Multimodal gradients of basal forebrain connectivity across the neocortex.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
18 Oct 2024
18 Oct 2024
Historique:
received:
22
02
2024
accepted:
01
10
2024
medline:
18
10
2024
pubmed:
18
10
2024
entrez:
17
10
2024
Statut:
epublish
Résumé
Cortical cholinergic projections originate from subregions of the basal forebrain (BF). To examine its organization in humans, we computed multimodal gradients of BF connectivity by combining 7 T diffusion and resting state functional MRI. Moving from anteromedial to posterolateral BF, we observe reduced tethering between structural and functional connectivity gradients, with the lowest tethering in the nucleus basalis of Meynert. In the neocortex, this gradient is expressed by progressively reduced tethering from unimodal sensory to transmodal cortex, with the lowest tethering in the midcingulo-insular network, and is also spatially correlated with the molecular concentration of VAChT, measured by [
Identifiants
pubmed: 39420185
doi: 10.1038/s41467-024-53148-x
pii: 10.1038/s41467-024-53148-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8990Subventions
Organisme : Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
ID : 453677
Informations de copyright
© 2024. The Author(s).
Références
Mesulam, M. M., Mufson, E. J., Levey, A. I. & Wainer, B. H. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J. Comp. Neurol. 214, 170–197 (1983).
pubmed: 6841683
doi: 10.1002/cne.902140206
Li, A. et al. Generation of a whole-brain atlas for the cholinergic system and mesoscopic projectome analysis of basal forebrain cholinergic neurons. Proc. Natl. Acad. Sci. USA 115, 415–420 (2017).
pubmed: 29259118
pmcid: 5777024
doi: 10.1073/pnas.1703601115
Do, J. P. et al. Cell type-specific long-range connections of basal forebrain circuit. Elife 5, e13214 (2016).
Wu, H., Williams, J. & Nathans, J. Complete morphologies of basal forebrain cholinergic neurons in the mouse. Elife 3, e02444 (2014).
pubmed: 24894464
pmcid: 4038840
doi: 10.7554/eLife.02444
Muñoz, W. & Rudy, B. Spatiotemporal specificity in cholinergic control of neocortical function. Curr. Opin. Neurobiol. 26, 149–160 (2014).
pubmed: 24637201
pmcid: 4100208
doi: 10.1016/j.conb.2014.02.015
Gielow, M. R. & Zaborszky, L. The input-output relationship of the cholinergic basal forebrain. Cell Rep. 18, 1817–1830 (2017).
pubmed: 28199851
pmcid: 5725195
doi: 10.1016/j.celrep.2017.01.060
Zaborszky, L. et al. Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: An experimental study based on retrograde tracing and 3D reconstruction. Cereb. Cortex 25, 118–137 (2015).
pubmed: 23964066
doi: 10.1093/cercor/bht210
Yuan, R., Biswal, B. B. & Zaborszky, L. Functional subdivisions of magnocellular cell groups in human basal forebrain: Test-retest resting-state study at ultra-high field, and meta-analysis. Cereb. Cortex 29, 2844–2858 (2019).
pubmed: 30137295
doi: 10.1093/cercor/bhy150
Markello, R. D., Spreng, R. N., Luh, W. M., Anderson, A. K. & De Rosa, E. Segregation of the human basal forebrain using resting state functional MRI. Neuroimage 173, 287–297 (2018).
pubmed: 29496614
doi: 10.1016/j.neuroimage.2018.02.042
Fritz, H. C. J. et al. The corticotopic organization of the human basal forebrain as revealed by regionally selective functional connectivity profiles. Hum. Brain Mapp. 40, 868–878 (2019).
pubmed: 30311315
doi: 10.1002/hbm.24417
Schmitz, T. W., Mur, M., Aghourian, M., Bedard, M. A. & Spreng, R. N. Longitudinal Alzheimer’s degeneration reflects the spatial topography of cholinergic basal forebrain projections. Cell Rep. 24, 38–46 (2018).
pubmed: 29972789
pmcid: 8840819
doi: 10.1016/j.celrep.2018.06.001
Kilimann, I. et al. Subregional basal forebrain atrophy in Alzheimer’s disease: A multicenter study. J. Alzheimers Dis. 40, 687–700 (2014).
pubmed: 24503619
pmcid: 4120953
doi: 10.3233/JAD-132345
Scheef, L. et al. Subregional volume reduction of the cholinergic forebrain in subjective cognitive decline (SCD). Neuroimage Clin. 21, 101612 (2019).
pubmed: 30555006
doi: 10.1016/j.nicl.2018.101612
Nemy, M. et al. Cholinergic white matter pathways make a stronger contribution to attention and memory in normal aging than cerebrovascular health and nucleus basalis of Meynert. Neuroimage 211, 116607 (2020).
Teipel, S. J. et al. Brain atrophy in primary progressive aphasia involves the cholinergic basal forebrain and Ayala’s nucleus. Psychiatry Res. 221, 187–194 (2014).
pubmed: 24434193
doi: 10.1016/j.pscychresns.2013.10.003
Fernández-Cabello, S. et al. Basal forebrain volume reliably predicts the cortical spread of Alzheimer’s degeneration. Brain 143, 993–1009 (2020).
pubmed: 32203580
pmcid: 7092749
doi: 10.1093/brain/awaa012
Yang, E. et al. The default network dominates neural responses to evolving movie stories. Nat. Commun. 14, 4197 (2023).
pubmed: 37452058
pmcid: 10349102
doi: 10.1038/s41467-023-39862-y
Vázquez-Rodríguez, B. et al. Gradients of structure-function tethering across neocortex. Proc. Natl Acad. Sci. USA 116, 21219–21227 (2019).
pubmed: 31570622
pmcid: 6800358
doi: 10.1073/pnas.1903403116
Paquola, C. et al. Shifts in myeloarchitecture characterise adolescent development of cortical gradients. Elife 8, e50482 (2019).
pubmed: 31724948
pmcid: 6855802
doi: 10.7554/eLife.50482
Huntenburg, J. M. et al. A systematic relationship between functional connectivity and intracortical myelin in the human cerebral cortex. Cereb. Cortex 27, 981–997 (2017).
pubmed: 28184415
pmcid: 5390400
doi: 10.1093/cercor/bhx030
Paquola, C. et al. Microstructural and functional gradients are increasingly dissociated in transmodal cortices. PLoS Biol. 17, e3000284 (2019).
pubmed: 31107870
pmcid: 6544318
doi: 10.1371/journal.pbio.3000284
Gollo, L. L. et al. Fragility and volatility of structural hubs in the human connectome. Nat. Neurosci. 21, 1107–1116 (2018).
pubmed: 30038275
doi: 10.1038/s41593-018-0188-z
Roberts, J. A. et al. The contribution of geometry to the human connectome. Neuroimage 124, 379–393 (2016).
pubmed: 26364864
doi: 10.1016/j.neuroimage.2015.09.009
Van Essen, D. C. et al. NeuroImage the WU-minn human connectome project: An overview. Neuroimage 80, 62–79 (2013).
pubmed: 23684880
doi: 10.1016/j.neuroimage.2013.05.041
Coifman, R. R. et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc. Natl Acad. Sci. Usa. 102, 7426–7431 (2005).
pubmed: 15899970
pmcid: 1140422
doi: 10.1073/pnas.0500334102
Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl. Acad. Sci. USA 113, 12574–12579 (2016).
pubmed: 27791099
pmcid: 5098630
doi: 10.1073/pnas.1608282113
Royer, J. et al. Gradients of brain organization: Smooth sailing from methods development to user community. Neuroinformatics https://doi.org/10.1007/s12021-024-09660-y . (2024).
Alves, P. N., Forkel, S. J., Corbetta, M. & Thiebaut de Schotten, M. The subcortical and neurochemical organization of the ventral and dorsal attention networks. Commun. Biol. 5, 1343 (2022).
pubmed: 36477440
pmcid: 9729227
doi: 10.1038/s42003-022-04281-0
Corbetta, M., Patel, G. & Shulman, G. L. The reorienting system of the human brain: from environment to theory of mind. Neuron 58, 306–324 (2008).
pubmed: 18466742
pmcid: 2441869
doi: 10.1016/j.neuron.2008.04.017
Uddin, L. Q. Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci. 16, 55–61 (2015).
pubmed: 25406711
doi: 10.1038/nrn3857
Uddin, L. Q., Yeo, B. T. T. & Spreng, R. N. Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topogr. 32, 926–942 (2019).
pubmed: 31707621
pmcid: 7325607
doi: 10.1007/s10548-019-00744-6
Menon, V. & Uddin, L. Q. Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 214, 655–667 (2010).
pubmed: 20512370
pmcid: 2899886
doi: 10.1007/s00429-010-0262-0
Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007).
pubmed: 17329432
pmcid: 2680293
doi: 10.1523/JNEUROSCI.5587-06.2007
Seeley, W. W. The salience network: A neural system for perceiving and responding to homeostatic demands. J. Neurosci. 39, 9878–9882 (2019).
pubmed: 31676604
pmcid: 6978945
doi: 10.1523/JNEUROSCI.1138-17.2019
Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).
pubmed: 21653723
doi: 10.1152/jn.00338.2011
Sridharan, D., Levitin, D. J. & Menon, V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl Acad. Sci. USA 105, 12569–12574 (2008).
pubmed: 18723676
pmcid: 2527952
doi: 10.1073/pnas.0800005105
Kanel, P., van der Zee, S. & Sanchez-Catasus, C. A. Cerebral topography of vesicular cholinergic transporter changes in neurologically intact adults: A [18F] FEOBV PET study. Aging Brain 2, 100039 (2022).
pubmed: 35465252
pmcid: 9028526
doi: 10.1016/j.nbas.2022.100039
Markello, R. D. et al. neuromaps: structural and functional interpretation of brain maps. Nat. Methods https://doi.org/10.1038/s41592-022-01625-w . (2022).
Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).
pubmed: 23668970
doi: 10.1016/j.neuroimage.2013.04.127
Zaborszky, L. et al. Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. Neuroimage 42, 1127–1141 (2008).
pubmed: 18585468
doi: 10.1016/j.neuroimage.2008.05.055
Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nat. Publ. Group 536, 171–178 (2016).
Selden, N. R., Gitelman, D. R. & Mesulam, M.-M. Trajectories of corticopetal cholinergic pathways within the cerebral hemispheres of the human brain. Neuroimage 7, S26 (1998).
doi: 10.1016/S1053-8119(18)30859-0
Nemy, M. et al. Cholinergic white matter pathways along the Alzheimer’s disease continuum. Brain 146, 2075–2088 (2023).
pubmed: 36288546
doi: 10.1093/brain/awac385
Vos de Wael, R. et al. BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets. Commun. Biol. 3, 103 (2020).
pubmed: 32139786
pmcid: 7058611
doi: 10.1038/s42003-020-0794-7
Katsumi, Y. et al. Correspondence of functional connectivity gradients across human isocortex, cerebellum, and hippocampus. Commun. Biol. 6, 401 (2023).
pubmed: 37046050
pmcid: 10097701
doi: 10.1038/s42003-023-04796-0
Satopaa, V., Albrecht, J., Irwin, D. & Raghavan, B. Finding a ‘Kneedle’ in a haystack: Detecting knee points in system behavior. in 2011 31st International Conference on Distributed Computing Systems Workshops 166–171 (IEEE, 2011).
Prado, V. F., Roy, A., Kolisnyk, B., Gros, R. & Prado, M. A. Regulation of cholinergic activity by the vesicular acetylcholine transporter. Biochem. J. 450, 265–274 (2013).
pubmed: 23410039
doi: 10.1042/BJ20121662
Alexander-Bloch, A. F. et al. On testing for spatial correspondence between maps of human brain structure and function. Neuroimage 178, 540–551 (2018).
pubmed: 29860082
doi: 10.1016/j.neuroimage.2018.05.070
Aghourian, M. et al. Quantification of brain cholinergic denervation in Alzheimer’s disease using PET imaging with [18F]-FEOBV. Mol. Psychiatry 22, 1531–1538 (2017).
pubmed: 28894304
doi: 10.1038/mp.2017.183
Bedard, M.-A. et al. Brain cholinergic alterations in idiopathic REM sleep behaviour disorder: a PET imaging study with 18F-FEOBV. Sleep. Med. 58, 35–41 (2019).
pubmed: 31078078
doi: 10.1016/j.sleep.2018.12.020
Chklovskii, D. B. & Koulakov, A. A. Maps in the brain: what can we learn from them? Annu. Rev. Neurosci. 27, 369–392 (2004).
pubmed: 15217337
doi: 10.1146/annurev.neuro.27.070203.144226
Bassett, D. S. et al. Efficient physical embedding of topologically complex information processing networks in brains and computer circuits. PLoS Comput. Biol. 6, e1000748 (2010).
pubmed: 20421990
pmcid: 2858671
doi: 10.1371/journal.pcbi.1000748
Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).
pubmed: 22498897
doi: 10.1038/nrn3214
Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).
pubmed: 24695228
pmcid: 5102064
doi: 10.1038/nature13186
Kuan, L. et al. Neuroinformatics of the Allen mouse brain connectivity atlas. Methods 73, 4–17 (2015).
pubmed: 25536338
doi: 10.1016/j.ymeth.2014.12.013
Sforazzini, F., Schwarz, A. J., Galbusera, A., Bifone, A. & Gozzi, A. Distributed BOLD and CBV-weighted resting-state networks in the mouse brain. Neuroimage 87, 403–415 (2014).
pubmed: 24080504
doi: 10.1016/j.neuroimage.2013.09.050
Mandino, F. et al. A triple-network organization for the mouse brain. Mol. Psychiatry 27, 865–872 (2022).
pubmed: 34650202
doi: 10.1038/s41380-021-01298-5
Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005).
pubmed: 15976020
pmcid: 1157105
doi: 10.1073/pnas.0504136102
Fransson, P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 26, 15–29 (2005).
pubmed: 15852468
pmcid: 6871700
doi: 10.1002/hbm.20113
Golland, Y., Golland, P., Bentin, S. & Malach, R. Data-driven clustering reveals a fundamental subdivision of the human cortex into two global systems. Neuropsychologia 46, 540–553 (2008).
pubmed: 18037453
doi: 10.1016/j.neuropsychologia.2007.10.003
Tian, L. et al. The relationship within and between the extrinsic and intrinsic systems indicated by resting state correlational patterns of sensory cortices. Neuroimage 36, 684–690 (2007).
pubmed: 17499519
doi: 10.1016/j.neuroimage.2007.03.044
Greicius, M. D. & Menon, V. Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation. J. Cogn. Neurosci. 16, 1484–1492 (2004).
pubmed: 15601513
doi: 10.1162/0898929042568532
Doucet, G. et al. Brain activity at rest: a multiscale hierarchical functional organization. J. Neurophysiol. 105, 2753–2763 (2011).
pubmed: 21430278
doi: 10.1152/jn.00895.2010
Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E. & Buckner, R. L. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J. Neurophysiol. 100, 3328–3342 (2008).
pubmed: 18799601
pmcid: 2604839
doi: 10.1152/jn.90355.2008
Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W. & Schacter, D. L. Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage 53, 303–317 (2010).
pubmed: 20600998
doi: 10.1016/j.neuroimage.2010.06.016
Chakraborty, S. et al. Focal acetylcholinergic modulation of the human midcingulo-insular network during attention: Meta-analytic neuroimaging and behavioral evidence. J. Neurochem. https://doi.org/10.1111/jnc.15990 (2023).
Everitt, B. J. & Robbins, T. W. Central cholinergic systems and cognition. Annu. Rev. Psychol. 48, 649–684 (1997).
pubmed: 9046571
doi: 10.1146/annurev.psych.48.1.649
Sarter, M., Hasselmo, M. E., Bruno, J. P. & Givens, B. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res. Brain Res. Rev. 48, 98–111 (2005).
pubmed: 15708630
doi: 10.1016/j.brainresrev.2004.08.006
Sarter, M. & Lustig, C. Forebrain cholinergic signaling: Wired and phasic, not tonic, and causing behavior. J. Neurosci. 40, 712–719 (2020).
pubmed: 31969489
pmcid: 6975286
doi: 10.1523/JNEUROSCI.1305-19.2019
Schmitz, T. W. & Duncan, J. Normalization and the cholinergic microcircuit: A unified basis for attention. Trends Cogn. Sci. 22, 422–437 (2018).
pubmed: 29576464
doi: 10.1016/j.tics.2018.02.011
Krabbe, S. et al. Adaptive disinhibitory gating by VIP interneurons permits associative learning. Nat. Neurosci. 22, 1834–1843 (2019).
pubmed: 31636447
doi: 10.1038/s41593-019-0508-y
Kuchibhotla, K. V. et al. Parallel processing by cortical inhibition enables context-dependent behavior. Nat. Neurosci. 20, 62–71 (2017).
pubmed: 27798631
doi: 10.1038/nn.4436
Chen, N., Sugihara, H. & Sur, M. An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity. Nat. Neurosci. 18, 892–902 (2015).
pubmed: 25915477
pmcid: 4446146
doi: 10.1038/nn.4002
Xue, M., Atallah, B. V. & Scanziani, M. Equalizing excitation–inhibition ratios across visual cortical neurons. Nature 511, 596–600 (2014).
pubmed: 25043046
pmcid: 4117808
doi: 10.1038/nature13321
Fu, Y. et al. A cortical circuit for gain control by behavioral state. Cell 156, 1139–1152 (2014).
pubmed: 24630718
pmcid: 4041382
doi: 10.1016/j.cell.2014.01.050
Lee, S. H. et al. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488, 379–383 (2012).
pubmed: 22878719
pmcid: 3422431
doi: 10.1038/nature11312
Pi, H.-J. et al. Cortical interneurons that specialize in disinhibitory control. Nature 503, 521–524 (2013).
pubmed: 24097352
pmcid: 4017628
doi: 10.1038/nature12676
Pfeffer, C. K., Xue, M., He, M., Huang, Z. J. & Scanziani, M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat. Neurosci. 16, 1068–1076 (2013).
pubmed: 23817549
pmcid: 3729586
doi: 10.1038/nn.3446
Alitto, H. J. & Dan, Y. Cell-type-specific modulation of neocortical activity by basal forebrain input. Front. Syst. Neurosci. 6, 79 (2012).
pubmed: 23316142
Helmstaedter, M., Sakmann, B. & Feldmeyer, D. Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns. Cereb. Cortex 19, 926–937 (2009).
pubmed: 18832335
doi: 10.1093/cercor/bhn141
Miller, J.-E. K., Ayzenshtat, I., Carrillo-Reid, L. & Yuste, R. Visual stimuli recruit intrinsically generated cortical ensembles. Proc. Natl Acad. Sci. USA 111, E4053–E4061 (2014).
pubmed: 25201983
pmcid: 4183303
doi: 10.1073/pnas.1406077111
Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).
pubmed: 7605061
doi: 10.1146/annurev.ne.18.030195.001205
Reynolds, J. H. & Heeger, D. J. The normalization model of attention. Neuron 61, 168–185 (2009).
pubmed: 19186161
pmcid: 2752446
doi: 10.1016/j.neuron.2009.01.002
Carandini, M. & Heeger, D. J. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51–62 (2011).
pubmed: 22108672
pmcid: 3273486
doi: 10.1038/nrn3136
Záborszky, L. et al. Specific basal forebrain–cortical cholinergic circuits coordinate cognitive operations. J. Neurosci. 38, 9446–9458 (2018).
pubmed: 30381436
pmcid: 6209837
doi: 10.1523/JNEUROSCI.1676-18.2018
Laszlovszky, T. et al. Distinct synchronization, cortical coupling and behavioral function of two basal forebrain cholinergic neuron types. Nat. Neurosci. 23, 992–1003 (2020).
pubmed: 32572235
pmcid: 7611978
doi: 10.1038/s41593-020-0648-0
Shine, J. M. Neuromodulatory influences on integration and segregation in the brain. Trends Cogn. Sci. 23, 572–583 (2019).
pubmed: 31076192
doi: 10.1016/j.tics.2019.04.002
Singer, W. et al. Neuronal assemblies: necessity, signature and detectability. Trends Cogn. Sci. 1, 252–261 (1997).
pubmed: 21223920
doi: 10.1016/S1364-6613(97)01079-6
Fries, P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. 32, 209–224 (2009).
pubmed: 19400723
doi: 10.1146/annurev.neuro.051508.135603
Canolty, R. T. et al. Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies. Proc. Natl Acad. Sci. USA 107, 17356–17361 (2010).
pubmed: 20855620
pmcid: 2951408
doi: 10.1073/pnas.1008306107
Buzsáki, G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68, 362–385 (2010).
pubmed: 21040841
pmcid: 3005627
doi: 10.1016/j.neuron.2010.09.023
Duncan, J. The structure of cognition: attentional episodes in mind and brain. Neuron 80, 35–50 (2013).
pubmed: 24094101
pmcid: 3791406
doi: 10.1016/j.neuron.2013.09.015
Mattson, M. P. & Magnus, T. Ageing and neuronal vulnerability. Nat. Rev. Neurosci. 7, 278–294 (2006).
pubmed: 16552414
pmcid: 3710114
doi: 10.1038/nrn1886
Saxena, S. & Caroni, P. Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 71, 35–48 (2011).
pubmed: 21745636
doi: 10.1016/j.neuron.2011.06.031
Roussarie, J.-P. et al. Selective neuronal vulnerability in Alzheimer’s disease: A network-based analysis. Neuron 107, 821–835 (2020).
pubmed: 32603655
pmcid: 7580783
doi: 10.1016/j.neuron.2020.06.010
Bohnen, N. I., van der Zee, S. & Albin, R. Cholinergic centro-cingulate network in Parkinson disease and normal aging. Aging 15, 10817–10820 (2023).
pubmed: 37899134
pmcid: 10637805
Schmitz, T. W., Nathan Spreng, R. & Alzheimer’s Disease Neuroimaging Initiative. Basal forebrain degeneration precedes and predicts the cortical spread of Alzheimer’s pathology. Nat. Commun. 7, 13249 (2016).
pubmed: 27811848
pmcid: 5097157
doi: 10.1038/ncomms13249
Wang, Y. et al. Inconsistencies in atlas-based volumetric measures of the human nucleus basalis of Meynert: A need for high-resolution alternatives. Neuroimage 259, 119421 (2022).
pubmed: 35779763
doi: 10.1016/j.neuroimage.2022.119421
Vu, A. T. et al. High resolution whole brain diffusion imaging at 7T for the Human Connectome Project. Neuroimage 122, 318–331 (2015).
pubmed: 26260428
doi: 10.1016/j.neuroimage.2015.08.004
Vu, A. T. et al. Tradeoffs in pushing the spatial resolution of fMRI for the 7T Human Connectome Project. Neuroimage 154, 23–32 (2017).
doi: 10.1016/j.neuroimage.2016.11.049
Mölder, F. et al. Sustainable data analysis with Snakemake. F1000Res. 10, 33 (2021).
pubmed: 34035898
pmcid: 8114187
doi: 10.12688/f1000research.29032.2
Kluyver, T. et al. Jupyter Notebooks – a publishing format for reproducible computational workflows. in Positioning and Power in Academic Publishing: Players, Agents and Agendas (eds. Loizides, F. & Scmidt, FB.) 87–90 (IOS Press, 2016).
Mugler, J. P. 3rd & Brookeman, J. R. Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn. Reson. Med. 15, 152–157 (1990).
pubmed: 2374495
doi: 10.1002/mrm.1910150117
WU-Minn, H. C. P. WU-Minn HCP 1200 subjects data release reference manual. https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf (2018).
Collins, D. L., Neelin, P., Peters, T. M. & Evans, A. C. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J. Comput. Assist. Tomogr. 18, 192–205 (1994).
pubmed: 8126267
doi: 10.1097/00004728-199403000-00005
Mesulam, M. M., Mufson, E. J., Wainer, B. H. & Levey, A. I. Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10, 1185–1201 (1983b).
pubmed: 6320048
doi: 10.1016/0306-4522(83)90108-2
HCPpipelines: Processing Pipelines for the HCP. (Github, 2014).
Behrens, T. E. J., Berg, H. J., Jbabdi, S., Rushworth, M. F. S. & Woolrich, M. W. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 34, 144–155 (2007).
doi: 10.1016/j.neuroimage.2006.09.018
Grabner, G. et al. in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006 58–66 (Springer Berlin Heidelberg, 2006).
Griffanti, L. et al. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Neuroimage 95, 232–247 (2014).
pubmed: 24657355
doi: 10.1016/j.neuroimage.2014.03.034
Dickie, E. W. et al. Ciftify: A framework for surface-based analysis of legacy MR acquisitions. Neuroimage 197, 818–826 (2019).
pubmed: 31091476
doi: 10.1016/j.neuroimage.2019.04.078
Glasser, M. F. et al. The human connectome project’s neuroimaging approach. Nat. Neurosci. 19, 1175–1187 (2016).
pubmed: 27571196
pmcid: 6172654
doi: 10.1038/nn.4361
Tian, Y., Margulies, D. S., Breakspear, M. & Zalesky, A. Topographic organization of the human subcortex unveiled with functional connectivity gradients. Nat. Neurosci. 23, 1421–1432 (2020).
pubmed: 32989295
doi: 10.1038/s41593-020-00711-6
Byrge, L. & Kennedy, D. P. High-accuracy individual identification using a ‘thin slice’ of the functional connectome. Netw. Neurosci. 3, 363–383 (2019).
pubmed: 30793087
pmcid: 6370471
doi: 10.1162/netn_a_00068
Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
de Castro, B. M. et al. The vesicular acetylcholine transporter is required for neuromuscular development and function. Mol. Cell. Biol. 29, 5238–5250 (2009).
pubmed: 19635813
pmcid: 2747982
doi: 10.1128/MCB.00245-09
Zhao, P. et al. The mesoscopic connectome of the cholinergic pontomesencephalic tegmentum. Front. Neuroanat. 16, 843303 (2022).
pubmed: 35655583
pmcid: 9152021
doi: 10.3389/fnana.2022.843303
Logan, J. et al. Graphical analysis of reversible radioligand binding from time—activity measurements applied to [N-11C-Methyl]-(−)-cocaine PET studies in human subjects. J. Cereb. Blood Flow Metab. 10, 740–747 (1990).
pubmed: 2384545
doi: 10.1038/jcbfm.1990.127
Bertoglio, D. et al. Validation and noninvasive kinetic modeling of [11C]UCB-J PET imaging in mice. J. Cereb. Blood Flow. Metab. 40, 1351–1362 (2020).
pubmed: 31307287
doi: 10.1177/0271678X19864081
Naumova, A. V., Akulov, A. E., Khodanovich, M. Y. & Yarnykh, V. L. High-resolution three-dimensional macromolecular proton fraction mapping for quantitative neuroanatomical imaging of the rodent brain in ultra-high magnetic fields. Neuroimage 147, 985–993 (2017).
pubmed: 27646128
doi: 10.1016/j.neuroimage.2016.09.036
Hikishima, K. et al. In vivo microscopic voxel-based morphometry with a brain template to characterize strain-specific structures in the mouse brain. Sci. Rep. 7, 85 (2017).
pubmed: 28273899
pmcid: 5427914
doi: 10.1038/s41598-017-00148-1
Li, C., Gore, J. C. & Davatzikos, C. Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation. Magn. Reson. Imaging 32, 913–923 (2014).
pubmed: 24928302
pmcid: 4401088
doi: 10.1016/j.mri.2014.03.010
Ashburner, J. & Friston, K. J. Diffeomorphic registration using geodesic shooting and Gauss–Newton optimisation. Neuroimage 55, 954–967 (2011).
pubmed: 21216294
doi: 10.1016/j.neuroimage.2010.12.049
Mitchell, J. S. B., Mount, D. M. & Papadimitriou, C. H. The discrete geodesic problem. SIAM J. Comput. 16, 647–668 (1987).
doi: 10.1137/0216045
Burt, J. B., Helmer, M., Shinn, M., Anticevic, A. & Murray, J. D. Generative modeling of brain maps with spatial autocorrelation. Neuroimage 220, 117038 (2020).
pubmed: 32585343
doi: 10.1016/j.neuroimage.2020.117038
Khan, A. & Chakraborty, S. Diffparc-Smk: General-Purpose Snakemake Workflow for Diffusion-Based Subcortical Parcellation. https://doi.org/10.5281/zenodo.7613835 (2023).
Kai, J., Khan, A. & Chakraborty, S. Subcorticalparc-Smk: General-Purpose Snakemake Workflow for Subcortical Parcellation with Functional and Structural Connectivity. (Github). https://doi.org/10.5281/zenodo.7622124 (2023).
Chakraborty, S. Multimodal Gradients of Basal Forebrain Connectivity across the Neocortex. (Github: HumanBF-Connectivity). https://doi.org/10.5281/zenodo.13739128 (2024).