Rational design and synthesis of new pyrrolone candidates as prospective insecticidal agents against Culex pipiens L. Larvae.
Culex pipiens
Cytochrome P-450 monooxygenase.
Furanones
Insecticidal activity
Naphthalene moiety
Pyridazinones
Pyrrolones
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
18 Oct 2024
18 Oct 2024
Historique:
received:
07
07
2024
accepted:
23
09
2024
medline:
19
10
2024
pubmed:
19
10
2024
entrez:
18
10
2024
Statut:
epublish
Résumé
As a result of its high reactivity, furan-2(3H)-one derivative 2 can be selected as a versatile and suitable candidate for building of novel nitrogen heterocyclic compounds. Consequently, furan-2(3H)-one derivative 2 and some nitrogen nucleophiles were utilized as starting materials for the formation of new pyridazinone and pyrrolone derivatives bearing naphthalene moiety. The continuous buildup of insecticide resistance is the main obstacle facing pest control measures. Pyrrole-based insecticides are a favourable choice due to their unique mode of action and no cross-resistance with traditional neurotoxic insecticides. The larvicidal activities of pyrrolone derivatives were assessed against field and laboratory strains of Culex pipiens larvae in comparison with chlorfenapyr (pyrrole insecticide). Compounds 17 (21.05 µg/mL) > 9 (22.81 µg/mL) > 15 (24.39 µg/mL) > 10 (26.76 µg/mL) > 16 (32.09 µg/mL) were most effective against lab strain of C. pipiens larvae relative to chlorfenapyr (25.43 µg/mL). While in field strain, 17 and 15 were the most toxic compounds followed by 9 > 10 > 16 > 2 with LC
Identifiants
pubmed: 39424889
doi: 10.1038/s41598-024-74011-5
pii: 10.1038/s41598-024-74011-5
doi:
Substances chimiques
Insecticides
0
Pyrroles
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
24467Informations de copyright
© 2024. The Author(s).
Références
Hashem, A. I., Youssef, A. S. A., Kandeel, K. A. & Abou-Elmagd, W. S. I. Conversion of some 2(3H)-furanones bearing a pyrazolyl group into other heterocyclic systems with a study of their antiviral activity. Eur. J. Med. Chem. 42, 934–939. https://doi.org/10.1016/j.ejmech.2006.12.032 (2007).
doi: 10.1016/j.ejmech.2006.12.032
pubmed: 17321008
Husain, A., Khan, M. S. Y., Hasan, S. M. & Alam, M. M. 2-Arylidene-4-(4-phenoxy-phenyl)but-3-en-4-olides: synthesis, reactions and biological activity Eur. J. Med. Chem. 40, 1394–1404. https://doi.org/10.1016/j.ejmech.2005.03.012 (2005).
doi: 10.1016/j.ejmech.2005.03.012
Alam, M. M. et al. Synthesis of quinoline attached-furan-2(3H)-ones having anti-inflammatory and antibacterial properties with reduced gastro-intestinal toxicity and lipid peroxidation. J. Serb. Chem. Soc. 26, 1617–1626. https://doi.org/10.2298/JSC110131142A (2011).
doi: 10.2298/JSC110131142A
Kumar, A., Ahmed, B., Srivastawa, B. & Vaishali COX-2 inhibitory and GABAergic activity of newly synthesized 2(3H)-furanone. Der Pharm. Chem. 4 383–391. (2012).
Chen, D., Song, Y., Lu, Y. & Xue, X. Synthesis and in vitro cytotoxicity of andrographolide-19-oic acid analogues as anti-cancer agents. Bioorg. Med. Chem. Lett. 23, 3166–3169. https://doi.org/10.1016/j.bmcl.2013.04.010 (2013).
doi: 10.1016/j.bmcl.2013.04.010
pubmed: 23628335
Murugesan, D. et al. Discovery and structure – activity relationships of Pyrrolone Antimalarials. J. Med. Chem. 8, 1537–1544. https://doi.org/10.1021/jm400009c (2013).
doi: 10.1021/jm400009c
Husain, A., Alam, M. M., Hasan, S. M. & Yar, M. S. 2(3H)-furanones and 2(3H)-pyrrolones: synthesis and antimycobacterial evaluation. Acta Pol. Pharm. Drug Res. 66, 173–180 (2009).
Gholap, S. S. Pyrrole: an emerging scaffold for construction of valuable therapeutic agents. Eur. J. Med. Chem. 110, 13–31. https://doi.org/10.1016/j.ejmech.2015.12.017 (2016).
doi: 10.1016/j.ejmech.2015.12.017
pubmed: 26807541
Zarantonello, P., Leslie, C. P., Ferritto, R. & Kazmierski, W. M. Total synthesis and semi-synthetic approaches to analogues of antibacterial natural product althiomycin. Bioorg. Med. Chem. Lett. 12 (4), 561–565. https://doi.org/10.1016/S0960-894X(01)00802-2 (2002).
doi: 10.1016/S0960-894X(01)00802-2
pubmed: 11844672
Weaver, S. C., Charlier, C., Vasilakis, N. & Lecuit, M. Zika, Chikungunya, and other Emerging Vector-Borne viral diseases. Annu. Rev. Med. 69, 395–408. https://doi.org/10.1146/annurev-med-050715-105122 (2018).
doi: 10.1146/annurev-med-050715-105122
pubmed: 28846489
Parola, P., Musso, D. & Raoult, D. Rickettsia felis: the next mosquito-borne outbreak? Lancet Infect. Dis. 16, 1112–1113. https://doi.org/10.1016/S1473-3099(16)30331-0 (2016).
doi: 10.1016/S1473-3099(16)30331-0
pubmed: 27676348
World Malaria Report. Available online: (2020). https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020 . (accessed on 1 September 2022).
Nebbak, A., Almeras, L., Parola, P. & Bitam, I. Mosquito vectors (Diptera: Culicidae) and Mosquito-Borne diseases in North Africa. Insects. 13 (10), 962. https://doi.org/10.3390/insects13100962 (2022).
doi: 10.3390/insects13100962
pubmed: 36292910
pmcid: 9604161
Blagrove, M. S. C. et al. Co-occurrence of viruses and mosquitoes at the vectors’ optimal climate range: an underestimated risk to temperate regions? PLoS Negl. Trop. Dis. 11, e0005604. https://doi.org/10.1371/journal.pntd.0005604 (2017).
doi: 10.1371/journal.pntd.0005604
pubmed: 28617853
pmcid: 5487074
Yuan, J. Z., Li, Q. F., Huang, J. B. & Gao, J. F. Effect of chlorfenapyr on cypermethrin-resistant Culex pipiens pallens Coq mosquitoes. Acta Trop. 143, 13–17. https://doi.org/10.1016/j.actatropica.2014.12.002 (2015).
doi: 10.1016/j.actatropica.2014.12.002
pubmed: 25497774
Bouaka, C., Ambadiang, M., Ashu, F., Fouet, C. & Kamdem, C. Testing Anopheles larvae and adults using standard bioassays reveals susceptibility to chlorfenapyr (pyrrole) while highlighting variability between species. bioRxiv. https://doi.org/10.1101/2024.03.24.586483
Nkya, T. E. et al. Insecticide resistance mechanisms associated with different environments in the malaria vector Anopheles gambiae: a case study in Tanzania. Malar. J. 13, 28. https://doi.org/10.1186/1475-2875-13-28 (2014).
doi: 10.1186/1475-2875-13-28
pubmed: 24460952
pmcid: 3913622
IRAC, The Insecticide Resistance Action Committee, Mode of Action Classification Brochure, Edition: 11.1 – January 2024. (2024). http://www.efaidnbmnnnibpcajpcglclefindmkaj/https://irac-online.org/documents/moa-brochure/ .
N’Guessan, R. et al. Chlorfenapyr: a pyrrole insecticide for the control of pyrethroid or DDT resistant Anopheles gambiae (Diptera: Culicidae) mosquitoes. Acta Trop. 102, 69–78. https://doi.org/10.1016/j.actatropica.2007.03.003 (2007).
doi: 10.1016/j.actatropica.2007.03.003
pubmed: 17466253
Hekal, M. H., Farag, P. S., Hemdan, M. M. & El-Sayed, W. M. New N-(1,3,4- Thiadiazol-2-yl)furan-2-carboxamide derivatives as potential inhibitors of the VEGFR-2. Bioorg. Chem. 115, 105176. https://doi.org/10.1016/j.bioorg.2021.105176 (2021).
doi: 10.1016/j.bioorg.2021.105176
pubmed: 34303038
Mahmoud, M. R., Abou-Elmagd, W. S. I., Derbala, H. A. & Hekal, M. H. Synthesis and spectral characterisation of some phthalazinone derivatives. J. Chem. Res. 36, 75–82. https://doi.org/10.3184/174751912X13274297624330 (2012).
doi: 10.3184/174751912X13274297624330
Mahmoud, M. R., Abu El-Azm, F. S. M., Ismail, M. F., Hekal, M. H. & Ali, Y. M. Synthesis and antitumor evaluation of Novel Tetrahydrobenzo [4′,5′]Thieno[3′,2′ :5,6]Pyrimido[1,2-b]isoquinoline derivatives. Synth. Commun. 48, 428–438. https://doi.org/10.1080/00397911.2017.1406520 (2018).
doi: 10.1080/00397911.2017.1406520
Mahmoud, M. R., El-Shahawi, M. M., Abou-Elmagd, W. S. I. & Hekal, M. H. Novel synthesis of isoquinoline derivatives derived from (Z)-4-(1,3- Diphenylpyrazol-4-yl)Isochromene-1,3-Dione. Synth. Commun. 45, 1632–1641. https://doi.org/10.5155/eurjchem.1.2.134-139.71 (2015).
doi: 10.5155/eurjchem.1.2.134-139.71
Hekal, M. H., El-Naggar, A. M., Abu El-Azm, F. S. M. & El-Sayed, W. M. Synthesis of New Oxadiazol-Phthalazinone derivatives with anti-proliferative activity; Molecular Docking, Pro-apoptotic, and enzyme Inhibition Profile. RSC Adv. 10, 3675–3688. https://doi.org/10.1039/C9RA09016A (2020).
doi: 10.1039/C9RA09016A
pubmed: 35492649
pmcid: 9048702
Mahmoud, M. R., Abou-Elmagd, W. S. I., Derbala, H. A. & Hekal, M. H. Novel synthesis of some phthalazinone derivatives. Chin. J. Chem. 29, 1446–1450. https://doi.org/10.1002/cjoc.201180264 (2011).
doi: 10.1002/cjoc.201180264
Hamed, N. A., Ismail, M. F., Hekal, M. H. & Marzouk, M. I. Design, synthesis, and evaluation of some Novel Heterocycles Bearing Pyrazole Moiety as potential Anticancer agents. J. Het Chem. 56, 1771–1779. https://doi.org/10.1002/jhet.3544 (2019).
doi: 10.1002/jhet.3544
Ali, A. T. & Hekal, M. H. Convenient synthesis and anti-proliferative activity of some benzochromenes and chromenotriazolopyrimidines under classical methods and phase transfer catalysis. Synth. Commun. 49, 3498–3509. https://doi.org/10.1080/00397911.2019.1675173 (2019).
doi: 10.1080/00397911.2019.1675173
Hekal, M. H., Abu El-Azm, F. S. M. & Salla, H. A. Synthesis, spectral characterization, and in vitro Biological evaluation of some Novel Isoquinolinone- based heterocycles as potential Antitumor agents. J. Heterocycl. Chem. 56, 795–803. https://doi.org/10.1002/jhet.3448 (2019).
doi: 10.1002/jhet.3448
Abu El-Azm, F. S. M., Ali, A. T. & Hekal, M. H. Facile synthesis and anticancer activity of Novel 4-Aminothieno[2,3-d]pyrimidines and Triazolothienopyrimidines. Org. Prep. Proced. Int. 51, 507–520. https://doi.org/10.1080/00304948.2019.1666635 (2019).
doi: 10.1080/00304948.2019.1666635
Hekal, M. H., Ali, Y. M. & Abu El-Azm, F. S. M. Utilization of Cyanoacetohydrazide and 2-(1,3-Dioxoisoindolin-2-yl) acetyl chloride in the synthesis of some Novel anti-proliferative heterocyclic compounds. Synth. Commun. 50, 2839–2852. https://doi.org/10.1080/00397911.2020.1786125 (2020).
doi: 10.1080/00397911.2020.1786125
Hekal, M. H. & Abu El-Azm, F. S. M. New potential Antitumor quinazolinones derived from dynamic 2-Undecyl benzoxazinone: synthesis and cytotoxic evaluation. Synth. Commun. 48, 2391–2402. https://doi.org/10.1080/00397911.2018.1490433 (2018).
doi: 10.1080/00397911.2018.1490433
Hekal, M. H., Abu El-Azm, F. S. M. & Atta-Allah, S. R. Ecofriendly and highly efficient Microwave-Induced synthesis of Novel Quinazolinone-Undecyl hybrids with in vitro Antitumor Activity. Synth. Commun. 49, 2630–2641. https://doi.org/10.1080/00397911.2019.1637001 (2019).
doi: 10.1080/00397911.2019.1637001
Abdalha, A. A. & Hekal, M. H. An efficient synthesis and evaluation of some novel quinazolinone-pyrazole hybrids as potential Antiproliferative agents. Synth. Commun. 51, 2498–2509. https://doi.org/10.1080/00397911.2021.1939058 (2021).
doi: 10.1080/00397911.2021.1939058
Hekal, M. H., Abu El-Azm, F. S. M. & Samir, S. S. An efficient approach for the synthesis and antimicrobial evaluation of some new benzocoumarins and related compounds. Synth. Commun. 51, 2175–2186. https://doi.org/10.1080/00397911.2021.1925917 (2021).
doi: 10.1080/00397911.2021.1925917
Hamed, N. A., Marzouk, M. I., Ismail, M. F. & Hekal, M. H. N’-(1-([1,1’-biphenyl]-4-yl)ethylidene)-2- cyanoacetohydrazide as scaffold for the synthesis of diverse heterocyclic compounds as prospective antitumor and antimicrobial activities. Synth. Commun. 49, 3017–3029. https://doi.org/10.1080/00397911.2019.1655578 (2019).
doi: 10.1080/00397911.2019.1655578
Hekal, M. H. & Abu El-Azm, F. S. M. Efficient MW-Assisted synthesis of some New Isoquinolinone derivatives with in vitro Antitumor Activity. J. Het Chem. 54, 3056–3064. https://doi.org/10.1002/jhet.2916 (2017).
doi: 10.1002/jhet.2916
Hekal, M. H., Samir, S. S. & Ali, Y. M. El- Sayed, New Benzochromeno[2,3-d]pyrimidines and Benzochromenotriazolo[1,5-c]pyrimidines as potential inhibitors of the topoisomerase II. Polycycl. Arom. Compd. 42, 7644–7660. https://doi.org/10.1080/10406638.2021.2006247 (2022).
doi: 10.1080/10406638.2021.2006247
Hekal, M. H., Farag, P. S., Hemdan, M. M., El-Sayed, A. A. & Hassaballah, A. I. El-Sayed. New 1,3,4-thiadiazoles as potential anticancer agents: pro-apoptotic, cell cycle arrest, molecular modelling, and ADMET profile. RSC Adv. 13, 15810. https://doi.org/10.1039/D3RA02716C (2023).
doi: 10.1039/D3RA02716C
pubmed: 37250214
pmcid: 10209631
Hekal, M. H., Ali, Y. M., Abdel-Haleem, D. R. & Abu El-Azm, F. S. M. Diversity oriented synthesis and SAR studies of new quinazolinones and related compounds as insecticidal agents against Culex pipiens L. Larvae and associated predator. Bioorg. Chem. 133, 106436. https://doi.org/10.1016/j.bioorg.2023.106436 (2023).
doi: 10.1016/j.bioorg.2023.106436
pubmed: 36841047
David, M. D. The potential of pro-insecticides for resistance management. Pest Manag Sci. 77, 3631–3636. (2021).
doi: 10.1002/ps.6369
pubmed: 33729660
Boukouvala, M. C., Kavallieratos, N. G., Athanassiou, C. G., Benelli, G. & Hadjiarapoglou, L. P. Insecticidal efficacy of six new pyrrole derivatives against four stored-product pests. Environ. l Sci. Pull Res. Inter. 26 (29), 29845–29856. https://doi.org/10.1007/s11356-019-05961-x (2019).
doi: 10.1007/s11356-019-05961-x
Treacy, M. et al. Uncoupling activity and pesticidal properties of pyrroles. Biochem. Soc. Trans. 22, 244–247. https://doi.org/10.1042/bst0220244 (1994).
doi: 10.1042/bst0220244
pubmed: 8206243
Hunt, D. A. & Treacy, M. F. in Pyrrole Insecticides: A New Class of Agriculturally Important Insecticides Functioning as Uncouplers of Oxidative Phosphorylation BT - Insecticides with Novel Modes of Action: Mechanisms and Application (eds. Ishaaya, I. & Degheele, D.) 138–151 (Springer Berlin Heidelberg). (1998).
Yunta, C. et al. Chlorfenapyr metabolism by mosquito P450s associated with pyrethroid resistance identifies potential activation markers. Sci. Rep. 13 (1), 14124. https://doi.org/10.1038/s41598-023-41364-2 (2023).
doi: 10.1038/s41598-023-41364-2
pubmed: 37644079
pmcid: 10465574
Zhang, L., Ou, X. M. & Pei, H. A review on pyrrole compounds with insecticidal and miticidal activity. Fine-Scale Chem. Intermed. 39, 1–6 (2009).
Huang, P. et al. A Comprehensive Review of the current knowledge of Chlorfenapyr: Synthesis, Mode of Action, Resistance, and Environmental Toxicology. Molec. 28 (22), 7673. https://doi.org/10.3390/molecules28227673 (2023).
doi: 10.3390/molecules28227673
Oxborough, R. M. et al. The activity of the pyrrole insecticide chlorfenapyr in mosquito bioassay: towards a more rational testing and screening of non-neurotoxic insecticides for malaria vector control. Malar. J. 14, 124. https://doi.org/10.1186/s12936-015-0639-x (2015).
doi: 10.1186/s12936-015-0639-x
pubmed: 25879231
pmcid: 4390098
Oliver, S. V. et al. Evaluation of the pyrrole insecticide chlorfenapyr against pyrethroid resistant and susceptible Anopheles funestus (Diptera: Culicidae). Trop. Med. Int. Heal. 15, 127–131. https://doi.org/10.1111/j.1365-3156.2009.02416.x (2010).
doi: 10.1111/j.1365-3156.2009.02416.x
Kweyamba, P. A. et al. Sub-lethal exposure to chlorfenapyr reduces the probability of developing Plasmodium falciparum parasites in surviving Anopheles mosquitoes. Paras Vect. 16 (1), 342. https://doi.org/10.1186/s13071-023-05963-2 (2023).
doi: 10.1186/s13071-023-05963-2
Dagg, K. et al. Evaluation of toxicity of clothianidin (neonicotinoid) and chlorfenapyr (pyrrole) insecticides and cross-resistance to other public health insecticides in Anopheles arabiensis from Ethiopia. Malar. J. 18 (1), 49. https://doi.org/10.1186/s12936-019-2685-2 (2019).
doi: 10.1186/s12936-019-2685-2
pubmed: 30795768
pmcid: 6387473
Zhao, Y. et al. Chlorfenapyr, a Potent Alternative Insecticide of Phoxim to Control Bradysia odoriphaga (Diptera: Sciaridae). J. Agric. Food Chem. 65 (29), 5908–5915. https://doi.org/10.1021/acs.jafc.7b02098 (2017).
doi: 10.1021/acs.jafc.7b02098
pubmed: 28672113
Raghavendra, K. et al. Chlorfenapyr: a new insecticide with novel mode of action can control pyrethroid resistant. Malar. Vectors Malar. J. 10, 16. https://doi.org/10.1186/1475-2875-10-16 (2011).
doi: 10.1186/1475-2875-10-16
pubmed: 21266037
Black, B. C., Hollingworth, R. M., Ahammadsahib, K. I., Kukel, C. D. & Donovan, S. Insecticidal action and mitochondrial uncoupling activity of AC-303,630 and related halogenated pyrroles. Pestic Biochem. Physiol. 50, 115–128. https://doi.org/10.1006/pest.1994.1064 (1994).
doi: 10.1006/pest.1994.1064
Murtaza, G. et al. Toxicity of different insecticides against dengue vector aedes aegypti larvae under laboratory conditions. J. Innov. Sci. 8 (1), 08–12. https://doi.org/10.17582/journal.jis/2022/8.1.08.12 (2022).
doi: 10.17582/journal.jis/2022/8.1.08.12
Che-Mendoza, A. et al. Efficacy of targeted indoor residual spraying with the pyrrole insecticide chlorfenapyr against pyrethroid resistant Aedes aegypti. PLoS Negl. Trop. Dis. 15 (10), e0009822. https://doi.org/10.1371/journal.pntd.0009822 (2021).
doi: 10.1371/journal.pntd.0009822
pubmed: 34606519
pmcid: 8516273
Boukouvala, M. C. et al. Laboratory evaluation of five novel pyrrole derivatives as grain protectants against Tribolium confusum and ephestia kuehniella larvae. J. Pest Sci. 90, 569–585. https://doi.org/10.1007/s10340-016-0808-x (2017).
doi: 10.1007/s10340-016-0808-x
Li, Y. et al. The trifluoromethyl transformation synthesis, crystal structure and insecticidal activities of novel 2-pyrrolecarboxamide and 2-pyrrolecarboxlate. Bioorg. Medic Chem. Lett. 22 (22), 6858–6861. https://doi.org/10.1016/j.bmcl.2012.09.036 (2012).
doi: 10.1016/j.bmcl.2012.09.036
El Sherif, D. F. et al. The Binary mixtures of Lambda-Cyhalothrin, Chlorfenapyr, and Abamectin, against the House fly Larvae, Musca domestica L. Molec. 27 (10), 3084. https://doi.org/10.3390/molecules27103084 (2022).
doi: 10.3390/molecules27103084
Ito, M. et al. Synthesis and insecticidal activity of novel N-oxydihydropyrroles: 4-hydroxy-3-mesityl-1-methoxymethoxy derivatives with various substituents at the 5-position. Bioorg. Medic Chem. 11 (5), 761–768. https://doi.org/10.1016/s0968-0896(02)00474-1 (2003).
doi: 10.1016/s0968-0896(02)00474-1
Li, H., Yang, N., Xiong, L. & Wang, B. Design, synthesis and biological evaluation of Novel Thienylpyridyl- and thioether-containing acetamides and their derivatives as Pesticidal agents. Molec. 26 (18), 5649. https://doi.org/10.3390/molecules26185649 (2020).
doi: 10.3390/molecules26185649
Rashid, K. O. et al. Synthesis of novel phenoxyacetamide derivatives as potential insecticidal agents against the cotton leafworm, Spodoptera littoralis. Polycycl. Arom. Compd. 43 (1), 356–369. https://doi.org/10.1080/10406638.2021.2015400 (2023).
doi: 10.1080/10406638.2021.2015400
Abdelhamid, A. A., Salama, K. S. M., Elsayed, A. M. & Gad, M. A. El-Remaily, synthesis and Toxicological Effect of some New pyrrole derivatives as prospective Insecticidal agents against the Cotton Leafworm, Spodoptera Littoralis (Boisduval). ACS Omega. 7, 3990–4000. https://doi.org/10.1021/acsomega.1c05049 (2022).
doi: 10.1021/acsomega.1c05049
pubmed: 35155894
pmcid: 8829954
Abdel-Haleem, D. R., Badr, E. E., Samy, A. M. & Baker, S. A. Larvicidal evaluation of two novel cationic gemini surfactants against the potential vector of West Nile virus Culex pipiens Linnaeus (Diptera: Culicidae). Med. Vet. Entomol. 37 (3), 483–490. https://doi.org/10.1111/mve.12645 (2023).
doi: 10.1111/mve.12645
pubmed: 36799890
Tantawy, A. H., Farag, S. M., Abdel-Haleem, D. R. & Mohamed, H. I. Facile synthesis, larvicidal activity, biological effects, and molecular docking of sulfonamide-incorporating quaternary ammonium iodides as acetylcholinesterase inhibitors against Culex pipiens L. Bioorg. Chem. 128, 106098. https://doi.org/10.1016/j.bioorg.2022.106098 (2022).
Zhao, Y. et al. Synthesis, insecticidal, and acaricidal activities of novel 2-aryl-pyrrole derivatives containing ester groups. J. Agric. Food Chem. 56 (21), 10176–10182. https://doi.org/10.1021/jf802464d (2008).
doi: 10.1021/jf802464d
pubmed: 18937487
Kauffman, E. et al. Rearing of Culex spp. and Aedes spp. mosquitoes. Bio-Protoc.. 7 (17), e2542. https://doi.org/10.21769/BioProtoc.2542 (2017).
doi: 10.21769/BioProtoc.2542
El-Sayed, M. K. F., El-Shahawi, M. M., Ali, Y. M. & Abdel-Haleem, D. R. Abu El-Azm, Synthesis, larvicidal efficiency and molecular docking studies of novel annulated pyrano[2,3-c]pyrazoles against Culex pipiens L. and Musca domestica L. larvae. Bioorg. Chem. 130, 106258. https://doi.org/10.1016/j.bioorg.2022.106258 (2023).
doi: 10.1016/j.bioorg.2022.106258
pubmed: 36371818
WHO. Guidelines for Laboratory and Field Testing of Mosquito Larvicides (World Health & Organization https://www.who.int/publications/i/item/WHO-CDS-WHOPES-GCDPP-2005.13 (2005).
Abbass, E. M., Ali, A. K., El-Farargy, A. F., Abdel-Haleem, D. R. & Shaban, S. S. Synthesis, toxicological and in silico evaluation of novel spiro pyrimidines against Culex pipiens L. referring to chitinase enzyme. Sci. Rep. 14 (1), 1516. https://doi.org/10.1038/s41598-024-51771-8 (2024).
doi: 10.1038/s41598-024-51771-8
pubmed: 38233515
pmcid: 10794250
Amin, T. Biochemical and Physiological Studies of Some Insect Growth Regulators on the Cotton Leafworm Spodoptera littoralis (Boisd.). Cairo University. (1998).
Hadidy, D. E., El Sayed, A. M., Tantawy, M. E., El Alfy, T. & Farag, S. M. Abdel Haleem, Larvicidal and repellent potential of Ageratum houstonianum against Culex pipiens. Sci. Rep. 12, 21410. https://doi.org/10.1038/s41598-022-25939-z (2022).
doi: 10.1038/s41598-022-25939-z
pubmed: 36496475
pmcid: 9741651
Hansen, I. G. & Hodgson, E. Biochemical characteristics of insect microsomes, N-and o-demethylation. Biochem. Pharmacol. 20, 1569–1578. https://doi.org/10.1016/0006-2952(71)90285-1 (1971).
doi: 10.1016/0006-2952(71)90285-1
pubmed: 4399525
Finney, D. Quantal Responses to Mixtures, Probit Analysispp. 230–268 (third ed., Cambridge University Press, 1971).
Villeneuve, D. L., Blankenship, A. L. & Giesy, J. P. Derivation and application of relative potency estimates based on in Vitro Bioassay results. Environ. Toxicol. Chem. 19, 2835–2843. https://doi.org/10.1002/etc.5620191131 (2000).
doi: 10.1002/etc.5620191131
Duncan, D. B. Multiple range, and multiple F tests. Biom. 2, 1–42. https://doi.org/10.2307/3001478 (1955).
doi: 10.2307/3001478