Glycosylation of chrysin with β-d-glucose tetraacetate (LQFM280) enhances its in vitro and in vivo neuroprotective effects against the toxicity induced by 3-nitropropionic acid.

Anticholinesterase Antioxidant Glycosylated chrysin Huntington disease Neuroprotection Nutraceutical

Journal

Naunyn-Schmiedeberg's archives of pharmacology
ISSN: 1432-1912
Titre abrégé: Naunyn Schmiedebergs Arch Pharmacol
Pays: Germany
ID NLM: 0326264

Informations de publication

Date de publication:
16 Oct 2024
Historique:
received: 25 06 2024
accepted: 07 10 2024
medline: 17 10 2024
pubmed: 17 10 2024
entrez: 16 10 2024
Statut: aheadofprint

Résumé

Chrysin (CHR) is a naturally occurring flavonoid found in the human diet, recognized for its potential in preventing neurodegenerative diseases. However, its limited water solubility restricts its bioavailability and therapeutic applications. To address this issue and bolster the neuroprotective properties of CHR for potential nutraceutical or medicinal use, we investigated a novel compound, LQFM280, formed by conjugating CHR with β-d-glucose tetraacetate. We conducted both in vitro (using SH-SY5Y cells, mutant STHdhQ111/Q111 cells, and wild-type STHdhQ7/Q7 cells), and in vivo (mice) neurotoxicity experimental model induced by 3-nitropropionic acid, which mimic biological changes akin to Huntington's disease in humans. Compared to non-glycosylated CHR, LQFM280 showed superior in vitro effects in preventing neurotoxicity caused by increased mitochondrial vulnerability due to mutant huntingtin. In vivo findings demonstrated that LQFM280 has heightened efficacy in mitigating weight loss, memory and locomotor impairment, oxidative stress, and disruptions in the antioxidant defense system, as well as succinate dehydrogenase, and cholinesterase activities induced by 3-nitropropionic acid. These findings underscore the significant enhancement of chrysin's neuroprotective effects through glycosylation with β-d-glucose tetraacetate, positioning it as a promising candidate for use as a nutraceutical or food supplement to promote health benefits.

Identifiants

pubmed: 39414701
doi: 10.1007/s00210-024-03526-5
pii: 10.1007/s00210-024-03526-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Abdelfattah MS, Badr SEA, Lotfy SA et al (2020) Rutin and selenium co-administration reverse 3-nitropropionic acid-induced neurochemical and molecular impairments in a mouse model of huntington’s disease. Neurotox Res 37(1):77–92. https://doi.org/10.1007/s12640-019-00086-y
doi: 10.1007/s12640-019-00086-y pubmed: 31332714
Antiorio AT, Alemán-Laporte J, Zanatto DA et al (2022) Mouse behavior in the open-field test after meloxicam administration. J Am Assoc Lab Anim Sci 61:270–4. https://doi.org/10.30802/AALAS-JAALAS-21-000046
doi: 10.30802/AALAS-JAALAS-21-000046 pubmed: 35101160 pmcid: 9137284
Bendiksen Skogvold H, Yazdani M, Sandås EM, Østeby Vassli A, Kristensen E, Haarr D, Rootwelt H, Elgstøen KBP (2022) A pioneer study on human 3-nitropropionic acid intoxication: Contributions from metabolomics. J Appl Toxicol 42(5):818–829. https://doi.org/10.1002/jat.4259
doi: 10.1002/jat.4259 pubmed: 34725838
Binienda Z, Simmons C, Hussain S, Slikker W Jr, Ali SF (1998) Effect of acute exposure to 3-nitropropionic acid on activities of endogenous antioxidants in the rat brain. Neurosci Lett 251(3):173–176. https://doi.org/10.1016/s0304-3940(98)00539-4
doi: 10.1016/s0304-3940(98)00539-4 pubmed: 9726371
Brito AF, Braga PCCS, Moreira LKS et al (2018) A new piperazine derivative: 1-(4-(3,5-di-tert-butyl-4-hydroxybenzyl) piperazin-1-yl)-2-methoxyethan-1-one with antioxidant and central activity. Naunyn Schmiedebergs Arch Pharmacol 391:255–269. https://doi.org/10.1007/s00210-017-1451-7
doi: 10.1007/s00210-017-1451-7 pubmed: 29260264
Campos HM, da Costa M, da Silva MLK et al (2022) Protective effects of chrysin against the neurotoxicity induced by aluminium: in vitro and in vivo studies. Toxicology 465:153033. https://doi.org/10.1016/j.tox.2021.153033
doi: 10.1016/j.tox.2021.153033 pubmed: 34774662
Campos HM, Pereira RM, de Oliveira Ferreira PY et al (2024) A novel arylpiperazine derivative (LQFM181) protects against neurotoxicity induced by 3- nitropropionic acid in in vitro and in vivo models. Chem Biol Interact 395:111026. https://doi.org/10.1016/j.cbi.2024.111026
doi: 10.1016/j.cbi.2024.111026 pubmed: 38679115
Chen F, Huang G (2019) Application of glycosylation in targeted drug delivery. Eur J Med Chem 182:111612. https://doi.org/10.1016/j.ejmech.2019.111612
doi: 10.1016/j.ejmech.2019.111612 pubmed: 31421631
Choudhury R, Ashtekar H, Khot KB, Malngiang M, Kumar MV, Mandal S, Das B (2023) Aluminum toxicity induced Alzheimer’s Disease and its potential treatment using antioxidants - a review. Braz J Pharm Sci 59:e2158. https://doi.org/10.1590/s2175-97902023e21587
doi: 10.1590/s2175-97902023e21587
Collenberg V, Schmitt D, Rülicke T et al (2019) An essential role of the mouse synapse-associated protein Syap1 in circuits for spontaneous motor activity and rotarod balance. Biology Open 8:1–20. https://doi.org/10.1242/bio.042366
doi: 10.1242/bio.042366
D’Souza GX, Waldvogel HJ (2016) Targeting the Cholinergic System to Develop a Novel Therapy for Huntington’s Disease. J Huntingtons Dis 5(4):333–342. https://doi.org/10.3233/JHD-160200
doi: 10.3233/JHD-160200 pubmed: 27983560 pmcid: 5181681
Deng YP, Reiner A (2016) Cholinergic interneurons in the Q140 knockin mouse model of Huntington’s disease: Reductions in dendritic branching and thalamostriatal input. J Comp Neurol 524(17):3518–3529. https://doi.org/10.1002/cne.24013
doi: 10.1002/cne.24013 pubmed: 27219491 pmcid: 5050058
Dhadde SB, Nagakannan P, Roopesh M, Kumar SRA, Thippeswamy BS, Veerapur VP, Badami S (2016) Effect of embelin against 3-nitropropionic acid-induced Huntington’s disease in rats. Biomed Pharmacother 77:52–58. https://doi.org/10.1016/j.biopha.2015.11.009
doi: 10.1016/j.biopha.2015.11.009 pubmed: 26796265
Di Martino RMC, Pruccoli L, Bisi A, Gobbi S, Rampa A, Martinez A, Pérez C, Martinez-Gonzalez L, Paglione M, Di Schiavi E, Seghetti F, Tarozzi A, Belluti F (2020) Novel Curcumin-Diethyl Fumarate Hybrid as a Dualistic GSK-3β Inhibitor/Nrf2 Inducer for the Treatment of Parkinson’s Disease. ACS Chem Neurosci. 11(17):2728–2740. https://doi.org/10.1021/acschemneuro.0c00363
doi: 10.1021/acschemneuro.0c00363 pubmed: 32663009
Gao S, Siddiqui N, Etim I et al (2021) Developing nutritional component chrysin as a therapeutic agent: Bioavailability and pharmacokinetics consideration, and ADME mechanisms. Biomed Pharmacother 142:112080. https://doi.org/10.1016/j.biopha.2021.112080
doi: 10.1016/j.biopha.2021.112080 pubmed: 34449320 pmcid: 8653576
Haddadi R, Eyvari-Brooshghalan S, Makhdoomi S et al (2024) Neuroprotective effects of silymarin in 3-nitropropionic acid-induced neurotoxicity in male mice: improving behavioral deficits by attenuating oxidative stress and neuroinflammation. Naunyn Schmiedebergs Arch Pharmacol 397:2447–2463. https://doi.org/10.1007/s00210-023-02776-z
doi: 10.1007/s00210-023-02776-z pubmed: 37847410
Kadir A, Singh J, Rahi V, Kumar P (2022) Berberine Ameliorates Haloperidol and 3-Nitropropionic Acid-Induced Neurotoxicity in Rats. Neurochem Res 47:3285–3297. https://doi.org/10.1007/s11064-022-03677-y
doi: 10.1007/s11064-022-03677-y pubmed: 35876936
Kovalevich J, Langford D (2013) Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol 1078:9–21. https://doi.org/10.1007/978-1-62703-640-5_2
doi: 10.1007/978-1-62703-640-5_2 pubmed: 23975817 pmcid: 5127451
Kumar P, Kumar A (2009) Protective effect of rivastigmine against 3-nitropropionic acid-induced Huntington’s disease like symptoms: Possible behavioural, biochemical and cellular alterations. Eur J Pharmacol 615:91–101. https://doi.org/10.1016/j.ejphar.2009.04.058
doi: 10.1016/j.ejphar.2009.04.058 pubmed: 19445928
Li N, Pang Q, Zhang Y et al (2023) Ginsenoside ompound K reduces neuronal damage and improves neuronal synaptic dysfunction by targeting Aβ. Front Pharmacol 14:1103012. https://doi.org/10.3389/fphar.2023.1103012
doi: 10.3389/fphar.2023.1103012 pubmed: 36873999 pmcid: 9977807
Lum PT, Sekar M, Seow LJ et al (2023) Neuroprotective potency of mangiferin against 3-nitropropionic acid induced Huntington’s disease-like symptoms in rats: possible antioxidant and anti-inflammatory mechanisms. Front Pharmacol 14:1189957. https://doi.org/10.3389/fphar.2023.1189957
doi: 10.3389/fphar.2023.1189957 pubmed: 37521470 pmcid: 10372348
Manjari SKV, Maity S, Poornima R et al (2022) Restorative Action of Vitamin D3 on Motor Dysfunction Through Enhancement of Neurotrophins and Antioxidant Expression in the Striatum. Neuroscience 492:67–81. https://doi.org/10.1016/j.neuroscience.2022.03.039
doi: 10.1016/j.neuroscience.2022.03.039 pubmed: 35413386
Mohammed RA, Mansour SM (2021) Sodium hydrogen sulfide upregulates cystathionine β-synthase and protects striatum against 3-nitropropionic acid-induced neurotoxicity in rats. J Pharm Pharmacol 73(3):310–321. https://doi.org/10.1093/jpp/rgaa072
doi: 10.1093/jpp/rgaa072 pubmed: 33793881
Naseri A, Taymouri S, Hosseini Sharifabadi A, Varshosaz J (2023) Chrysin loaded bilosomes improve the hepatoprotective effects of chrysin against CCl4 induced hepatotoxicity in mice. J Biomater Appl 38(4):509–526. https://doi.org/10.1177/08853282231198948
doi: 10.1177/08853282231198948 pubmed: 37632164
Okoh VI, Campos HM, de Oliveira FPY et al (2024) Chrysin bonded to β-d-glucose tetraacetate enhances its protective effects against the neurotoxicity induced by aluminum in Swiss mice. J Pharm Pharmacol 76(4):368–380. https://doi.org/10.1093/jpp/rgae011
doi: 10.1093/jpp/rgae011 pubmed: 38330395
Puri V, Nagpal M, Singh I, Singh M, Dhingra GA, Huanbutta K, Dheer D, Sharma A, Sangnim TA (2022) Comprehensive review on nutraceuticals: therapy support and formulation challenges. Nutrients 14(21):4637. https://doi.org/10.3390/nu14214637
doi: 10.3390/nu14214637 pubmed: 36364899 pmcid: 9654660
Rabie MA, Ghoneim AT, Fahmy MI et al (2024) Activation of alpha-7 nicotinic acetylcholine receptor by tropisetron mitigates 3-nitropropionic acid-induced Huntington’s disease in rats: Role of PI3K/Akt and JAK2/NF-κB signaling pathways. Chem Biol Interact 393:110957. https://doi.org/10.1016/j.cbi.2024.110957
doi: 10.1016/j.cbi.2024.110957 pubmed: 38513929
Ragab EM, El Gamal DM, Mohamed TM, Khamis AA (2022) Study of the inhibitory effects of chrysin and its nanoparticles on mitochondrial complex II subunit activities in normal mouse liver and human fibroblasts. J Genet Eng Biotechnol 20(1):15. https://doi.org/10.1186/s43141-021-00286-0
doi: 10.1186/s43141-021-00286-0 pubmed: 35089446 pmcid: 8795958
Ragab EM, El Gamal DM, Mohamed TM, Khamis AA (2023) Impairment of electron transport chain and induction of apoptosis by chrysin nanoparticles targeting succinate-ubiquinone oxidoreductase in pancreatic and lung cancer cells. Genes Nutr 18(1):4. https://doi.org/10.1186/s12263-023-00723-4
doi: 10.1186/s12263-023-00723-4 pubmed: 36906524 pmcid: 10008604
Ramachandran S, Thangarajan S (2016) A novel therapeutic application of solid lipid nanoparticles encapsulated thymoquinone (TQ-SLNs) on 3-nitropropionic acid induced Huntington’s disease-like symptoms in wistar rats. Chem Biol Interact 256:25–36. https://doi.org/10.1016/j.cbi.2016.05.020
doi: 10.1016/j.cbi.2016.05.020 pubmed: 27206696
Ruan Q, Lesort M, MacDonald ME, Johnson GV (2004) Striatal cells from mutant huntingtin knock-in mice are selectively vulnerable to mitochondrial complex II inhibitor-induced cell death through a non-apoptotic pathway. Hum Mol Genet 13(7):669–681. https://doi.org/10.1093/hmg/ddh082
doi: 10.1093/hmg/ddh082 pubmed: 14962977
Shalaby HN, El-Tanbouly DM, Zaki HF et al (2018) Topiramate mitigates 3-nitropropionic acid-induced striatal neurotoxicity via modulation of AMPA receptors. Food Chem Toxicol 118:227–234. https://doi.org/10.1016/j.fct.2018.05.022
doi: 10.1016/j.fct.2018.05.022 pubmed: 29753867
Sharma P, Kumar M, Bansal N (2021) Ellagic acid prevents 3-nitropropionic acid induced symptoms of Huntington’s disease. Naunyn Schmiedebergs Arch Pharmacol 394:1917–1928. https://doi.org/10.1007/s00210-021-02106-1
doi: 10.1007/s00210-021-02106-1 pubmed: 34061228
Souza LC, Wilhelm EA, Bortolatto CF et al (2014) Involvement of mGlu5 receptor in 3-nitropropionic acid-induced oxidative stress in rat striatum. Neurol Res 36(9):833–839. https://doi.org/10.1179/1743132814Y.0000000334
doi: 10.1179/1743132814Y.0000000334 pubmed: 24588139
Stompor-Goracy M, Bajek-Bil A, Machaczka M (2021) Chrysin: Perspectives on contemporary status and future possibilities as pro-health agent. Nutrients 13:2038. https://doi.org/10.3390/nu13062038
doi: 10.3390/nu13062038 pubmed: 34198618 pmcid: 8232110
Thangarajan S, Ramachandran S, Krishnamurthy P (2016) Chrysin exerts neuroprotective effects against 3-Nitropropionic acid induced behavioral despair—Mitochondrial dysfunction and striatal apoptosis via upregulating Bcl-2 gene and downregulating Bax—Bad genes in male wistar rats. Biomed Pharmacother 84:514–525. https://doi.org/10.1016/j.biopha.2016.09.070
doi: 10.1016/j.biopha.2016.09.070 pubmed: 27690136
Túnez I, Tasset I, Pérez-De La Cruz V, Santamaría A (2010) 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington’s disease: past, present and future. Molecules 15(2):878–916. https://doi.org/10.3390/molecules15020878
doi: 10.3390/molecules15020878 pubmed: 20335954 pmcid: 6263191
Upadhayay S, Yedke NG, Rahi V et al (2023) An Overview of the pathophysiological mechanisms of 3-nitropropionic acid (3-NPA) as a neurotoxin in a Huntington’s disease model and its relevance to drug discovery and development. Neurochem Res 48:1631–1647. https://doi.org/10.1007/s11064-023-03868-1
doi: 10.1007/s11064-023-03868-1 pubmed: 36738367
Wang S, Chen Y, Xia C, Yang C, Chen J, Hai L, Wu Y, Yang Z (2022) Synthesis and evaluation of glycosylated quercetin to enhance neuroprotective effects on cerebral ischemia-reperfusion. Bioorg Med Chem 73:117008. https://doi.org/10.1016/j.bmc.2022.117008
doi: 10.1016/j.bmc.2022.117008 pubmed: 36126445
Zhang Y, Zhao J, Afzal O, Kazmi I, Al-Abbasi FA, Altamimi ASA, Yang Z (2020) Neuroprotective role of chrysin-loaded poly (lactic-co-glycolic acid) nanoparticle against kindling-induced epilepsy through Nrf2/ARE/HO-1 pathway. J Biochem Mol Toxicol 35(2):e22634. https://doi.org/10.1002/jbt.22634
doi: 10.1002/jbt.22634 pubmed: 32991785
Zhu ZY, Chen L, Liu F et al (2016) Preparation and activity evaluation of chrysin-β-D-galactopyranoside. Arch Pharm Res 39:1433–1440. https://doi.org/10.1007/s12272-016-0800-2
doi: 10.1007/s12272-016-0800-2 pubmed: 27461029

Auteurs

Robbert Mota Pereira (RM)

Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil.

Hericles Mesquita Campos (HM)

Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil.

Pâmela Yasmin de Oliveira Ferreira (PY)

Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil.

Nkaa Uchenna (N)

Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil.

Yohanny Souza Silva (YS)

Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil.

Victor Ifeanyi Okoh (VI)

Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil.

Letizia Pruccoli (L)

Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Rimini, Italy.

Evilanna Lima Arruda (EL)

Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil.

Luciano Morais Lião (LM)

Institute of Chemistry, Federal University of Goiás, Goiânia, GO, Brazil.

Pedro Augusto Alves Mota (PAA)

Institute of Mathematics and Statistics, Federal University of Goiás, Goiânia, GO, Brazil.

Jacqueline Alves Leite (JA)

Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil.

Raphaela de Castro Georg (R)

Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil.

David Henriques da Matta (DH)

Institute of Mathematics and Statistics, Federal University of Goiás, Goiânia, GO, Brazil.

Fernanda Cristina Alcantara Dos Santos (FCA)

Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil.

Elson Alves Costa (EA)

Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil.

Andrea Tarozzi (A)

Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Rimini, Italy.

Ricardo Menegatti (R)

Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil.

Paulo César Ghedini (PC)

Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil. pcghedini@ufg.br.
Biochemical and Molecular Pharmacology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Cep 74690-900, Brazil. pcghedini@ufg.br.

Classifications MeSH