Detection and characterization of colorectal cancer by autofluorescence lifetime imaging on surgical specimens.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
19 Oct 2024
Historique:
received: 14 05 2024
accepted: 24 09 2024
medline: 20 10 2024
pubmed: 20 10 2024
entrez: 19 10 2024
Statut: epublish

Résumé

Colorectal cancer (CRC) ranks among the most prevalent malignancies worldwide, driving a quest for comprehensive characterization methods. We report a characterization of the ex vivo autofluorescence lifetime fingerprint of colorectal tissues obtained from 73 patients that underwent surgical resection. We specifically target the autofluorescence characteristics of collagens, reduced nicotine adenine (phosphate) dinucleotide (NAD(P)H), and flavins employing a fiber-based dual excitation (375 nm and 445 nm) optical imaging system. Autofluorescence-derived parameters obtained from normal tissues, adenomatous lesions, and adenocarcinomas were analyzed considering the underlying clinicopathological features. Our results indicate that differences between tissues are primarily driven by collagen and flavins autofluorescence parameters. We also report changes in the autofluorescence parameters associated with NAD(P)H that we tentatively attribute to intratumoral heterogeneity, potentially associated to the presence of distinct metabolic subpopulations. Changes in autofluorescence signatures of malignant tumors were also observed with lymphatic and venous invasion, differentiation grade, and microsatellite instability. Finally, we characterized the impact of radiative treatment in the autofluorescence fingerprints of rectal tissues and observed a generalized increase in the mean lifetime of radiated adenocarcinomas, which is suggestive of altered metabolism and structural remodeling. Overall, our preliminary findings indicate that multiparametric autofluorescence lifetime measurements have the potential to significantly enhance clinical decision-making in CRC, spanning from initial diagnosis to ongoing management. We believe that our results will provide a foundational framework for future investigations to further understand and combat CRC exploiting autofluorescence measurements.

Identifiants

pubmed: 39426971
doi: 10.1038/s41598-024-74224-8
pii: 10.1038/s41598-024-74224-8
doi:

Substances chimiques

Collagen 9007-34-5
NADP 53-59-8

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

24575

Subventions

Organisme : H2020 Marie Skłodowska-Curie Actions
ID : 857894
Organisme : Russian Science Foundation
ID : 23-15-00294

Informations de copyright

© 2024. The Author(s).

Références

Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 71(3), 209–249 (2021).
Johnson, G. G. R. J., Hershorn, O., Singh, H., Park, J. & Helewa, R. M. Sampling error in the diagnosis of colorectal cancer is associated with delay to surgery: A retrospective cohort study. Surg. Endosc. 36(7), 4893–4902 (2022).
pubmed: 34724583 doi: 10.1007/s00464-021-08841-z
Bökkerink, G. M. et al. Value of macrobiopsies and transanal endoscopic microsurgery in the histological work-up of rectal neoplasms; A retrospective study. World J. Gastrointest. Oncol. 9(6), 251 (2017).
pubmed: 28656075 pmcid: 5472555 doi: 10.4251/wjgo.v9.i6.251
Gondal, G. et al. Biopsy colorectal polyps is not adequate grading neoplasia. Endoscopy 37(12), 1193–1197 (2005).
pubmed: 16329016 doi: 10.1055/s-2005-921031
Costantini, M. Interobserver agreement in the histologic diagnosis of colorectal polyps the experience of the multicenter adenoma colorectal study (SMAC). J. Clin. Epidemiol. 56(3), 209–214 (2003).
pubmed: 12725874 doi: 10.1016/S0895-4356(02)00587-5
Jensen, P. et al. Observer variability in the assessment of type and dysplasia of colorectal adenomas, analyzed using kappa statistics. Dis. Colon Rectum. 38(2), 195–198 (1995).
pubmed: 7851176 doi: 10.1007/BF02052450
Mollasharifi, T. et al. Interobserver agreement in assessing dysplasia in colorectal adenomatous polyps: A multicentric Iranian study. Iran. J. Pathol. 15(3), 167–174 (2020).
pubmed: 32754211 pmcid: 7354064 doi: 10.30699/ijp.2020.115021.2250
Smits, L. J. H. et al. Diagnostic variability in the histopathological assessment of advanced colorectal adenomas and early colorectal cancer in a screening population. Histopathology 80(5), 790–798 (2022).
pubmed: 34813117 pmcid: 9306715 doi: 10.1111/his.14601
Glynne-Jones, R. et al. Rectal cancer: ESMO Clinical Practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 28, iv22–iv40 (2017).
pubmed: 28881920 doi: 10.1093/annonc/mdx224
Argilés, G. et al. Localised colon cancer: ESMO Clinical Practice guidelines for diagnosis, treatment and follow-up†. Ann. Oncol. 31(10), 1291–1305 (2020).
pubmed: 32702383 doi: 10.1016/j.annonc.2020.06.022
Benson, A. B. et al. NCCN Guidelines Version 3.2023 Rectal Cancer Continue NCCN Guidelines Panel Disclosures (2023).
Benson, A. B. et al. NCCN Guidelines Version 2.2023 Colon Cancer Continue NCCN Guidelines Panel Disclosures (2023).
Deal, J. et al. Identifying molecular contributors to autofluorescence of neoplastic and normal colon sections using excitation-scanning hyperspectral imaging. J. Biomed. Opt. 24(02), 1 (2018).
pubmed: 30592190 doi: 10.1117/1.JBO.24.2.021207
Waterhouse, D. J. et al. First-in-human pilot study of snapshot multispectral endoscopy for early detection of Barrett’s-related neoplasia. J. Biomed. Opt. 26(10) (2021).
Yoon, J. et al. First experience in clinical application of hyperspectral endoscopy for evaluation of colonic polyps. J. Biophotonics 14(9) (2021).
Gkouzionis, I. et al. Real-time tracking of a diffuse reflectance spectroscopy probe used to aid histological validation of margin assessment in upper gastrointestinal cancer resection surgery. J. Biomed. Opt. 27(02) (2022).
Lukina, M. et al. Interrogation of metabolic and oxygen states of tumors with fiber-based luminescence lifetime spectroscopy. Opt. Lett. 42(4), 731 (2017).
pubmed: 28198851 doi: 10.1364/OL.42.000731
Wood, H. A. C. et al. Tri-mode optical biopsy probe with fluorescence endomicroscopy, Raman spectroscopy, and time-resolved fluorescence spectroscopy. J. Biophotonics 16(2), (2023).
Lakowicz, J. R., Szmacinski, H., Nowaczyk, K. & Johnson, M. L. Fluorescence Lifetime Imaging Free Protein-Bound NADH 89 (1992).
Marcu, L. Fluorescence lifetime techniques in medical applications. Ann. Biomed. Eng. 40(2), 304–331 (2012).
pubmed: 22273730 pmcid: 3368954 doi: 10.1007/s10439-011-0495-y
Shcheslavskiy, V. I., Yuzhakova, D. V., Sachkova, D. A., Shirmanova, M. V. & Becker, W. Macroscopic temporally and spectrally resolved fluorescence imaging enhanced by laser-wavelength multiplexing. Opt. Lett. 48(20), 5309 (2023).
pubmed: 37831854 doi: 10.1364/OL.501923
Kolenc, O. I. & Quinn, K. P. Evaluating cell metabolism through autofluorescence imaging of NAD(P)H and FAD. Antioxid. Redox Signal. 30(6), 875–889 (2019).
pubmed: 29268621 pmcid: 6352511 doi: 10.1089/ars.2017.7451
Georgakoudi, I. & Quinn, K. P. Optical imaging using endogenous contrast to assess metabolic state. Annu. Rev. Biomed. Eng. 14, 351–367 (2012).
pubmed: 22607264 doi: 10.1146/annurev-bioeng-071811-150108
Lagarto, J. L. et al. Characterization of NAD(P)H and FAD autofluorescence signatures in a Langendorff isolated-perfused rat heart model. Biomed. Opt. Express. 9(10), 4961 (2018).
pubmed: 30319914 pmcid: 6179415 doi: 10.1364/BOE.9.004961
Cao, R., Wallrabe, H., Siller, K. & Periasamy, A. Optimization of FLIM imaging, fitting and analysis for auto-fluorescent NAD(P)H and FAD in cells and tissues. Methods Appl. Fluoresc 8(2) (2020).
Cannon, T. M. et al. Characterization of NADH fluorescence properties under one-photon excitation with respect to temperature, pH, and binding to lactate dehydrogenase. OSA Contin. 4(5), 1610 (2021).
pubmed: 34458690 pmcid: 8367293 doi: 10.1364/OSAC.423082
Schaefer, P. M., Kalinina, S., Rueck, A. & von Arnim, C. A. F. Von Einem, NADH Autofluorescence—A marker on its way to Boost Bioenergetic Research. Cytometry Part. A. 95(1), 34–46 (2019).
doi: 10.1002/cyto.a.23597
Heikal, A. A. Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies. Biomark. Med. 4(2), 241–263 (2010).
pubmed: 20406068 doi: 10.2217/bmm.10.1
Marcu, L., Cohena, D., Maarek, J. M. I. & Grundfesta, W. S. Characterization of Type I, II, III, IV, and V Collagens by Time-Resolved Laser-Induced Fluorescence Spectroscopy (n.d.).
Lagarto, J. et al. Application of time-resolved autofluorescence to label-free in vivo optical mapping of changes in tissue matrix and metabolism associated with myocardial infarction and heart failure. Biomed. Opt. Express. 6(2), 324 (2015).
pubmed: 25780727 pmcid: 4354591 doi: 10.1364/BOE.6.000324
Manning, H. B. et al. Detection of cartilage matrix degradation by autofluorescence lifetime. Matrix Biol. 32(1), 32–38 (2013).
pubmed: 23266527 doi: 10.1016/j.matbio.2012.11.012
Shaik, T. A. et al. Monitoring changes in biochemical and Biomechanical Properties of Collagenous Tissues Using Label-Free and nondestructive optical imaging techniques. Anal. Chem. 93(8), 3813–3821 (2021).
pubmed: 33596051 doi: 10.1021/acs.analchem.0c04306
Zheng, J. Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (review). Oncol. Lett. 4(6), 1151–1157 (2012).
pubmed: 23226794 pmcid: 3506713 doi: 10.3892/ol.2012.928
Vander Heiden, M. G. & DeBerardinis, R. J. Underst. Intersections between Metabolism Cancer Biology Cell. 168(4), 657–669 (2017).
Mylonas, C. C. & Lazaris, A. C. Colorectal cancer and basement membranes: Clinicopathological correlations. Gastroenterol. Res. Pract. 2014 (2014).
Nebuloni, M. et al. Insight on colorectal carcinoma infiltration by studying perilesional extracellular matrix. Sci. Rep. 6 (2016).
Liang, Y. et al. Prognostic significance of abnormal matrix collagen remodeling in colorectal cancer based on histologic and bioinformatics analysis. Oncol. Rep. 44(4), 1671–1685 (2020).
pubmed: 32945508 pmcid: 7448414
Pfefer, T. J., Paithankar, D. Y., Poneros, J. M., Schomacker, K. T. & Nishioka, N. S. Temporally and spectrally resolved fluorescence spectroscopy for the detection of high grade dysplasia in Barrett’s esophagus. Lasers Surg. Med. 32(1), 10–16 (2003).
pubmed: 12516065 doi: 10.1002/lsm.10136
Butte, P. V. et al. Diagnosis of meningioma by time-resolved fluorescence spectroscopy. J. Biomed. Opt. 10(6), 064026 (2005).
pubmed: 16409091 doi: 10.1117/1.2141624
Cicchi, R. et al. Non-linear imaging and characterization of atherosclerotic arterial tissue using combined SHG and FLIM microscopy. J. Biophotonics. 8(4), 347–356 (2015).
pubmed: 25760563 doi: 10.1002/jbio.201400142
Masters, B. R., So, P. T. C. & Gratton, E. Optical biopsy of in vivo human Skin: Multi-photon Excitation Microscopy. Lasers Med. Sci. 13(3), 196–203 (1998).
doi: 10.1007/s101030050074
Xiang, F. et al. Quantitative multiphoton imaging of cell metabolism, stromal fibers, and keratinization enables label-free discrimination of esophageal squamous cell carcinoma. Biomed. Opt. Express. 14(8), 4137 (2023).
pubmed: 37799684 pmcid: 10549756 doi: 10.1364/BOE.492109
Rück, A., Hauser, C., Mosch, S. & Kalinina, S. Spectrally resolved fluorescence lifetime imaging to investigate cell metabolism in malignant and nonmalignant oral mucosa cells. J. Biomed. Opt. 19(9), 096005 (2014).
doi: 10.1117/1.JBO.19.9.096005
Heaster, T. M., Landman, B. A. & Skala, M. C. Quantitative spatial analysis of metabolic heterogeneity across in vivo and in vitro Tumor models. Front. Oncol. 9 (2019).
Skala, M. C. et al. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc. Natl. Acad. Sci. USA 104(49), 19494–19499 (2007).
pubmed: 18042710 pmcid: 2148317 doi: 10.1073/pnas.0708425104
Chekulayev, V. et al. Metabolic remodeling in human colorectal cancer and surrounding tissues: alterations in regulation of mitochondrial respiration and metabolic fluxes. Biochem. Biophys. Rep. 4, 111–125 (2015).
pubmed: 29124194 pmcid: 5668899
Reinsalu, L. et al. Energy Metabolic plasticity of Colorectal Cancer cells as a determinant of Tumor Growth and Metastasis. Front. Oncol. 11 (2021).
Robertson-Tessi, M., Gillies, R. J., Gatenby, R. A. & Anderson, A. R. A. Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes. Cancer Res. 75(8), 1567–1579 (2015).
pubmed: 25878146 pmcid: 4421891 doi: 10.1158/0008-5472.CAN-14-1428
Kim, J. & DeBerardinis, R. J. Mechanisms and implications of metabolic heterogeneity in Cancer. Cell. Metab. 30(3), 434–446 (2019).
pubmed: 31484055 pmcid: 6730674 doi: 10.1016/j.cmet.2019.08.013
Sengupta, D. & Pratx, G. Imaging metabolic heterogeneity in cancer. Mol. Cancer 15(1) (2016).
J. ZHENG, Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (review). Oncol. Lett. 4(6), 1151–1157 (2012).
De Wever, O. & Mareel, M. Role of tissue stroma in cancer cell invasion. J. Pathol. 200(4), 429–447 (2003).
pubmed: 12845611 doi: 10.1002/path.1398
Pouli, D. et al. Two-photon images reveal unique texture features for label-free identification of ovarian cancer peritoneal metastases. Biomed. Opt. Express. 10(9), 4479 (2019).
pubmed: 31565503 pmcid: 6757455 doi: 10.1364/BOE.10.004479
Shcheslavskiy, V. I. et al. Fluorescence time-resolved macroimaging. Opt. Lett. 43(13), 3152 (2018).
pubmed: 29957804 doi: 10.1364/OL.43.003152
Lukina, M. et al. Label-free macroscopic fluorescence lifetime imaging brain tumors. Front. Oncol. 11 (2021).
Mycek, M. A., Schomacker, K. T. & Nishioka, N. S. Colonic polyp differentiation using time-resolved autofluorescence spectroscopy. Gastrointest. Endosc. 48(4), 390–394 (1998).
pubmed: 9786112 doi: 10.1016/S0016-5107(98)70009-4
Coda, S. et al. Fluorescence lifetime spectroscopy of tissue autofluorescence in normal and diseased colon measured ex vivo using a fiber-optic probe. Biomed. Opt. Express. 5(2), 515 (2014).
pubmed: 24575345 pmcid: 3920881 doi: 10.1364/BOE.5.000515
Herrando, A. et al. Dual excitation spectral autofluorescence lifetime and reflectance imaging for fast macroscopic characterization of tissues. Biomed. Opt. Express (2023).
Köllner, M. & Wolfrum, J. How many photons are necessary for fluorescence-lifetime measurements? Chem. Phys. Lett. 200(1–2), 199–204 (1992).
doi: 10.1016/0009-2614(92)87068-Z
Hinsdale, T. et al. Optically sectioned wide-field fluorescence lifetime imaging microscopy enabled by structured illumination. Biomed. Opt. Express. 8(3), 1455 (2017).
pubmed: 28663841 pmcid: 5480556 doi: 10.1364/BOE.8.001455
Lagarto, J., Hares, J. D., Dunsby, C. & French, P. M. W. Development of low-cost instrumentation for single point autofluorescence lifetime measurements. J. Fluoresc (2017).
Walsh, A. J. & Skala, M. C. Optical metabolic imaging quantifies heterogeneous cell populations. Biomed. Opt. Express. 6(2), 559 (2015).
pubmed: 25780745 pmcid: 4354590 doi: 10.1364/BOE.6.000559
Walsh, A. J. et al. Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer. Cancer Res. 73(20), 6164–6174 (2013).
pubmed: 24130112 pmcid: 3801432 doi: 10.1158/0008-5472.CAN-13-0527
Ruppert, D., Wand, M. P. & Carroll, R. J. Semiparametric Regression (Cambridge University Press, 2003).
Kenward, M. G. & Roger, J. H. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53(3), 983 (1997).
pubmed: 9333350 doi: 10.2307/2533558
Alfonso-Garcia, A. et al. Assessment of murine colon inflammation using intraluminal fluorescence lifetime imaging. Molecules 27(4), (2022).
McGinty, J. et al. Wide-field fluorescence lifetime imaging of cancer. Biomed. Opt. Express 1(2), 627 (2010).
pubmed: 21258496 pmcid: 3017991 doi: 10.1364/BOE.1.000627
Lakowicz, J. R. Principles of Fluorescence Spectroscopy (Springer, 2006).
Nebuloni, M. et al. Insight on colorectal carcinoma infiltration by studying perilesional extracellular matrix. Sci. Rep. 6(1), 22522 (2016).
pubmed: 26940881 pmcid: 4778019 doi: 10.1038/srep22522
Liang, Y. et al. Prognostic significance of abnormal matrix collagen remodeling in colorectal cancer based on histologic and bioinformatics analysis. Oncol. Rep. (2020).
Provenzano, P. P., Eliceiri, K. W. & Keely, P. J. Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin. Exp. Metastasis. 26 (4), 357–370 (2009).
pubmed: 18766302 doi: 10.1007/s10585-008-9204-0
Izuishi, K. et al. The histological basis of detection of adenoma and cancer in the colon by autofluorescence endoscopic imaging. Endoscopy 31(7), 511–516 (1999).
pubmed: 10533733 doi: 10.1055/s-1999-57
Costa, S., Fang, Q., Farrell, T., Dao, E. & Farquharson, M. Time-resolved fluorescence and diffuse reflectance for lung squamous carcinoma margin detection. Lasers Surg. Med. 56(3), 279–287 (2024).
pubmed: 38357847 doi: 10.1002/lsm.23761
Zhang, L. et al. Predictive value of intratumoral-metabolic heterogeneity derived from 18F-FDG PET/CT in distinguishing microsatellite instability status of colorectal carcinoma. Front. Oncol. 13 (2023).
Oh, B. Y. et al. Intratumor heterogeneity inferred from targeted deep sequencing as a prognostic indicator. Sci. Rep. 9(1), 4542 (2019).
pubmed: 30872730 pmcid: 6418103 doi: 10.1038/s41598-019-41098-0
Liu, X. et al. Prognostic value of intratumor metabolic heterogeneity parameters on 18F-FDG PET/CT for patients with colorectal cancer. Contrast Media Mol. Imaging 2022, 1–11 (2022).
Han, Y. H., Jeong, H. J., Sohn, M. H. & Lim, S. T. Clinical value of intratumoral metabolic heterogeneity in [18F]FDG PET/CT for prediction of recurrence in patients with locally advanced colorectal cancer. Q. J. Nuclear Med. Mol. Imaging 62(4) (2018).
Zhang, M. et al. Metabolism-associated molecular classification of colorectal cancer. Front. Oncol. 10 (2020).
Rajput, A., Bocklage, T., Greenbaum, A., Lee, J. H. & Ness, S. A. Mutant-allele Tumor Heterogeneity scores Correlate with risk of metastases in Colon cancer. Clin. Colorectal Cancer. 16(3), e165–e170 (2017).
pubmed: 28073683 doi: 10.1016/j.clcc.2016.11.004
Joung, J. G. et al. Tumor heterogeneity predicts metastatic potential in Colorectal Cancer. Clin. Cancer Res. 23(23), 7209–7216 (2017).
pubmed: 28939741 doi: 10.1158/1078-0432.CCR-17-0306
Read, G. H., Bailleul, J., Vlashi, E. & Kesarwala, A. H. Metabolic response to radiation therapy in cancer. Mol. Carcinog. 61 (2), 200–224 (2022).
pubmed: 34961986 doi: 10.1002/mc.23379
van der Stel, S. D. et al. Size and depth of residual tumor after neoadjuvant chemoradiotherapy in rectal cancer—Implications for the development of new imaging modalities for response assessment. Front. Oncol. 13 (2023).
Loree, J. M. et al. Classifying colorectal cancer by tumor location rather than sidedness highlights a continuum in mutation profiles and consensus molecular subtypes. Clin. Cancer Res. 24(5), 1062–1072 (2018).
pubmed: 29180604 doi: 10.1158/1078-0432.CCR-17-2484
Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21(11), 1350–1356 (2015).
pubmed: 26457759 pmcid: 4636487 doi: 10.1038/nm.3967
Skala, M. C., Fontanella, A., Lan, L., Izatt, J. A. & Dewhirst, M. W. Longitudinal optical imaging of tumor metabolism and hemodynamics. J. Biomed. Opt. 15(1), 011112 (2010).
pubmed: 20210438 pmcid: 2816992 doi: 10.1117/1.3285584
Snyder, C. M. & Chandel, N. S. Mitochondrial regulation of cell survival and death during low-oxygen conditions. Antioxid. Redox Signal. 11(11), 2673–2683 (2009).
pubmed: 19580395 pmcid: 2821141 doi: 10.1089/ars.2009.2730
Lukina, M. M. et al. Interrogation of tumor metabolism in tissue samples ex vivo using fluorescence lifetime imaging of NAD(P)H. Methods Appl. Fluoresc. 8(1), 014002 (2019).
pubmed: 31622964 doi: 10.1088/2050-6120/ab4ed8

Auteurs

Alberto Ignacio Herrando (AI)

Biophotonics Platform, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal. ignacio.herrando@research.fchampalimaud.org.
Digestive Unit, Colorectal Surgery, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal. ignacio.herrando@research.fchampalimaud.org.
NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal. ignacio.herrando@research.fchampalimaud.org.

Laura M Fernandez (LM)

Digestive Unit, Colorectal Surgery, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal.

José Azevedo (J)

Digestive Unit, Colorectal Surgery, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal.

Pedro Vieira (P)

Digestive Unit, Colorectal Surgery, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal.

Hugo Domingos (H)

Digestive Unit, Colorectal Surgery, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal.

Antonio Galzerano (A)

Department of Pathology, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal.

Vladislav Shcheslavskiy (V)

Becker & Hickl GmbH, Nunsdorfer Ring 7-9, 12277, Berlin, Germany.
Privolzhsky Research Medical University, Minina and Pozharskogo Sq, 10/1, Nizhny Novgorod, Russia, 603005.

Richard J Heald (RJ)

Digestive Unit, Colorectal Surgery, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal.

Amjad Parvaiz (A)

Digestive Unit, Colorectal Surgery, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal.

Pedro Garcia da Silva (PG)

Biophotonics Platform, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal.

Mireia Castillo-Martin (M)

Department of Pathology, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal.

João L Lagarto (JL)

Biophotonics Platform, Champalimaud Foundation, Avenida Brasília, 1400-038, Lisbon, Portugal.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH