al. Principles of regulatory information conservation between mouse and human. Nature 515, 371–375 (2014).
pubmed: 25409826
pmcid: 4343047
doi: 10.1038/nature13985
Stergachis, A. B. et al. Conservation of trans-acting circuitry during mammalian regulatory evolution. Nature 515, 365–370 (2014).
pubmed: 25409825
pmcid: 4405208
doi: 10.1038/nature13972
Franke, M. et al. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 538, 265–269 (2016).
pubmed: 27706140
doi: 10.1038/nature19800
Lupianez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012–1025 (2015).
pubmed: 25959774
pmcid: 4791538
doi: 10.1016/j.cell.2015.04.004
Martinez, M. F., Martini, A. G., Sequeira-Lopez, M. L. S. & Gomez, R. A. Ctcf is required for renin expression and maintenance of the structural integrity of the kidney. Clin. Sci. 134, 1763–1774 (2020).
doi: 10.1042/CS20200184
Christov, M. et al. Inducible podocyte-specific deletion of CTCF drives progressive kidney disease and bone abnormalities. JCI Insight 3, e95091 (2018).
pubmed: 29467330
pmcid: 5916242
doi: 10.1172/jci.insight.95091
Alharbi, A. B. et al. Ctcf haploinsufficiency mediates intron retention in a tissue-specific manner. RNA Biol. 18, 93–103 (2021).
pubmed: 32816606
doi: 10.1080/15476286.2020.1796052
Moisan, S. et al. Novel long-range regulatory mechanisms controlling PKD2 gene expression. BMC Genomics 19, 515 (2018).
pubmed: 29986647
pmcid: 6038307
doi: 10.1186/s12864-018-4892-6
Livingston, S. et al. Cux1 regulation of the cyclin kinase inhibitor p27
pubmed: 34531000
doi: 10.1016/j.gene.2019.100007
Wang, H. et al. Glucocorticoid receptor wields chromatin interactions to tune transcription for cytoskeleton stabilization in podocytes. Commun. Biol. 4, 675 (2021).
pubmed: 34083716
pmcid: 8175753
doi: 10.1038/s42003-021-02209-8
Luo, Z. et al. NicE-C efficiently reveals open chromatin-associated chromosome interactions at high resolution. Genome Res. 32, 534–544 (2022).
pubmed: 35105668
pmcid: 8896462
doi: 10.1101/gr.275986.121
Yeung, J. et al. Transcription factor activity rhythms and tissue-specific chromatin interactions explain circadian gene expression across organs. Genome Res. 28, 182–191 (2018).
pubmed: 29254942
pmcid: 5793782
doi: 10.1101/gr.222430.117
Mermet, J. et al. Clock-dependent chromatin topology modulates circadian transcription and behavior. Genes. Dev. 32, 347–358 (2018).
pubmed: 29572261
pmcid: 5900709
doi: 10.1101/gad.312397.118
Zhang, Y. et al. Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat. Genet. 51, 1380–1388 (2019).
pubmed: 31427791
pmcid: 6722002
doi: 10.1038/s41588-019-0479-7
Dhillon, P. et al. Increased levels of endogenous retroviruses trigger fibroinflammation and play a role in kidney disease development. Nat. Commun. 14, 559 (2023).
pubmed: 36732547
pmcid: 9895454
doi: 10.1038/s41467-023-36212-w
Siebenthall, K. T. et al. Integrated epigenomic profiling reveals endogenous retrovirus reactivation in renal cell carcinoma. EBioMedicine 41, 427–442 (2019).
pubmed: 30827930
pmcid: 6441874
doi: 10.1016/j.ebiom.2019.01.063
Gillies, C. E. et al. An eQTL landscape of kidney tissue in human nephrotic syndrome. Am. J. Hum. Genet. 103, 232–244 (2018).
pubmed: 30057032
pmcid: 6081280
doi: 10.1016/j.ajhg.2018.07.004
Ko, Y. A. et al. Genetic-variation-driven gene-expression changes highlight genes with important functions for kidney disease. Am. J. Hum. Genet. 100, 940–953 (2017).
pubmed: 28575649
pmcid: 5473735
doi: 10.1016/j.ajhg.2017.05.004
Qiu, C. et al. Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease. Nat. Med. 24, 1721–1731 (2018).
pubmed: 30275566
pmcid: 6301011
doi: 10.1038/s41591-018-0194-4
Gorkin, D. U. et al. Common DNA sequence variation influences 3-dimensional conformation of the human genome. Genome Biol. 20, 255 (2019).
pubmed: 31779666
pmcid: 6883528
doi: 10.1186/s13059-019-1855-4
Chandra, V. et al. Promoter-interacting expression quantitative trait loci are enriched for functional genetic variants. Nat. Genet. 53, 110–119 (2021).
pubmed: 33349701
doi: 10.1038/s41588-020-00745-3
Duan, A. et al. Chromatin architecture reveals cell type-specific target genes for kidney disease risk variants. BMC Biol. 19, 38 (2021).
pubmed: 33627123
pmcid: 7905576
doi: 10.1186/s12915-021-00977-7
Sieber, K. B. et al. Integrated functional genomic analysis enables annotation of kidney genome-wide association study loci. J. Am. Soc. Nephrol. 30, 421–441 (2019).
pubmed: 30760496
pmcid: 6405142
doi: 10.1681/ASN.2018030309
Maurano, M. T. et al. Large-scale identification of sequence variants influencing human transcription factor occupancy in vivo. Nat. Genet. 47, 1393–1401 (2015).
pubmed: 26502339
pmcid: 4666772
doi: 10.1038/ng.3432
Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369–1384.e19 (2016).
pubmed: 27863249
pmcid: 5123897
doi: 10.1016/j.cell.2016.09.037
Muto, Y. et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat. Commun. 12, 2190 (2021).
pubmed: 33850129
pmcid: 8044133
doi: 10.1038/s41467-021-22368-w
Haug, S. et al. Multi-omic analysis of human kidney tissue identified medulla-specific gene expression patterns. Kidney Int. 105, 293–311 (2024).
pubmed: 37995909
doi: 10.1016/j.kint.2023.10.024
Claussnitzer, M. et al. FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 373, 895–907 (2015).
pubmed: 26287746
pmcid: 4959911
doi: 10.1056/NEJMoa1502214
Mukhi, D. et al. ACSS2 gene variants determine kidney disease risk by controlling de novo lipogenesis in kidney tubules. J. Clin. Invest. 134, e172963 (2023).
pubmed: 38051585
pmcid: 10866669
doi: 10.1172/JCI172963
Mumbach, M. R. et al. Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nat. Genet. 49, 1602–1612 (2017).
pubmed: 28945252
pmcid: 5805393
doi: 10.1038/ng.3963
Lidberg, K. A. et al. Serum protein exposure activates a core regulatory program driving human proximal tubule injury. J. Am. Soc. Nephrol. 33, 949–965 (2022).
pubmed: 35197326
pmcid: 9063895
doi: 10.1681/ASN.2021060751
Gisch, D. L. et al. The chromatin landscape of healthy and injured cell types in the human kidney. Nat. Commun. 15, 433 (2024).
pubmed: 38199997
pmcid: 10781985
doi: 10.1038/s41467-023-44467-6
Eun, M. et al. Chromatin accessibility analysis and architectural profiling of human kidneys reveal key cell types and a regulator of diabetic kidney disease. Kidney Int. 105, 150–164 (2024).
pubmed: 37925023
doi: 10.1016/j.kint.2023.09.030
Combes, A. N. et al. Haploinsufficiency for the Six2 gene increases nephron progenitor proliferation promoting branching and nephron number. Kidney Int. 93, 589–598 (2018).
pubmed: 29217079
doi: 10.1016/j.kint.2017.09.015
Georgas, K. et al. Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev. Biol. 332, 273–286 (2009).
pubmed: 19501082
doi: 10.1016/j.ydbio.2009.05.578
Kobayashi, A. et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3, 169–181 (2008).
pubmed: 18682239
pmcid: 2561900
doi: 10.1016/j.stem.2008.05.020
Perl, A. J. et al. Reduced nephron endowment in Six2-TGCtg mice is due to Six3 misexpression by aberrant enhancer-promoter interactions in the transgene. J. Am. Soc. Nephrol. 35, 566–577 (2024).
pubmed: 38447671
doi: 10.1681/ASN.0000000000000324
O’Brien, L. L. et al. Transcriptional regulatory control of mammalian nephron progenitors revealed by multi-factor cistromic analysis and genetic studies. PLoS Genet. 14, e1007181 (2018).
pubmed: 29377931
pmcid: 5805373
doi: 10.1371/journal.pgen.1007181
Ichimura, T. et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J. Biol. Chem. 273, 4135–4142 (1998).
pubmed: 9461608
doi: 10.1074/jbc.273.7.4135
Zhang, Z., Humphreys, B. D. & Bonventre, J. V. Shedding of the urinary biomarker kidney injury molecule-1 (KIM-1) is regulated by MAP kinases and juxtamembrane region. J. Am. Soc. Nephrol. 18, 2704–2714 (2007).
pubmed: 17898236
doi: 10.1681/ASN.2007030325
Wilson, P. C. et al. Mosaic loss of Y chromosome is associated with aging and epithelial injury in chronic kidney disease. Genome Biol. 25, 36 (2024).
pubmed: 38287344
pmcid: 10823641
doi: 10.1186/s13059-024-03173-2
Langelueddecke, C. et al. Lipocalin-2 (24p3/neutrophil gelatinase-associated lipocalin (NGAL)) receptor is expressed in distal nephron and mediates protein endocytosis. J. Biol. Chem. 287, 159–169 (2012).
pubmed: 22084236
doi: 10.1074/jbc.M111.308296
Chen, X. et al. Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data. Nat. Comput. Sci. 3, 644–657 (2023).
pubmed: 37974651
pmcid: 10653299
doi: 10.1038/s43588-023-00476-5
Wang, R. et al. SARS-CoV-2 restructures host chromatin architecture. Nat. Microbiol. 8, 679–694 (2023).
pubmed: 36959507
pmcid: 10116496
doi: 10.1038/s41564-023-01344-8
Chiariello, A. M. et al. Multiscale modelling of chromatin 4D organization in SARS-CoV-2 infected cells. Nat. Commun. 15, 4014 (2024).
pubmed: 38740770
pmcid: 11091192
doi: 10.1038/s41467-024-48370-6
Akilesh, S. et al. Multicenter clinicopathologic correlation of kidney biopsies performed in COVID-19 patients presenting with acute kidney injury or proteinuria. Am. J. Kidney Dis. 77, 82–93.e1 (2021).
pubmed: 33045255
doi: 10.1053/j.ajkd.2020.10.001
Nicosia, R. F., Ligresti, G., Caporarello, N., Akilesh, S. & Ribatti, D. COVID-19 vasculopathy: mounting evidence for an indirect mechanism of endothelial injury. Am. J. Pathol. 191, 1374–1384 (2021).
pubmed: 34033751
pmcid: 8141344
doi: 10.1016/j.ajpath.2021.05.007
Smith, K. D. & Akilesh, S. Pathogenesis of coronavirus disease 2019-associated kidney injury. Curr. Opin. Nephrol. Hypertens. 30, 324–331 (2021).
pubmed: 33767060
doi: 10.1097/MNH.0000000000000708
Davis, M. A. et al. A C57BL/6 mouse model of SARS-CoV-2 infection recapitulates age- and sex-based differences in human COVID-19 disease and recovery. Vaccines https://doi.org/10.3390/vaccines11010047 (2022).
Zazhytska, M. et al. Non-cell-autonomous disruption of nuclear architecture as a potential cause of COVID-19-induced anosmia. Cell 185, 1052–1064.e12 (2022).
pubmed: 35180380
pmcid: 8808699
doi: 10.1016/j.cell.2022.01.024
Zaidman, N. A. & Pluznick, J. L. Understudied G protein-coupled receptors in the kidney. Nephron 146, 278–281 (2022).
pubmed: 34261071
doi: 10.1159/000517355
Halperin Kuhns, V. L. et al. Characterizing novel olfactory receptors expressed in the murine renal cortex. Am. J. Physiol. Renal Physiol. 317, F172–F186 (2019).
pubmed: 31042061
pmcid: 6692720
doi: 10.1152/ajprenal.00624.2018
Shepard, B. D., Koepsell, H. & Pluznick, J. L. Renal olfactory receptor 1393 contributes to the progression of type 2 diabetes in a diet-induced obesity model. Am. J. Physiol. Renal Physiol. 316, F372–F381 (2019).
pubmed: 30484350
doi: 10.1152/ajprenal.00069.2018
Pluznick, J. L. et al. Functional expression of the olfactory signaling system in the kidney. Proc. Natl Acad. Sci. USA 106, 2059–2064 (2009).
pubmed: 19174512
pmcid: 2644163
doi: 10.1073/pnas.0812859106
Correa-Costa, M. et al. Transcriptome analysis of renal ischemia/reperfusion injury and its modulation by ischemic pre-conditioning or hemin treatment. PLoS ONE 7, e49569 (2012).
pubmed: 23166714
pmcid: 3498198
doi: 10.1371/journal.pone.0049569