Multimodal gradients of basal forebrain connectivity across the neocortex.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
18 Oct 2024
Historique:
received: 22 02 2024
accepted: 01 10 2024
medline: 18 10 2024
pubmed: 18 10 2024
entrez: 17 10 2024
Statut: epublish

Résumé

Cortical cholinergic projections originate from subregions of the basal forebrain (BF). To examine its organization in humans, we computed multimodal gradients of BF connectivity by combining 7 T diffusion and resting state functional MRI. Moving from anteromedial to posterolateral BF, we observe reduced tethering between structural and functional connectivity gradients, with the lowest tethering in the nucleus basalis of Meynert. In the neocortex, this gradient is expressed by progressively reduced tethering from unimodal sensory to transmodal cortex, with the lowest tethering in the midcingulo-insular network, and is also spatially correlated with the molecular concentration of VAChT, measured by [

Identifiants

pubmed: 39420185
doi: 10.1038/s41467-024-53148-x
pii: 10.1038/s41467-024-53148-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8990

Subventions

Organisme : Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
ID : 453677

Informations de copyright

© 2024. The Author(s).

Références

Mesulam, M. M., Mufson, E. J., Levey, A. I. & Wainer, B. H. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J. Comp. Neurol. 214, 170–197 (1983).
pubmed: 6841683 doi: 10.1002/cne.902140206
Li, A. et al. Generation of a whole-brain atlas for the cholinergic system and mesoscopic projectome analysis of basal forebrain cholinergic neurons. Proc. Natl. Acad. Sci. USA 115, 415–420 (2017).
pubmed: 29259118 pmcid: 5777024 doi: 10.1073/pnas.1703601115
Do, J. P. et al. Cell type-specific long-range connections of basal forebrain circuit. Elife 5, e13214 (2016).
Wu, H., Williams, J. & Nathans, J. Complete morphologies of basal forebrain cholinergic neurons in the mouse. Elife 3, e02444 (2014).
pubmed: 24894464 pmcid: 4038840 doi: 10.7554/eLife.02444
Muñoz, W. & Rudy, B. Spatiotemporal specificity in cholinergic control of neocortical function. Curr. Opin. Neurobiol. 26, 149–160 (2014).
pubmed: 24637201 pmcid: 4100208 doi: 10.1016/j.conb.2014.02.015
Gielow, M. R. & Zaborszky, L. The input-output relationship of the cholinergic basal forebrain. Cell Rep. 18, 1817–1830 (2017).
pubmed: 28199851 pmcid: 5725195 doi: 10.1016/j.celrep.2017.01.060
Zaborszky, L. et al. Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: An experimental study based on retrograde tracing and 3D reconstruction. Cereb. Cortex 25, 118–137 (2015).
pubmed: 23964066 doi: 10.1093/cercor/bht210
Yuan, R., Biswal, B. B. & Zaborszky, L. Functional subdivisions of magnocellular cell groups in human basal forebrain: Test-retest resting-state study at ultra-high field, and meta-analysis. Cereb. Cortex 29, 2844–2858 (2019).
pubmed: 30137295 doi: 10.1093/cercor/bhy150
Markello, R. D., Spreng, R. N., Luh, W. M., Anderson, A. K. & De Rosa, E. Segregation of the human basal forebrain using resting state functional MRI. Neuroimage 173, 287–297 (2018).
pubmed: 29496614 doi: 10.1016/j.neuroimage.2018.02.042
Fritz, H. C. J. et al. The corticotopic organization of the human basal forebrain as revealed by regionally selective functional connectivity profiles. Hum. Brain Mapp. 40, 868–878 (2019).
pubmed: 30311315 doi: 10.1002/hbm.24417
Schmitz, T. W., Mur, M., Aghourian, M., Bedard, M. A. & Spreng, R. N. Longitudinal Alzheimer’s degeneration reflects the spatial topography of cholinergic basal forebrain projections. Cell Rep. 24, 38–46 (2018).
pubmed: 29972789 pmcid: 8840819 doi: 10.1016/j.celrep.2018.06.001
Kilimann, I. et al. Subregional basal forebrain atrophy in Alzheimer’s disease: A multicenter study. J. Alzheimers Dis. 40, 687–700 (2014).
pubmed: 24503619 pmcid: 4120953 doi: 10.3233/JAD-132345
Scheef, L. et al. Subregional volume reduction of the cholinergic forebrain in subjective cognitive decline (SCD). Neuroimage Clin. 21, 101612 (2019).
pubmed: 30555006 doi: 10.1016/j.nicl.2018.101612
Nemy, M. et al. Cholinergic white matter pathways make a stronger contribution to attention and memory in normal aging than cerebrovascular health and nucleus basalis of Meynert. Neuroimage 211, 116607 (2020).
Teipel, S. J. et al. Brain atrophy in primary progressive aphasia involves the cholinergic basal forebrain and Ayala’s nucleus. Psychiatry Res. 221, 187–194 (2014).
pubmed: 24434193 doi: 10.1016/j.pscychresns.2013.10.003
Fernández-Cabello, S. et al. Basal forebrain volume reliably predicts the cortical spread of Alzheimer’s degeneration. Brain 143, 993–1009 (2020).
pubmed: 32203580 pmcid: 7092749 doi: 10.1093/brain/awaa012
Yang, E. et al. The default network dominates neural responses to evolving movie stories. Nat. Commun. 14, 4197 (2023).
pubmed: 37452058 pmcid: 10349102 doi: 10.1038/s41467-023-39862-y
Vázquez-Rodríguez, B. et al. Gradients of structure-function tethering across neocortex. Proc. Natl Acad. Sci. USA 116, 21219–21227 (2019).
pubmed: 31570622 pmcid: 6800358 doi: 10.1073/pnas.1903403116
Paquola, C. et al. Shifts in myeloarchitecture characterise adolescent development of cortical gradients. Elife 8, e50482 (2019).
pubmed: 31724948 pmcid: 6855802 doi: 10.7554/eLife.50482
Huntenburg, J. M. et al. A systematic relationship between functional connectivity and intracortical myelin in the human cerebral cortex. Cereb. Cortex 27, 981–997 (2017).
pubmed: 28184415 pmcid: 5390400 doi: 10.1093/cercor/bhx030
Paquola, C. et al. Microstructural and functional gradients are increasingly dissociated in transmodal cortices. PLoS Biol. 17, e3000284 (2019).
pubmed: 31107870 pmcid: 6544318 doi: 10.1371/journal.pbio.3000284
Gollo, L. L. et al. Fragility and volatility of structural hubs in the human connectome. Nat. Neurosci. 21, 1107–1116 (2018).
pubmed: 30038275 doi: 10.1038/s41593-018-0188-z
Roberts, J. A. et al. The contribution of geometry to the human connectome. Neuroimage 124, 379–393 (2016).
pubmed: 26364864 doi: 10.1016/j.neuroimage.2015.09.009
Van Essen, D. C. et al. NeuroImage the WU-minn human connectome project: An overview. Neuroimage 80, 62–79 (2013).
pubmed: 23684880 doi: 10.1016/j.neuroimage.2013.05.041
Coifman, R. R. et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc. Natl Acad. Sci. Usa. 102, 7426–7431 (2005).
pubmed: 15899970 pmcid: 1140422 doi: 10.1073/pnas.0500334102
Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl. Acad. Sci. USA 113, 12574–12579 (2016).
pubmed: 27791099 pmcid: 5098630 doi: 10.1073/pnas.1608282113
Royer, J. et al. Gradients of brain organization: Smooth sailing from methods development to user community. Neuroinformatics https://doi.org/10.1007/s12021-024-09660-y . (2024).
Alves, P. N., Forkel, S. J., Corbetta, M. & Thiebaut de Schotten, M. The subcortical and neurochemical organization of the ventral and dorsal attention networks. Commun. Biol. 5, 1343 (2022).
pubmed: 36477440 pmcid: 9729227 doi: 10.1038/s42003-022-04281-0
Corbetta, M., Patel, G. & Shulman, G. L. The reorienting system of the human brain: from environment to theory of mind. Neuron 58, 306–324 (2008).
pubmed: 18466742 pmcid: 2441869 doi: 10.1016/j.neuron.2008.04.017
Uddin, L. Q. Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci. 16, 55–61 (2015).
pubmed: 25406711 doi: 10.1038/nrn3857
Uddin, L. Q., Yeo, B. T. T. & Spreng, R. N. Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topogr. 32, 926–942 (2019).
pubmed: 31707621 pmcid: 7325607 doi: 10.1007/s10548-019-00744-6
Menon, V. & Uddin, L. Q. Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 214, 655–667 (2010).
pubmed: 20512370 pmcid: 2899886 doi: 10.1007/s00429-010-0262-0
Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007).
pubmed: 17329432 pmcid: 2680293 doi: 10.1523/JNEUROSCI.5587-06.2007
Seeley, W. W. The salience network: A neural system for perceiving and responding to homeostatic demands. J. Neurosci. 39, 9878–9882 (2019).
pubmed: 31676604 pmcid: 6978945 doi: 10.1523/JNEUROSCI.1138-17.2019
Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).
pubmed: 21653723 doi: 10.1152/jn.00338.2011
Sridharan, D., Levitin, D. J. & Menon, V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl Acad. Sci. USA 105, 12569–12574 (2008).
pubmed: 18723676 pmcid: 2527952 doi: 10.1073/pnas.0800005105
Kanel, P., van der Zee, S. & Sanchez-Catasus, C. A. Cerebral topography of vesicular cholinergic transporter changes in neurologically intact adults: A [18F] FEOBV PET study. Aging Brain 2, 100039 (2022).
pubmed: 35465252 pmcid: 9028526 doi: 10.1016/j.nbas.2022.100039
Markello, R. D. et al. neuromaps: structural and functional interpretation of brain maps. Nat. Methods https://doi.org/10.1038/s41592-022-01625-w . (2022).
Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).
pubmed: 23668970 doi: 10.1016/j.neuroimage.2013.04.127
Zaborszky, L. et al. Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. Neuroimage 42, 1127–1141 (2008).
pubmed: 18585468 doi: 10.1016/j.neuroimage.2008.05.055
Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nat. Publ. Group 536, 171–178 (2016).
Selden, N. R., Gitelman, D. R. & Mesulam, M.-M. Trajectories of corticopetal cholinergic pathways within the cerebral hemispheres of the human brain. Neuroimage 7, S26 (1998).
doi: 10.1016/S1053-8119(18)30859-0
Nemy, M. et al. Cholinergic white matter pathways along the Alzheimer’s disease continuum. Brain 146, 2075–2088 (2023).
pubmed: 36288546 doi: 10.1093/brain/awac385
Vos de Wael, R. et al. BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets. Commun. Biol. 3, 103 (2020).
pubmed: 32139786 pmcid: 7058611 doi: 10.1038/s42003-020-0794-7
Katsumi, Y. et al. Correspondence of functional connectivity gradients across human isocortex, cerebellum, and hippocampus. Commun. Biol. 6, 401 (2023).
pubmed: 37046050 pmcid: 10097701 doi: 10.1038/s42003-023-04796-0
Satopaa, V., Albrecht, J., Irwin, D. & Raghavan, B. Finding a ‘Kneedle’ in a haystack: Detecting knee points in system behavior. in 2011 31st International Conference on Distributed Computing Systems Workshops 166–171 (IEEE, 2011).
Prado, V. F., Roy, A., Kolisnyk, B., Gros, R. & Prado, M. A. Regulation of cholinergic activity by the vesicular acetylcholine transporter. Biochem. J. 450, 265–274 (2013).
pubmed: 23410039 doi: 10.1042/BJ20121662
Alexander-Bloch, A. F. et al. On testing for spatial correspondence between maps of human brain structure and function. Neuroimage 178, 540–551 (2018).
pubmed: 29860082 doi: 10.1016/j.neuroimage.2018.05.070
Aghourian, M. et al. Quantification of brain cholinergic denervation in Alzheimer’s disease using PET imaging with [18F]-FEOBV. Mol. Psychiatry 22, 1531–1538 (2017).
pubmed: 28894304 doi: 10.1038/mp.2017.183
Bedard, M.-A. et al. Brain cholinergic alterations in idiopathic REM sleep behaviour disorder: a PET imaging study with 18F-FEOBV. Sleep. Med. 58, 35–41 (2019).
pubmed: 31078078 doi: 10.1016/j.sleep.2018.12.020
Chklovskii, D. B. & Koulakov, A. A. Maps in the brain: what can we learn from them? Annu. Rev. Neurosci. 27, 369–392 (2004).
pubmed: 15217337 doi: 10.1146/annurev.neuro.27.070203.144226
Bassett, D. S. et al. Efficient physical embedding of topologically complex information processing networks in brains and computer circuits. PLoS Comput. Biol. 6, e1000748 (2010).
pubmed: 20421990 pmcid: 2858671 doi: 10.1371/journal.pcbi.1000748
Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).
pubmed: 22498897 doi: 10.1038/nrn3214
Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).
pubmed: 24695228 pmcid: 5102064 doi: 10.1038/nature13186
Kuan, L. et al. Neuroinformatics of the Allen mouse brain connectivity atlas. Methods 73, 4–17 (2015).
pubmed: 25536338 doi: 10.1016/j.ymeth.2014.12.013
Sforazzini, F., Schwarz, A. J., Galbusera, A., Bifone, A. & Gozzi, A. Distributed BOLD and CBV-weighted resting-state networks in the mouse brain. Neuroimage 87, 403–415 (2014).
pubmed: 24080504 doi: 10.1016/j.neuroimage.2013.09.050
Mandino, F. et al. A triple-network organization for the mouse brain. Mol. Psychiatry 27, 865–872 (2022).
pubmed: 34650202 doi: 10.1038/s41380-021-01298-5
Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005).
pubmed: 15976020 pmcid: 1157105 doi: 10.1073/pnas.0504136102
Fransson, P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 26, 15–29 (2005).
pubmed: 15852468 pmcid: 6871700 doi: 10.1002/hbm.20113
Golland, Y., Golland, P., Bentin, S. & Malach, R. Data-driven clustering reveals a fundamental subdivision of the human cortex into two global systems. Neuropsychologia 46, 540–553 (2008).
pubmed: 18037453 doi: 10.1016/j.neuropsychologia.2007.10.003
Tian, L. et al. The relationship within and between the extrinsic and intrinsic systems indicated by resting state correlational patterns of sensory cortices. Neuroimage 36, 684–690 (2007).
pubmed: 17499519 doi: 10.1016/j.neuroimage.2007.03.044
Greicius, M. D. & Menon, V. Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation. J. Cogn. Neurosci. 16, 1484–1492 (2004).
pubmed: 15601513 doi: 10.1162/0898929042568532
Doucet, G. et al. Brain activity at rest: a multiscale hierarchical functional organization. J. Neurophysiol. 105, 2753–2763 (2011).
pubmed: 21430278 doi: 10.1152/jn.00895.2010
Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E. & Buckner, R. L. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J. Neurophysiol. 100, 3328–3342 (2008).
pubmed: 18799601 pmcid: 2604839 doi: 10.1152/jn.90355.2008
Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W. & Schacter, D. L. Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage 53, 303–317 (2010).
pubmed: 20600998 doi: 10.1016/j.neuroimage.2010.06.016
Chakraborty, S. et al. Focal acetylcholinergic modulation of the human midcingulo-insular network during attention: Meta-analytic neuroimaging and behavioral evidence. J. Neurochem. https://doi.org/10.1111/jnc.15990 (2023).
Everitt, B. J. & Robbins, T. W. Central cholinergic systems and cognition. Annu. Rev. Psychol. 48, 649–684 (1997).
pubmed: 9046571 doi: 10.1146/annurev.psych.48.1.649
Sarter, M., Hasselmo, M. E., Bruno, J. P. & Givens, B. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res. Brain Res. Rev. 48, 98–111 (2005).
pubmed: 15708630 doi: 10.1016/j.brainresrev.2004.08.006
Sarter, M. & Lustig, C. Forebrain cholinergic signaling: Wired and phasic, not tonic, and causing behavior. J. Neurosci. 40, 712–719 (2020).
pubmed: 31969489 pmcid: 6975286 doi: 10.1523/JNEUROSCI.1305-19.2019
Schmitz, T. W. & Duncan, J. Normalization and the cholinergic microcircuit: A unified basis for attention. Trends Cogn. Sci. 22, 422–437 (2018).
pubmed: 29576464 doi: 10.1016/j.tics.2018.02.011
Krabbe, S. et al. Adaptive disinhibitory gating by VIP interneurons permits associative learning. Nat. Neurosci. 22, 1834–1843 (2019).
pubmed: 31636447 doi: 10.1038/s41593-019-0508-y
Kuchibhotla, K. V. et al. Parallel processing by cortical inhibition enables context-dependent behavior. Nat. Neurosci. 20, 62–71 (2017).
pubmed: 27798631 doi: 10.1038/nn.4436
Chen, N., Sugihara, H. & Sur, M. An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity. Nat. Neurosci. 18, 892–902 (2015).
pubmed: 25915477 pmcid: 4446146 doi: 10.1038/nn.4002
Xue, M., Atallah, B. V. & Scanziani, M. Equalizing excitation–inhibition ratios across visual cortical neurons. Nature 511, 596–600 (2014).
pubmed: 25043046 pmcid: 4117808 doi: 10.1038/nature13321
Fu, Y. et al. A cortical circuit for gain control by behavioral state. Cell 156, 1139–1152 (2014).
pubmed: 24630718 pmcid: 4041382 doi: 10.1016/j.cell.2014.01.050
Lee, S. H. et al. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488, 379–383 (2012).
pubmed: 22878719 pmcid: 3422431 doi: 10.1038/nature11312
Pi, H.-J. et al. Cortical interneurons that specialize in disinhibitory control. Nature 503, 521–524 (2013).
pubmed: 24097352 pmcid: 4017628 doi: 10.1038/nature12676
Pfeffer, C. K., Xue, M., He, M., Huang, Z. J. & Scanziani, M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat. Neurosci. 16, 1068–1076 (2013).
pubmed: 23817549 pmcid: 3729586 doi: 10.1038/nn.3446
Alitto, H. J. & Dan, Y. Cell-type-specific modulation of neocortical activity by basal forebrain input. Front. Syst. Neurosci. 6, 79 (2012).
pubmed: 23316142
Helmstaedter, M., Sakmann, B. & Feldmeyer, D. Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns. Cereb. Cortex 19, 926–937 (2009).
pubmed: 18832335 doi: 10.1093/cercor/bhn141
Miller, J.-E. K., Ayzenshtat, I., Carrillo-Reid, L. & Yuste, R. Visual stimuli recruit intrinsically generated cortical ensembles. Proc. Natl Acad. Sci. USA 111, E4053–E4061 (2014).
pubmed: 25201983 pmcid: 4183303 doi: 10.1073/pnas.1406077111
Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).
pubmed: 7605061 doi: 10.1146/annurev.ne.18.030195.001205
Reynolds, J. H. & Heeger, D. J. The normalization model of attention. Neuron 61, 168–185 (2009).
pubmed: 19186161 pmcid: 2752446 doi: 10.1016/j.neuron.2009.01.002
Carandini, M. & Heeger, D. J. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51–62 (2011).
pubmed: 22108672 pmcid: 3273486 doi: 10.1038/nrn3136
Záborszky, L. et al. Specific basal forebrain–cortical cholinergic circuits coordinate cognitive operations. J. Neurosci. 38, 9446–9458 (2018).
pubmed: 30381436 pmcid: 6209837 doi: 10.1523/JNEUROSCI.1676-18.2018
Laszlovszky, T. et al. Distinct synchronization, cortical coupling and behavioral function of two basal forebrain cholinergic neuron types. Nat. Neurosci. 23, 992–1003 (2020).
pubmed: 32572235 pmcid: 7611978 doi: 10.1038/s41593-020-0648-0
Shine, J. M. Neuromodulatory influences on integration and segregation in the brain. Trends Cogn. Sci. 23, 572–583 (2019).
pubmed: 31076192 doi: 10.1016/j.tics.2019.04.002
Singer, W. et al. Neuronal assemblies: necessity, signature and detectability. Trends Cogn. Sci. 1, 252–261 (1997).
pubmed: 21223920 doi: 10.1016/S1364-6613(97)01079-6
Fries, P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. 32, 209–224 (2009).
pubmed: 19400723 doi: 10.1146/annurev.neuro.051508.135603
Canolty, R. T. et al. Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies. Proc. Natl Acad. Sci. USA 107, 17356–17361 (2010).
pubmed: 20855620 pmcid: 2951408 doi: 10.1073/pnas.1008306107
Buzsáki, G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68, 362–385 (2010).
pubmed: 21040841 pmcid: 3005627 doi: 10.1016/j.neuron.2010.09.023
Duncan, J. The structure of cognition: attentional episodes in mind and brain. Neuron 80, 35–50 (2013).
pubmed: 24094101 pmcid: 3791406 doi: 10.1016/j.neuron.2013.09.015
Mattson, M. P. & Magnus, T. Ageing and neuronal vulnerability. Nat. Rev. Neurosci. 7, 278–294 (2006).
pubmed: 16552414 pmcid: 3710114 doi: 10.1038/nrn1886
Saxena, S. & Caroni, P. Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 71, 35–48 (2011).
pubmed: 21745636 doi: 10.1016/j.neuron.2011.06.031
Roussarie, J.-P. et al. Selective neuronal vulnerability in Alzheimer’s disease: A network-based analysis. Neuron 107, 821–835 (2020).
pubmed: 32603655 pmcid: 7580783 doi: 10.1016/j.neuron.2020.06.010
Bohnen, N. I., van der Zee, S. & Albin, R. Cholinergic centro-cingulate network in Parkinson disease and normal aging. Aging 15, 10817–10820 (2023).
pubmed: 37899134 pmcid: 10637805
Schmitz, T. W., Nathan Spreng, R. & Alzheimer’s Disease Neuroimaging Initiative. Basal forebrain degeneration precedes and predicts the cortical spread of Alzheimer’s pathology. Nat. Commun. 7, 13249 (2016).
pubmed: 27811848 pmcid: 5097157 doi: 10.1038/ncomms13249
Wang, Y. et al. Inconsistencies in atlas-based volumetric measures of the human nucleus basalis of Meynert: A need for high-resolution alternatives. Neuroimage 259, 119421 (2022).
pubmed: 35779763 doi: 10.1016/j.neuroimage.2022.119421
Vu, A. T. et al. High resolution whole brain diffusion imaging at 7T for the Human Connectome Project. Neuroimage 122, 318–331 (2015).
pubmed: 26260428 doi: 10.1016/j.neuroimage.2015.08.004
Vu, A. T. et al. Tradeoffs in pushing the spatial resolution of fMRI for the 7T Human Connectome Project. Neuroimage 154, 23–32 (2017).
doi: 10.1016/j.neuroimage.2016.11.049
Mölder, F. et al. Sustainable data analysis with Snakemake. F1000Res. 10, 33 (2021).
pubmed: 34035898 pmcid: 8114187 doi: 10.12688/f1000research.29032.2
Kluyver, T. et al. Jupyter Notebooks – a publishing format for reproducible computational workflows. in Positioning and Power in Academic Publishing: Players, Agents and Agendas (eds. Loizides, F. & Scmidt, FB.) 87–90 (IOS Press, 2016).
Mugler, J. P. 3rd & Brookeman, J. R. Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn. Reson. Med. 15, 152–157 (1990).
pubmed: 2374495 doi: 10.1002/mrm.1910150117
WU-Minn, H. C. P. WU-Minn HCP 1200 subjects data release reference manual. https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf (2018).
Collins, D. L., Neelin, P., Peters, T. M. & Evans, A. C. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J. Comput. Assist. Tomogr. 18, 192–205 (1994).
pubmed: 8126267 doi: 10.1097/00004728-199403000-00005
Mesulam, M. M., Mufson, E. J., Wainer, B. H. & Levey, A. I. Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10, 1185–1201 (1983b).
pubmed: 6320048 doi: 10.1016/0306-4522(83)90108-2
HCPpipelines: Processing Pipelines for the HCP. (Github, 2014).
Behrens, T. E. J., Berg, H. J., Jbabdi, S., Rushworth, M. F. S. & Woolrich, M. W. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 34, 144–155 (2007).
doi: 10.1016/j.neuroimage.2006.09.018
Grabner, G. et al. in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006 58–66 (Springer Berlin Heidelberg, 2006).
Griffanti, L. et al. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Neuroimage 95, 232–247 (2014).
pubmed: 24657355 doi: 10.1016/j.neuroimage.2014.03.034
Dickie, E. W. et al. Ciftify: A framework for surface-based analysis of legacy MR acquisitions. Neuroimage 197, 818–826 (2019).
pubmed: 31091476 doi: 10.1016/j.neuroimage.2019.04.078
Glasser, M. F. et al. The human connectome project’s neuroimaging approach. Nat. Neurosci. 19, 1175–1187 (2016).
pubmed: 27571196 pmcid: 6172654 doi: 10.1038/nn.4361
Tian, Y., Margulies, D. S., Breakspear, M. & Zalesky, A. Topographic organization of the human subcortex unveiled with functional connectivity gradients. Nat. Neurosci. 23, 1421–1432 (2020).
pubmed: 32989295 doi: 10.1038/s41593-020-00711-6
Byrge, L. & Kennedy, D. P. High-accuracy individual identification using a ‘thin slice’ of the functional connectome. Netw. Neurosci. 3, 363–383 (2019).
pubmed: 30793087 pmcid: 6370471 doi: 10.1162/netn_a_00068
Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
de Castro, B. M. et al. The vesicular acetylcholine transporter is required for neuromuscular development and function. Mol. Cell. Biol. 29, 5238–5250 (2009).
pubmed: 19635813 pmcid: 2747982 doi: 10.1128/MCB.00245-09
Zhao, P. et al. The mesoscopic connectome of the cholinergic pontomesencephalic tegmentum. Front. Neuroanat. 16, 843303 (2022).
pubmed: 35655583 pmcid: 9152021 doi: 10.3389/fnana.2022.843303
Logan, J. et al. Graphical analysis of reversible radioligand binding from time—activity measurements applied to [N-11C-Methyl]-(−)-cocaine PET studies in human subjects. J. Cereb. Blood Flow Metab. 10, 740–747 (1990).
pubmed: 2384545 doi: 10.1038/jcbfm.1990.127
Bertoglio, D. et al. Validation and noninvasive kinetic modeling of [11C]UCB-J PET imaging in mice. J. Cereb. Blood Flow. Metab. 40, 1351–1362 (2020).
pubmed: 31307287 doi: 10.1177/0271678X19864081
Naumova, A. V., Akulov, A. E., Khodanovich, M. Y. & Yarnykh, V. L. High-resolution three-dimensional macromolecular proton fraction mapping for quantitative neuroanatomical imaging of the rodent brain in ultra-high magnetic fields. Neuroimage 147, 985–993 (2017).
pubmed: 27646128 doi: 10.1016/j.neuroimage.2016.09.036
Hikishima, K. et al. In vivo microscopic voxel-based morphometry with a brain template to characterize strain-specific structures in the mouse brain. Sci. Rep. 7, 85 (2017).
pubmed: 28273899 pmcid: 5427914 doi: 10.1038/s41598-017-00148-1
Li, C., Gore, J. C. & Davatzikos, C. Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation. Magn. Reson. Imaging 32, 913–923 (2014).
pubmed: 24928302 pmcid: 4401088 doi: 10.1016/j.mri.2014.03.010
Ashburner, J. & Friston, K. J. Diffeomorphic registration using geodesic shooting and Gauss–Newton optimisation. Neuroimage 55, 954–967 (2011).
pubmed: 21216294 doi: 10.1016/j.neuroimage.2010.12.049
Mitchell, J. S. B., Mount, D. M. & Papadimitriou, C. H. The discrete geodesic problem. SIAM J. Comput. 16, 647–668 (1987).
doi: 10.1137/0216045
Burt, J. B., Helmer, M., Shinn, M., Anticevic, A. & Murray, J. D. Generative modeling of brain maps with spatial autocorrelation. Neuroimage 220, 117038 (2020).
pubmed: 32585343 doi: 10.1016/j.neuroimage.2020.117038
Khan, A. & Chakraborty, S. Diffparc-Smk: General-Purpose Snakemake Workflow for Diffusion-Based Subcortical Parcellation. https://doi.org/10.5281/zenodo.7613835 (2023).
Kai, J., Khan, A. & Chakraborty, S. Subcorticalparc-Smk: General-Purpose Snakemake Workflow for Subcortical Parcellation with Functional and Structural Connectivity. (Github). https://doi.org/10.5281/zenodo.7622124 (2023).
Chakraborty, S. Multimodal Gradients of Basal Forebrain Connectivity across the Neocortex. (Github: HumanBF-Connectivity). https://doi.org/10.5281/zenodo.13739128 (2024).

Auteurs

Sudesna Chakraborty (S)

Neuroscience Graduate Program, Western University, London, Ontario, Canada. schakr28@uwo.ca.
Robarts Research Institute, Western University, London, Ontario, Canada. schakr28@uwo.ca.
Department of Integrated Information Technology, Aoyama Gakuin University, Sagamihara, Kanagawa, Japan. schakr28@uwo.ca.

Roy A M Haast (RAM)

Robarts Research Institute, Western University, London, Ontario, Canada.
Aix Marseille Univ, CNRS, CRMBM, Marseille, France.
APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France.

Kate M Onuska (KM)

Neuroscience Graduate Program, Western University, London, Ontario, Canada.
Robarts Research Institute, Western University, London, Ontario, Canada.
Lawson Health Research Institute, Western University, London, Ontario, Canada.

Prabesh Kanel (P)

Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
Morris K.Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA.
Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA.

Marco A M Prado (MAM)

Robarts Research Institute, Western University, London, Ontario, Canada.
Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.
Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada.

Vania F Prado (VF)

Robarts Research Institute, Western University, London, Ontario, Canada.
Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.
Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada.

Ali R Khan (AR)

Neuroscience Graduate Program, Western University, London, Ontario, Canada.
Robarts Research Institute, Western University, London, Ontario, Canada.
Department of Medical Biophysics, Western University, London, Ontario, Canada.

Taylor W Schmitz (TW)

Neuroscience Graduate Program, Western University, London, Ontario, Canada. tschmitz@uwo.ca.
Robarts Research Institute, Western University, London, Ontario, Canada. tschmitz@uwo.ca.
Lawson Health Research Institute, Western University, London, Ontario, Canada. tschmitz@uwo.ca.
Department of Physiology and Pharmacology, Western University, London, Ontario, Canada. tschmitz@uwo.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH