Joint subarray acoustic tweezers enable controllable cell translation, rotation, and deformation.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
20 Oct 2024
Historique:
received: 26 02 2024
accepted: 18 09 2024
medline: 21 10 2024
pubmed: 21 10 2024
entrez: 20 10 2024
Statut: epublish

Résumé

Contactless microscale tweezers are highly effective tools for manipulating, patterning, and assembling bioparticles. However, current tweezers are limited in their ability to comprehensively manipulate bioparticles, providing only partial control over the six fundamental motions (three translational and three rotational motions). This study presents a joint subarray acoustic tweezers platform that leverages acoustic radiation force and viscous torque to control the six fundamental motions of single bioparticles. This breakthrough is significant as our manipulation mechanism allows for controlling the three translational and three rotational motions of single cells, as well as enabling complex manipulation that combines controlled translational and rotational motions. Moreover, our tweezers can gradually increase the load on an acoustically trapped cell to achieve controllable cell deformation critical for characterizing cell mechanical properties. Furthermore, our platform allows for three-dimensional (3D) imaging of bioparticles without using complex confocal microscopy by rotating bioparticles with acoustic tweezers and taking images of each orientation using a standard microscope. With these capabilities, we anticipate the JSAT platform to play a pivotal role in various applications, including 3D imaging, tissue engineering, disease diagnostics, and drug testing.

Identifiants

pubmed: 39428395
doi: 10.1038/s41467-024-52686-8
pii: 10.1038/s41467-024-52686-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9059

Subventions

Organisme : National Science Foundation (NSF)
ID : CMMI-2243771
Organisme : National Science Foundation (NSF)
ID : CMMI-2340016
Organisme : National Science Foundation (NSF)
ID : 2139754
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R01GM144417

Informations de copyright

© 2024. The Author(s).

Références

Berthelot, J. et al. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nat. Nanotechnol. 9, 295–299 (2014).
pubmed: 24584272 doi: 10.1038/nnano.2014.24
Guo, F. et al. Three-dimensional manipulation of single cells using surface acoustic waves. Proc. Natl. Acad. Sci. USA 113, 1522–1527 (2016).
pubmed: 26811444 pmcid: 4760790 doi: 10.1073/pnas.1524813113
Huang, L., Zhao, P. & Wang, W. 3D cell electrorotation and imaging for measuring multiple cellular biophysical properties. Lab Chip 18, 2359–2368 (2018).
pubmed: 29946598 doi: 10.1039/C8LC00407B
Urbanska, M. et al. A comparison of microfluidic methods for high-throughput cell deformability measurements. Nat. Methods 17, 587–593 (2020).
pubmed: 32341544 pmcid: 7275893 doi: 10.1038/s41592-020-0818-8
Wu, P.-H. et al. A comparison of methods to assess cell mechanical properties. Nat. Methods 15, 491–498 (2018).
pubmed: 29915189 pmcid: 6582221 doi: 10.1038/s41592-018-0015-1
Ahmed, D. et al. Rotational manipulation of single cells and organisms using acoustic waves. Nat. Commun. 7, 11085 (2016).
pubmed: 27004764 pmcid: 4814581 doi: 10.1038/ncomms11085
Chen, C. et al. Acoustofluidic rotational tweezing enables high-speed contactless morphological phenotyping of zebrafish larvae. Nat. Commun. 12, 1118 (2021).
pubmed: 33602914 pmcid: 7892888 doi: 10.1038/s41467-021-21373-3
Maloney, J. M. et al. Mesenchymal stem cell mechanics from the attached to the suspended state. Biophys. J. 99, 2479–2487 (2010).
pubmed: 20959088 pmcid: 2955350 doi: 10.1016/j.bpj.2010.08.052
Lautenschläger, F. et al. The regulatory role of cell mechanics for migration of differentiating myeloid cells. Proc. Natl. Acad. Sci. USA 106, 15696 (2009).
pubmed: 19717452 pmcid: 2747182 doi: 10.1073/pnas.0811261106
Nyberg, K. D. et al. Quantitative deformability cytometry: Rapid, calibrated measurements of cell mechanical properties. Biophys. J. 113, 1574–1584 (2017).
pubmed: 28978449 pmcid: 5627151 doi: 10.1016/j.bpj.2017.06.073
Di Carlo, D. A mechanical biomarker of cell state in medicine. J. Lab. Autom. 17, 32–42 (2012).
pubmed: 22357606 doi: 10.1177/2211068211431630
Fregin, B. et al. High-throughput single-cell rheology in complex samples by dynamic real-time deformability cytometry. Nat. Commun. 10, 415 (2019).
pubmed: 30679420 pmcid: 6346011 doi: 10.1038/s41467-019-08370-3
Guck, J. et al. The optical stretcher: A novel laser tool to micromanipulate cells. Biophys. J. 81, 767–784 (2001).
pubmed: 11463624 pmcid: 1301552 doi: 10.1016/S0006-3495(01)75740-2
Rosendahl, P. et al. Real-time fluorescence and deformability cytometry. Nat. Methods 15, 355–358 (2018).
pubmed: 29608556 doi: 10.1038/nmeth.4639
Xie, Y. et al. Probing cell deformability via acoustically actuated bubbles. Small 12, 902–910 (2016).
pubmed: 26715211 doi: 10.1002/smll.201502220
Nematbakhsh, Y. & Lim, C. T. Cell biomechanics and its applications in human disease diagnosis. Acta Mech. Sin. 31, 268–273 (2015).
doi: 10.1007/s10409-015-0412-y
Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).
pubmed: 12917694 doi: 10.1038/nature01935
Yang, A. H. J. et al. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 457, 71–75 (2009).
pubmed: 19122638 doi: 10.1038/nature07593
Juan, M. L., Righini, M. & Quidant, R. Plasmon nano-optical tweezers. Nat. Photon. 5, 349–356 (2011).
doi: 10.1038/nphoton.2011.56
Juan, M. L., Gordon, R., Pang, Y., Eftekhari, F. & Quidant, R. Self-induced back-action optical trapping of dielectric nanoparticles. Nat. Phys. 5, 915–919 (2009).
doi: 10.1038/nphys1422
Wu, M. C. Optoelectronic tweezers. Nat. Photon. 5, 322–324 (2011).
doi: 10.1038/nphoton.2011.98
De Vlaminck, I. & Dekker, C. Recent advances in magnetic tweezers. Annu. Rev. Biophys. 41, 453–472 (2012).
pubmed: 22443989 doi: 10.1146/annurev-biophys-122311-100544
Trick, A. Y. et al. Filtration-assisted magnetofluidic cartridge platform for HIV RNA detection from blood. Lab Chip 22, 945–953 (2022).
pubmed: 35088790 pmcid: 9035341 doi: 10.1039/D1LC00820J
Alghane, M. et al. Streaming phenomena in microdroplets induced by Rayleigh surface acoustic wave. J. Appl. Phys. 109, 114901 (2011).
doi: 10.1063/1.3586040
Baudoin, M. et al. Folding a focalized acoustical vortex on a flat holographic transducer: Miniaturized selective acoustical tweezers. Sci. Adv. 5, eaav1967 (2019).
pubmed: 30993201 pmcid: 6461452 doi: 10.1126/sciadv.aav1967
Bernassau, A. L., MacPherson, P. G. A., Beeley, J., Drinkwater, B. W. & Cumming, D. R. S. Patterning of microspheres and microbubbles in an acoustic tweezers. Biomed. Microdevices 15, 289–297 (2013).
pubmed: 23225102 doi: 10.1007/s10544-012-9729-5
Collins, D. J. et al. Acoustic tweezers via sub–time-of-flight regime surface acoustic waves. Sci. Adv. 2, e1600089 (2016).
pubmed: 27453940 pmcid: 4956186 doi: 10.1126/sciadv.1600089
Delsing, P. et al. The 2019 surface acoustic waves roadmap. J. Phys. D 52, 353001 (2019).
doi: 10.1088/1361-6463/ab1b04
Dholakia, K., Drinkwater, B. W. & Ritsch-Marte, M. Comparing acoustic and optical forces for biomedical research. Nat. Rev. Phys. 2, 480–491 (2020).
doi: 10.1038/s42254-020-0215-3
Shen, L. et al. Acousto-dielectric tweezers for size-insensitive manipulation and biophysical characterization of single cells. Biosens. Bioelectron. 224, 115061 (2023).
pubmed: 36634509 doi: 10.1016/j.bios.2023.115061
Yafouz, B., Kadri, N. A. & Ibrahim, F. Dielectrophoretic manipulation and separation of microparticles using microarray dot electrodes. Sensors 14, 6356–6369 (2014).
pubmed: 24705632 pmcid: 4029698 doi: 10.3390/s140406356
Pethig, R. Dielectrophoresis: Status of the theory, technology, and applications. Biomicrofluidics 4, 022811 (2010).
pubmed: 20697589 pmcid: 2917862 doi: 10.1063/1.3456626
Kim, D., Sonker, M. & Ros, A. Dielectrophoresis: From molecular to micrometer-scale analytes. Anal. Chem. 91, 277–295 (2019).
pubmed: 30482013 doi: 10.1021/acs.analchem.8b05454
Tanase, M., Biais, N., & Sheetz, M. Magnetic tweezers in cell biology. Methods Cell Biol. 83, 473–493 (2007).
Gossett, D. R. et al. Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc. Natl. Acad. Sci. USA 109, 7630–7635 (2012).
pubmed: 22547795 pmcid: 3356639 doi: 10.1073/pnas.1200107109
Wiklund, M. Acoustofluidics 12: Biocompatibility and cell viability in microfluidic acoustic resonators. Lab Chip 12, 2018–2028 (2012).
pubmed: 22562376 doi: 10.1039/c2lc40201g
Tao, R. et al. Bimorph material/structure designs for high sensitivity flexible surface acoustic wave temperature sensors. Sci. Rep. 8, 9052 (2018).
pubmed: 29899347 pmcid: 5998018 doi: 10.1038/s41598-018-27324-1
Shpak, O. et al. Acoustic droplet vaporization is initiated by superharmonic focusing. Proc. Natl. Acad. Sci. USA 111, 1697 (2014).
pubmed: 24449879 pmcid: 3918756 doi: 10.1073/pnas.1312171111
Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518–522 (2016).
pubmed: 27652563 doi: 10.1038/nature19755
Laurell, T., Petersson, F. & Nilsson, A. Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev. 36, 492–506 (2007).
pubmed: 17325788 doi: 10.1039/B601326K
Kooiman, K., Vos, H. J., Versluis, M. & de Jong, N. Acoustic behavior of microbubbles and implications for drug delivery. Adv. Drug Del. Rev. 72, 28–48 (2014).
doi: 10.1016/j.addr.2014.03.003
Friend, J. & Yeo, L. Y. Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 83, 647–704 (2011).
doi: 10.1103/RevModPhys.83.647
Gu, J. & Jing, Y. Modeling of wave propagation for medical ultrasound: a review. IEEE Trans. Ultrason Ferroelectr. Freq. Control 62, 1979–1992 (2015).
pubmed: 26559627 doi: 10.1109/TUFFC.2015.007034
Ding, X. et al. Cell separation using tilted-angle standing surface acoustic waves. Proc. Natl. Acad. Sci. USA 111, 12992–12997 (2014).
pubmed: 25157150 pmcid: 4246961 doi: 10.1073/pnas.1413325111
Li, P. et al. Acoustic separation of circulating tumor cells. Proc. Natl. Acad. Sci. USA 112, 4970 (2015).
pubmed: 25848039 pmcid: 4413297 doi: 10.1073/pnas.1504484112
Nam, J., Lim, H., Kim, C., Yoon Kang, J. & Shin, S. Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave. Biomicrofluidics 6, 024120 (2012).
pmcid: 3365908 doi: 10.1063/1.4718719
Bruus, H. et al. Forthcoming Lab on a Chip tutorial series on acoustofluidics: Acoustofluidics—exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation. Lab Chip 11, 3579–3580 (2011).
pubmed: 21952310 doi: 10.1039/c1lc90058g
Rufo, J., Cai, F., Friend, J., Wiklund, M. & Huang, T. J. Acoustofluidics for biomedical applications. Nat. Rev. Methods Prim. 2, 30 (2022).
doi: 10.1038/s43586-022-00109-7
Zhang, P., Bachman, H., Ozcelik, A. & Huang, T. J. Acoustic Microfluidics. Annu. Rev. Anal. Chem. 13, 17–43 (2020).
doi: 10.1146/annurev-anchem-090919-102205
Habibi, R. et al. Exosome trapping and enrichment using a sound wave activated nano-sieve (SWANS). Lab Chip 20, 3633–3643 (2020).
pubmed: 32901635 doi: 10.1039/D0LC00623H
Rufo, J., Zhang, P., Zhong, R., Lee, L. P. & Huang, T. J. A sound approach to advancing healthcare systems: the future of biomedical acoustics. Nat. Commun. 13, 3459 (2022).
pubmed: 35710904 pmcid: 9200942 doi: 10.1038/s41467-022-31014-y
Gu, Y. et al. Acoustofluidic centrifuge for nanoparticle enrichment and separation. Sci. Adv. 7, eabc0467 (2021).
pubmed: 33523836 pmcid: 7775782 doi: 10.1126/sciadv.abc0467
Ding, X. et al. Tunable patterning of microparticles and cells using standing surface acoustic waves. Lab Chip 12, 2491–2497 (2012).
pubmed: 22648600 pmcid: 3991783 doi: 10.1039/c2lc21021e
Collins, D. J. et al. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat. Commun. 6, 8686 (2015).
pubmed: 26522429 doi: 10.1038/ncomms9686
Yang, S. et al. Acoustic tweezers for high-throughput single-cell analysis. Nat. Protoc. 18, 2441–2458 (2023).
pubmed: 37468650 pmcid: 11052649 doi: 10.1038/s41596-023-00844-5
Hao, N. et al. Acoustofluidics-assisted fluorescence-SERS bimodal biosensors. Small 16, 2005179 (2020).
doi: 10.1002/smll.202005179
Hao, N. et al. Acoustofluidic multimodal diagnostic system for Alzheimer’s disease. Biosens. Bioelectron. 196, 113730 (2022).
pubmed: 34736099 doi: 10.1016/j.bios.2021.113730
Lu, H. et al. Rapid additive-free bacteria lysis using traveling surface acoustic waves in microfluidic channels. Lab Chip 19, 4064–4070 (2019).
pubmed: 31690904 doi: 10.1039/C9LC00656G
Chen, Z. et al. Acoustofluidic micromixers: From rational design to lab-on-a-chip applications. Appl. Mater. Today 26, 101356 (2022).
doi: 10.1016/j.apmt.2021.101356
Reboud, J. et al. Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies. Proc. Natl. Acad. Sci. USA 109, 15162–15167 (2012).
pubmed: 22949692 pmcid: 3458325 doi: 10.1073/pnas.1206055109
Ren, T., Steiger, W., Chen, P., Ovsianikov, A. & Demirci, U. Enhancing cell packing in buckyballs by acoustofluidic activation. Biofabrication 12, 025033 (2020).
pubmed: 32229710 doi: 10.1088/1758-5090/ab76d9
Wang, W. et al. Acoustic propulsion of nanorod motors inside living cells. Angew. Chem. Int. Ed. 53, 3201–3204 (2014).
doi: 10.1002/anie.201309629
Liang, S. & Chaohui, W. Acoustic radiation force on a compressible cylinder in the standing surface acoustic wave (SSAW). J. Appl. Phys. 123, 044504 (2018).
doi: 10.1063/1.5006828
Liang, S. & Chaohui, W. Revised model for the radiation force exerted by standing surface acoustic waves on a rigid cylinder. Phys. Rev. E 97, 033103 (2018).
pubmed: 29776072 doi: 10.1103/PhysRevE.97.033103
Liang, S., Chaohui, W. & Qiao, H. The radiation force on a rigid sphere in standing surface acoustic waves. J. Appl. Phys. 124, 104503 (2018).
doi: 10.1063/1.5024503
Yang, S. et al. Harmonic acoustics for dynamic and selective particle manipulation. Nat. Mater. 21, 540–546 (2022).
pubmed: 35332292 pmcid: 9200603 doi: 10.1038/s41563-022-01210-8
He, Y. et al. Acoustofluidic interfaces for the mechanobiological secretome of MSCs. Nat. Commun. 14, 7639 (2023).
pubmed: 37993431 pmcid: 10665559 doi: 10.1038/s41467-023-43239-6
Bruus, H., Winckelmann, B. G., Bach, J. S., & Skov, N. R. 3D modeling of acoustofluidics in a liquid-filled cavity including streaming, viscous boundary layers, surrounding solids, and a piezoelectric transducer. AIMS Math. 4, 99–111 (2019).
Barnkob, R. et al. Acoustically driven fluid and particle motion in confined and leaky systems. Phys. Rev. Appl. 9, 014027 (2018).
doi: 10.1103/PhysRevApplied.9.014027
Garg, N. et al. Rapid immunodiagnostics of multiple viral infections in an acoustic microstreaming device with serum and saliva samples. Lab Chip 19, 1524–1533 (2019).
pubmed: 30806409 pmcid: 6478527 doi: 10.1039/C8LC01303A
Busse, F. H. & Wang, T. G. Torque generated by orthogonal acoustic waves–Theory. Acoust. Soc. Am. J. 69, 1634–1638 (1981).
doi: 10.1121/1.385940
Marzo, A. & Drinkwater, B. W. Holographic acoustic tweezers. Proc. Natl. Acad. Sci. USA 116, 84 (2019).
pubmed: 30559177 doi: 10.1073/pnas.1813047115
Mishra, P., Hill, M. & Glynne-Jones, P. Deformation of red blood cells using acoustic radiation forces. Biomicrofluidics 8, 034109 (2014).
pubmed: 25379070 pmcid: 4162412 doi: 10.1063/1.4882777
Link, A. & Franke, T. Acoustic erythrocytometer for mechanically probing cell viscoelasticity. Lab Chip 20, 1991–1998 (2020).
pubmed: 32367091 doi: 10.1039/C9LC00999J
Silva, G. T. et al. Acoustic deformation for the extraction of mechanical properties of lipid vesicle populations. Phys. Rev. E 99, 063002 (2019).
pubmed: 31330730 doi: 10.1103/PhysRevE.99.063002
Liu, Y. & Xin, F. Deformation dynamics of spherical red blood cells in viscous fluid driven by ultrasound. Phys. Fluids 35, 012011 (2023).
Ni, Z. et al. Modelling of SAW-PDMS acoustofluidics: physical fields and particle motions influenced by different descriptions of the PDMS domain. Lab Chip 19, 2728–2740 (2019).
pubmed: 31292597 doi: 10.1039/C9LC00431A
Destgeer, G. & Sung, H. J. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. Lab Chip 15, 2722–2738 (2015).
pubmed: 26016538 doi: 10.1039/C5LC00265F
Marston, P. L. & Zhang, L. Radiation torques and forces in scattering from spheres and acoustical analogues. In Advances in Imaging (Optica Publishing Group, 2009).
Settnes, M. & Bruus, H. Forces acting on a small particle in an acoustical field in a viscous fluid. Phys. Rev. E 85, 016327 (2012).
doi: 10.1103/PhysRevE.85.016327
Augustsson, P., Karlsen, J. T., Su, H.-W., Bruus, H. & Voldman, J. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping. Nat. Commun. 7, 11556 (2016).
pubmed: 27180912 pmcid: 4873643 doi: 10.1038/ncomms11556
Liang, S., Chaohui, W. & Qiao, H. Force on a compressible sphere and the resonance of a bubble in standing surface acoustic waves. Phys. Rev. E 98, 043108 (2018).
doi: 10.1103/PhysRevE.98.043108
Suresh, S. Biomechanics and biophysics of cancer cells. Acta Mater. 55, 3989–4014 (2007).
doi: 10.1016/j.actamat.2007.04.022
Mei, J., Zhang, N., & Friend, J. Fabrication of surface acoustic wave devices on lithium niobate. J. Vis. Exp. https://doi.org/10.3791/61013 (2020).
Otto, O. et al. Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat. Methods 12, 199–202 (2015).
pubmed: 25643151 doi: 10.1038/nmeth.3281

Auteurs

Liang Shen (L)

Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
Department of Mechanical Engineering, Virginia Polytechnical Institute and State University, Blacksburg, VA, USA.

Zhenhua Tian (Z)

Department of Mechanical Engineering, Virginia Polytechnical Institute and State University, Blacksburg, VA, USA. tianz@vt.edu.

Kaichun Yang (K)

Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.

Joseph Rich (J)

Department of Biomedical Engineering, Duke University, Durham, NC, USA.

Jianping Xia (J)

Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.

Neil Upreti (N)

Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.

Jinxin Zhang (J)

Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.

Chuyi Chen (C)

Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.

Nanjing Hao (N)

Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.

Zhichao Pei (Z)

Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.

Tony Jun Huang (TJ)

Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA. tony.huang@duke.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH