Glycosylation of chrysin with β-d-glucose tetraacetate (LQFM280) enhances its in vitro and in vivo neuroprotective effects against the toxicity induced by 3-nitropropionic acid.
Anticholinesterase
Antioxidant
Glycosylated chrysin
Huntington disease
Neuroprotection
Nutraceutical
Journal
Naunyn-Schmiedeberg's archives of pharmacology
ISSN: 1432-1912
Titre abrégé: Naunyn Schmiedebergs Arch Pharmacol
Pays: Germany
ID NLM: 0326264
Informations de publication
Date de publication:
16 Oct 2024
16 Oct 2024
Historique:
received:
25
06
2024
accepted:
07
10
2024
medline:
17
10
2024
pubmed:
17
10
2024
entrez:
16
10
2024
Statut:
aheadofprint
Résumé
Chrysin (CHR) is a naturally occurring flavonoid found in the human diet, recognized for its potential in preventing neurodegenerative diseases. However, its limited water solubility restricts its bioavailability and therapeutic applications. To address this issue and bolster the neuroprotective properties of CHR for potential nutraceutical or medicinal use, we investigated a novel compound, LQFM280, formed by conjugating CHR with β-d-glucose tetraacetate. We conducted both in vitro (using SH-SY5Y cells, mutant STHdhQ111/Q111 cells, and wild-type STHdhQ7/Q7 cells), and in vivo (mice) neurotoxicity experimental model induced by 3-nitropropionic acid, which mimic biological changes akin to Huntington's disease in humans. Compared to non-glycosylated CHR, LQFM280 showed superior in vitro effects in preventing neurotoxicity caused by increased mitochondrial vulnerability due to mutant huntingtin. In vivo findings demonstrated that LQFM280 has heightened efficacy in mitigating weight loss, memory and locomotor impairment, oxidative stress, and disruptions in the antioxidant defense system, as well as succinate dehydrogenase, and cholinesterase activities induced by 3-nitropropionic acid. These findings underscore the significant enhancement of chrysin's neuroprotective effects through glycosylation with β-d-glucose tetraacetate, positioning it as a promising candidate for use as a nutraceutical or food supplement to promote health benefits.
Identifiants
pubmed: 39414701
doi: 10.1007/s00210-024-03526-5
pii: 10.1007/s00210-024-03526-5
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Abdelfattah MS, Badr SEA, Lotfy SA et al (2020) Rutin and selenium co-administration reverse 3-nitropropionic acid-induced neurochemical and molecular impairments in a mouse model of huntington’s disease. Neurotox Res 37(1):77–92. https://doi.org/10.1007/s12640-019-00086-y
doi: 10.1007/s12640-019-00086-y
pubmed: 31332714
Antiorio AT, Alemán-Laporte J, Zanatto DA et al (2022) Mouse behavior in the open-field test after meloxicam administration. J Am Assoc Lab Anim Sci 61:270–4. https://doi.org/10.30802/AALAS-JAALAS-21-000046
doi: 10.30802/AALAS-JAALAS-21-000046
pubmed: 35101160
pmcid: 9137284
Bendiksen Skogvold H, Yazdani M, Sandås EM, Østeby Vassli A, Kristensen E, Haarr D, Rootwelt H, Elgstøen KBP (2022) A pioneer study on human 3-nitropropionic acid intoxication: Contributions from metabolomics. J Appl Toxicol 42(5):818–829. https://doi.org/10.1002/jat.4259
doi: 10.1002/jat.4259
pubmed: 34725838
Binienda Z, Simmons C, Hussain S, Slikker W Jr, Ali SF (1998) Effect of acute exposure to 3-nitropropionic acid on activities of endogenous antioxidants in the rat brain. Neurosci Lett 251(3):173–176. https://doi.org/10.1016/s0304-3940(98)00539-4
doi: 10.1016/s0304-3940(98)00539-4
pubmed: 9726371
Brito AF, Braga PCCS, Moreira LKS et al (2018) A new piperazine derivative: 1-(4-(3,5-di-tert-butyl-4-hydroxybenzyl) piperazin-1-yl)-2-methoxyethan-1-one with antioxidant and central activity. Naunyn Schmiedebergs Arch Pharmacol 391:255–269. https://doi.org/10.1007/s00210-017-1451-7
doi: 10.1007/s00210-017-1451-7
pubmed: 29260264
Campos HM, da Costa M, da Silva MLK et al (2022) Protective effects of chrysin against the neurotoxicity induced by aluminium: in vitro and in vivo studies. Toxicology 465:153033. https://doi.org/10.1016/j.tox.2021.153033
doi: 10.1016/j.tox.2021.153033
pubmed: 34774662
Campos HM, Pereira RM, de Oliveira Ferreira PY et al (2024) A novel arylpiperazine derivative (LQFM181) protects against neurotoxicity induced by 3- nitropropionic acid in in vitro and in vivo models. Chem Biol Interact 395:111026. https://doi.org/10.1016/j.cbi.2024.111026
doi: 10.1016/j.cbi.2024.111026
pubmed: 38679115
Chen F, Huang G (2019) Application of glycosylation in targeted drug delivery. Eur J Med Chem 182:111612. https://doi.org/10.1016/j.ejmech.2019.111612
doi: 10.1016/j.ejmech.2019.111612
pubmed: 31421631
Choudhury R, Ashtekar H, Khot KB, Malngiang M, Kumar MV, Mandal S, Das B (2023) Aluminum toxicity induced Alzheimer’s Disease and its potential treatment using antioxidants - a review. Braz J Pharm Sci 59:e2158. https://doi.org/10.1590/s2175-97902023e21587
doi: 10.1590/s2175-97902023e21587
Collenberg V, Schmitt D, Rülicke T et al (2019) An essential role of the mouse synapse-associated protein Syap1 in circuits for spontaneous motor activity and rotarod balance. Biology Open 8:1–20. https://doi.org/10.1242/bio.042366
doi: 10.1242/bio.042366
D’Souza GX, Waldvogel HJ (2016) Targeting the Cholinergic System to Develop a Novel Therapy for Huntington’s Disease. J Huntingtons Dis 5(4):333–342. https://doi.org/10.3233/JHD-160200
doi: 10.3233/JHD-160200
pubmed: 27983560
pmcid: 5181681
Deng YP, Reiner A (2016) Cholinergic interneurons in the Q140 knockin mouse model of Huntington’s disease: Reductions in dendritic branching and thalamostriatal input. J Comp Neurol 524(17):3518–3529. https://doi.org/10.1002/cne.24013
doi: 10.1002/cne.24013
pubmed: 27219491
pmcid: 5050058
Dhadde SB, Nagakannan P, Roopesh M, Kumar SRA, Thippeswamy BS, Veerapur VP, Badami S (2016) Effect of embelin against 3-nitropropionic acid-induced Huntington’s disease in rats. Biomed Pharmacother 77:52–58. https://doi.org/10.1016/j.biopha.2015.11.009
doi: 10.1016/j.biopha.2015.11.009
pubmed: 26796265
Di Martino RMC, Pruccoli L, Bisi A, Gobbi S, Rampa A, Martinez A, Pérez C, Martinez-Gonzalez L, Paglione M, Di Schiavi E, Seghetti F, Tarozzi A, Belluti F (2020) Novel Curcumin-Diethyl Fumarate Hybrid as a Dualistic GSK-3β Inhibitor/Nrf2 Inducer for the Treatment of Parkinson’s Disease. ACS Chem Neurosci. 11(17):2728–2740. https://doi.org/10.1021/acschemneuro.0c00363
doi: 10.1021/acschemneuro.0c00363
pubmed: 32663009
Gao S, Siddiqui N, Etim I et al (2021) Developing nutritional component chrysin as a therapeutic agent: Bioavailability and pharmacokinetics consideration, and ADME mechanisms. Biomed Pharmacother 142:112080. https://doi.org/10.1016/j.biopha.2021.112080
doi: 10.1016/j.biopha.2021.112080
pubmed: 34449320
pmcid: 8653576
Haddadi R, Eyvari-Brooshghalan S, Makhdoomi S et al (2024) Neuroprotective effects of silymarin in 3-nitropropionic acid-induced neurotoxicity in male mice: improving behavioral deficits by attenuating oxidative stress and neuroinflammation. Naunyn Schmiedebergs Arch Pharmacol 397:2447–2463. https://doi.org/10.1007/s00210-023-02776-z
doi: 10.1007/s00210-023-02776-z
pubmed: 37847410
Kadir A, Singh J, Rahi V, Kumar P (2022) Berberine Ameliorates Haloperidol and 3-Nitropropionic Acid-Induced Neurotoxicity in Rats. Neurochem Res 47:3285–3297. https://doi.org/10.1007/s11064-022-03677-y
doi: 10.1007/s11064-022-03677-y
pubmed: 35876936
Kovalevich J, Langford D (2013) Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol 1078:9–21. https://doi.org/10.1007/978-1-62703-640-5_2
doi: 10.1007/978-1-62703-640-5_2
pubmed: 23975817
pmcid: 5127451
Kumar P, Kumar A (2009) Protective effect of rivastigmine against 3-nitropropionic acid-induced Huntington’s disease like symptoms: Possible behavioural, biochemical and cellular alterations. Eur J Pharmacol 615:91–101. https://doi.org/10.1016/j.ejphar.2009.04.058
doi: 10.1016/j.ejphar.2009.04.058
pubmed: 19445928
Li N, Pang Q, Zhang Y et al (2023) Ginsenoside ompound K reduces neuronal damage and improves neuronal synaptic dysfunction by targeting Aβ. Front Pharmacol 14:1103012. https://doi.org/10.3389/fphar.2023.1103012
doi: 10.3389/fphar.2023.1103012
pubmed: 36873999
pmcid: 9977807
Lum PT, Sekar M, Seow LJ et al (2023) Neuroprotective potency of mangiferin against 3-nitropropionic acid induced Huntington’s disease-like symptoms in rats: possible antioxidant and anti-inflammatory mechanisms. Front Pharmacol 14:1189957. https://doi.org/10.3389/fphar.2023.1189957
doi: 10.3389/fphar.2023.1189957
pubmed: 37521470
pmcid: 10372348
Manjari SKV, Maity S, Poornima R et al (2022) Restorative Action of Vitamin D3 on Motor Dysfunction Through Enhancement of Neurotrophins and Antioxidant Expression in the Striatum. Neuroscience 492:67–81. https://doi.org/10.1016/j.neuroscience.2022.03.039
doi: 10.1016/j.neuroscience.2022.03.039
pubmed: 35413386
Mohammed RA, Mansour SM (2021) Sodium hydrogen sulfide upregulates cystathionine β-synthase and protects striatum against 3-nitropropionic acid-induced neurotoxicity in rats. J Pharm Pharmacol 73(3):310–321. https://doi.org/10.1093/jpp/rgaa072
doi: 10.1093/jpp/rgaa072
pubmed: 33793881
Naseri A, Taymouri S, Hosseini Sharifabadi A, Varshosaz J (2023) Chrysin loaded bilosomes improve the hepatoprotective effects of chrysin against CCl4 induced hepatotoxicity in mice. J Biomater Appl 38(4):509–526. https://doi.org/10.1177/08853282231198948
doi: 10.1177/08853282231198948
pubmed: 37632164
Okoh VI, Campos HM, de Oliveira FPY et al (2024) Chrysin bonded to β-d-glucose tetraacetate enhances its protective effects against the neurotoxicity induced by aluminum in Swiss mice. J Pharm Pharmacol 76(4):368–380. https://doi.org/10.1093/jpp/rgae011
doi: 10.1093/jpp/rgae011
pubmed: 38330395
Puri V, Nagpal M, Singh I, Singh M, Dhingra GA, Huanbutta K, Dheer D, Sharma A, Sangnim TA (2022) Comprehensive review on nutraceuticals: therapy support and formulation challenges. Nutrients 14(21):4637. https://doi.org/10.3390/nu14214637
doi: 10.3390/nu14214637
pubmed: 36364899
pmcid: 9654660
Rabie MA, Ghoneim AT, Fahmy MI et al (2024) Activation of alpha-7 nicotinic acetylcholine receptor by tropisetron mitigates 3-nitropropionic acid-induced Huntington’s disease in rats: Role of PI3K/Akt and JAK2/NF-κB signaling pathways. Chem Biol Interact 393:110957. https://doi.org/10.1016/j.cbi.2024.110957
doi: 10.1016/j.cbi.2024.110957
pubmed: 38513929
Ragab EM, El Gamal DM, Mohamed TM, Khamis AA (2022) Study of the inhibitory effects of chrysin and its nanoparticles on mitochondrial complex II subunit activities in normal mouse liver and human fibroblasts. J Genet Eng Biotechnol 20(1):15. https://doi.org/10.1186/s43141-021-00286-0
doi: 10.1186/s43141-021-00286-0
pubmed: 35089446
pmcid: 8795958
Ragab EM, El Gamal DM, Mohamed TM, Khamis AA (2023) Impairment of electron transport chain and induction of apoptosis by chrysin nanoparticles targeting succinate-ubiquinone oxidoreductase in pancreatic and lung cancer cells. Genes Nutr 18(1):4. https://doi.org/10.1186/s12263-023-00723-4
doi: 10.1186/s12263-023-00723-4
pubmed: 36906524
pmcid: 10008604
Ramachandran S, Thangarajan S (2016) A novel therapeutic application of solid lipid nanoparticles encapsulated thymoquinone (TQ-SLNs) on 3-nitropropionic acid induced Huntington’s disease-like symptoms in wistar rats. Chem Biol Interact 256:25–36. https://doi.org/10.1016/j.cbi.2016.05.020
doi: 10.1016/j.cbi.2016.05.020
pubmed: 27206696
Ruan Q, Lesort M, MacDonald ME, Johnson GV (2004) Striatal cells from mutant huntingtin knock-in mice are selectively vulnerable to mitochondrial complex II inhibitor-induced cell death through a non-apoptotic pathway. Hum Mol Genet 13(7):669–681. https://doi.org/10.1093/hmg/ddh082
doi: 10.1093/hmg/ddh082
pubmed: 14962977
Shalaby HN, El-Tanbouly DM, Zaki HF et al (2018) Topiramate mitigates 3-nitropropionic acid-induced striatal neurotoxicity via modulation of AMPA receptors. Food Chem Toxicol 118:227–234. https://doi.org/10.1016/j.fct.2018.05.022
doi: 10.1016/j.fct.2018.05.022
pubmed: 29753867
Sharma P, Kumar M, Bansal N (2021) Ellagic acid prevents 3-nitropropionic acid induced symptoms of Huntington’s disease. Naunyn Schmiedebergs Arch Pharmacol 394:1917–1928. https://doi.org/10.1007/s00210-021-02106-1
doi: 10.1007/s00210-021-02106-1
pubmed: 34061228
Souza LC, Wilhelm EA, Bortolatto CF et al (2014) Involvement of mGlu5 receptor in 3-nitropropionic acid-induced oxidative stress in rat striatum. Neurol Res 36(9):833–839. https://doi.org/10.1179/1743132814Y.0000000334
doi: 10.1179/1743132814Y.0000000334
pubmed: 24588139
Stompor-Goracy M, Bajek-Bil A, Machaczka M (2021) Chrysin: Perspectives on contemporary status and future possibilities as pro-health agent. Nutrients 13:2038. https://doi.org/10.3390/nu13062038
doi: 10.3390/nu13062038
pubmed: 34198618
pmcid: 8232110
Thangarajan S, Ramachandran S, Krishnamurthy P (2016) Chrysin exerts neuroprotective effects against 3-Nitropropionic acid induced behavioral despair—Mitochondrial dysfunction and striatal apoptosis via upregulating Bcl-2 gene and downregulating Bax—Bad genes in male wistar rats. Biomed Pharmacother 84:514–525. https://doi.org/10.1016/j.biopha.2016.09.070
doi: 10.1016/j.biopha.2016.09.070
pubmed: 27690136
Túnez I, Tasset I, Pérez-De La Cruz V, Santamaría A (2010) 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington’s disease: past, present and future. Molecules 15(2):878–916. https://doi.org/10.3390/molecules15020878
doi: 10.3390/molecules15020878
pubmed: 20335954
pmcid: 6263191
Upadhayay S, Yedke NG, Rahi V et al (2023) An Overview of the pathophysiological mechanisms of 3-nitropropionic acid (3-NPA) as a neurotoxin in a Huntington’s disease model and its relevance to drug discovery and development. Neurochem Res 48:1631–1647. https://doi.org/10.1007/s11064-023-03868-1
doi: 10.1007/s11064-023-03868-1
pubmed: 36738367
Wang S, Chen Y, Xia C, Yang C, Chen J, Hai L, Wu Y, Yang Z (2022) Synthesis and evaluation of glycosylated quercetin to enhance neuroprotective effects on cerebral ischemia-reperfusion. Bioorg Med Chem 73:117008. https://doi.org/10.1016/j.bmc.2022.117008
doi: 10.1016/j.bmc.2022.117008
pubmed: 36126445
Zhang Y, Zhao J, Afzal O, Kazmi I, Al-Abbasi FA, Altamimi ASA, Yang Z (2020) Neuroprotective role of chrysin-loaded poly (lactic-co-glycolic acid) nanoparticle against kindling-induced epilepsy through Nrf2/ARE/HO-1 pathway. J Biochem Mol Toxicol 35(2):e22634. https://doi.org/10.1002/jbt.22634
doi: 10.1002/jbt.22634
pubmed: 32991785
Zhu ZY, Chen L, Liu F et al (2016) Preparation and activity evaluation of chrysin-β-D-galactopyranoside. Arch Pharm Res 39:1433–1440. https://doi.org/10.1007/s12272-016-0800-2
doi: 10.1007/s12272-016-0800-2
pubmed: 27461029