The effect of platelet-rich fibrin on the biological properties of urothelial cells.
Induced pluripotent stem cells
Platelet-rich fibrin
Tissue engineering
Urethral repair
Urothelial cells
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
18 Oct 2024
18 Oct 2024
Historique:
received:
09
07
2024
accepted:
08
10
2024
medline:
19
10
2024
pubmed:
19
10
2024
entrez:
18
10
2024
Statut:
epublish
Résumé
Urethral reconstruction presents a challenging issue in urology, primarily due to the limited availability of alternative materials for repair. The advancement of bioengineering technology has brought new hope to researchers, with a focus on the selection of appropriate biological scaffolds and seed cells. In order to find an ideal alternative material, we used platelet-rich fibrin as the bioscaffold and urothelial cells as the seed cells, meanwhile, we intended to investigate the effect of platelet-rich fibrin on the biological properties of urothelial cells. We transformed and characterised induced pluripotent stem cells into urothelial cells and prepared platelet-rich fibrin. Platelet-rich fibrin was cultured in a complex with urothelial cells to observe the effect of platelet-rich fibrin on the proliferation and migration ability of urothelial cells. The results showed that the induced pluripotent stem cells were successfully transformed into urothelial cells, platelet-rich fibrin was regularly arranged in cords, with platelets and other structures distributed between them, and the proliferation and migration of urothelial cells were significantly increased. These results suggested that platelet-rich fibrin is biocompatible with urothelial cells and it promotes the proliferation and migration of urothelial cells, which lays a good foundation for its use as an alternative material for urethral repair.
Identifiants
pubmed: 39424881
doi: 10.1038/s41598-024-75699-1
pii: 10.1038/s41598-024-75699-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
24527Subventions
Organisme : Hainan Province Clinical Medical Center
ID : QWYH202175
Organisme : Cultivation Project of Provincial Clinical Medical Centre of Hainan Women and Children's Medical Center
ID : 202105
Organisme : Cultivation Project of Provincial Clinical Medical Centre of Hainan Women and Children's Medical Center
ID : 202301
Organisme : Joint Program on Health Science & Technology Innovation of Hainan Province
ID : WSJK2024QN011
Organisme : Hainan Province Science and Technology Special Fund
ID : ZDYF2024SHFZ105
Informations de copyright
© 2024. The Author(s).
Références
King, C. & Rourke, K. F. Urethral stricture is frequently a morbid condition: incidence and factors associated with complications related to urethral stricture. Urology. 132, 189–194. https://doi.org/10.1016/j.urology.2019.07.013 (2019).
doi: 10.1016/j.urology.2019.07.013
pubmed: 31326548
Zamani, M., Shakhssalim, N., Ramakrishna, S., Naji, M. Electrospinning application and prospects for urologic tissue engineering. Front. Bioeng. Biotechnol. 8, 579925. https://doi.org/10.3389/fbioe.2020.579925 (2020).
doi: 10.3389/fbioe.2020.579925
pubmed: 33117785
pmcid: 7576678
Fu, Q. & Cao, Y. L. Tissue engineering and stem cell application of urethroplasty: from bench to bedside. Urology. 79 (2), 246–253. https://doi.org/10.1016/j.urology.2011.08.043 (2012).
doi: 10.1016/j.urology.2011.08.043
pubmed: 22014966
Dohan, D. M. et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 101 (3), e37–e44. https://doi.org/10.1016/j.tripleo.2005.07.008 (2006).
doi: 10.1016/j.tripleo.2005.07.008
pubmed: 16504849
Zhang, D. et al. Generation of urothelial cells from mouse-induced pluripotent stem cells. Int. J. Stem Cells. 15 (4), 347–358. https://doi.org/10.15283/ijsc21250 (2022).
doi: 10.15283/ijsc21250
pubmed: 35769056
pmcid: 9705153
Sánchez, A. L., García-Perdomo, H. A. & Robayo, J. A. Alternatives to oral mucosa grafts for urethral reconstruction. Nat. Rev. Urol. 20 (5), 259–260. https://doi.org/10.1038/s41585-022-00707-w (2023).
doi: 10.1038/s41585-022-00707-w
pubmed: 36536071
Horiguchi, A. Substitution urethroplasty using oral mucosa graft for male anterior urethral stricture disease: current topics and reviews. Int. J. Urol. 24 (7), 493–503. https://doi.org/10.1111/iju.13356 (2017).
doi: 10.1111/iju.13356
pubmed: 28600871
Pastorek, D. et al. Tissue engineering of the urethra: from bench to bedside. Biomedicines. 9(12), (1917). https://doi.org/10.3390/biomedicines9121917 (2021).
Casarin, M., Morlacco, A. & Dal, Moro, F. Tissue engineering and regenerative medicine in pediatric urology: urethral and urinary bladder reconstruction. Int. J. Mol. Sci. 23 (12), 6360. https://doi.org/10.3390/ijms23126360 (2022).
doi: 10.3390/ijms23126360
pubmed: 35742803
pmcid: 9224288
Tan, Q. et al. Tailor-made natural and synthetic grafts for precise urethral reconstruction. J. Nanobiotechnol. 20(1), 392. https://doi.org/10.1186/s12951-022-01599-z (2022).
O’Connell, S. M. et al. Autologous platelet-rich fibrin matrix as cell therapy in the healing of chronic lower-extremity ulcers. Wound Repair. Regen. 16 (6), 749–756. https://doi.org/10.1111/j.1524-475X.2008.00426.x (2008).
doi: 10.1111/j.1524-475X.2008.00426.x
pubmed: 19128245
Nanditha, S., Chandrasekaran, B., Muthusamy, S. & Muthu, K. Apprising the diverse facets of platelet rich fibrin in surgery through a systematic review. Int. J. Surg. 46, 186–194. https://doi.org/10.1016/j.ijsu.2017.08.558 (2017).
doi: 10.1016/j.ijsu.2017.08.558
pubmed: 28827058
Guinot, A. et al. Preliminary experience with the use of an autologous platelet-rich fibrin membrane for urethroplasty coverage in distal hypospadias surgery. J. Pediatr. Urol. 10 (2), 300–305. https://doi.org/10.1016/j.jpurol.2013.09.026 (2014).
doi: 10.1016/j.jpurol.2013.09.026
pubmed: 24325905
Soyer, T., Çakmak, M., Aslan, M. K., Şenyücel, M. F. & Kisa, Ü. Use of autologous platelet rich fibrin in urethracutaneous fistula repair: preliminary report. Int. Wound J. 10 (3), 345–347. https://doi.org/10.1111/j.1742-481X.2012.00983.x (2013).
doi: 10.1111/j.1742-481X.2012.00983.x
pubmed: 22568526
Soyer, T., Ayva, Ş., Boybeyi, Ö., Aslan, M. K. & Çakmak, M. The effect of platelet rich fibrin on growth factor levels in urethral repair. J. Pediatr. Surg. 48 (12), 2545–2549. https://doi.org/10.1016/j.jpedsurg.2013.06.020 (2013).
doi: 10.1016/j.jpedsurg.2013.06.020
pubmed: 24314201
Chan, Y. Y. et al. The current state of tissue engineering in the management of hypospadias. Nat. Rev. Urol. 17 (3), 162–175. https://doi.org/10.1038/s41585-020-0281-4 (2020).
doi: 10.1038/s41585-020-0281-4
pubmed: 32024995
Jia, W. et al. Urethral tissue regeneration using collagen scaffold modified with collagen binding VEGF in a beagle model. Biomaterials. 69, 45–55. https://doi.org/10.1016/j.biomaterials.2015.08.009 (2015).
doi: 10.1016/j.biomaterials.2015.08.009
pubmed: 26280949
Versteegden, L. R. M. et al. Tissue engineering of the urethra: a systematic review and meta-analysis of preclinical and clinical studies. Eur. Urol. 72 (4), 594–606. https://doi.org/10.1016/j.eururo.2017.03.026 (2017).
doi: 10.1016/j.eururo.2017.03.026
pubmed: 28385451
FilippoDe, R. E.,, J. J. Yoo &, A. Atala Urethral replacement using cell seeded tubularized collagen matrices. J. Urol. 168 (4 Pt 2), 1789–1792. https://doi.org/10.1097/01.ju.0000027662.69103.72 (2002) (discussion 1792–1793).
doi: 10.1097/01.ju.0000027662.69103.72
pubmed: 12352360
Amesty, M. V. et al. Creation of tissue-Engineered urethras for large urethral defect repair in a rabbit experimental model. Front. Pediatr. 9, 691131. https://doi.org/10.3389/fped.2021.691131 (2021).
doi: 10.3389/fped.2021.691131
pubmed: 34239850
pmcid: 8258112
Xue, J. D., Gao, J., Fu, Q., Feng, C. & Xie, H. Seeding cell approach for tissue-engineered urethral reconstruction in animal study: a systematic review and meta-analysis. Exp. Biol. Med. (Maywood). 241 (13), 1416–1428. https://doi.org/10.1177/1535370216640148 (2016).
doi: 10.1177/1535370216640148
pubmed: 27022134
Jin, Y. et al. Cell-based therapy for urethral regeneration: a narrative review and future perspectives. Biomedicines. 11 (9), 2366. https://doi.org/10.3390/biomedicines11092366 (2023).
doi: 10.3390/biomedicines11092366
pubmed: 37760808
pmcid: 10525510
Xuan, Z., Zachar, V., Pennisi, C. P. & Sources selection, and microenvironmental preconditioning of cells for urethral tissue engineering. Int. J. Mol. Sci. 23 (22), 14074. https://doi.org/10.3390/ijms232214074 (2022).
doi: 10.3390/ijms232214074
pubmed: 36430557
pmcid: 9697333
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126 (4), 663–676. https://doi.org/10.1016/j.cell.2006.07.024 (2006).
doi: 10.1016/j.cell.2006.07.024
pubmed: 16904174
Suzuki, K. et al. Directed differentiation of human induced pluripotent stem cells into mature stratified bladder urothelium. Sci. Rep. 9 (1), 10506. https://doi.org/10.1038/s41598-019-46848-8 (2019).
doi: 10.1038/s41598-019-46848-8
pubmed: 31324820
pmcid: 6642190
Kang, M., Kim, H. H. & Han, Y. M. Generation of bladder urothelium from human pluripotent stem cells under chemically defined serum- and feeder-free system. Int. J. Mol. Sci. 15 (5), 7139–7157. https://doi.org/10.3390/ijms15057139 (2014).
doi: 10.3390/ijms15057139
pubmed: 24776760
pmcid: 4057664
Osborn, S. L. et al. Induction of human embryonic and induced pluripotent stem cells into urothelium. Stem Cells Transl. Med. 3 (5), 610–619. https://doi.org/10.5966/sctm.2013-0131 (2014).
doi: 10.5966/sctm.2013-0131
pubmed: 24657961
pmcid: 4006482