The effect of extracellular potassium concentration on the oscillation frequency of the pacemaker nucleus in the weakly electric fish Apteronotus leptorhynchus.

Apteronotus leptorhynchus Behavioral sexual dimorphism Electric fish Electric organ discharge Extracellular potassium concentration Osmolarity Pacemaker nucleus

Journal

Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology
ISSN: 1432-1351
Titre abrégé: J Comp Physiol A Neuroethol Sens Neural Behav Physiol
Pays: Germany
ID NLM: 101141792

Informations de publication

Date de publication:
23 Oct 2024
Historique:
received: 25 05 2024
accepted: 01 10 2024
revised: 22 09 2024
medline: 23 10 2024
pubmed: 23 10 2024
entrez: 23 10 2024
Statut: aheadofprint

Résumé

The weakly electric brown ghost knifefish (Apteronotus leptorhynchus) exhibits a pronounced sexual dimorphism in its electric behavior-males discharge at higher frequencies than females, with little overlap between the sexes. The frequency of these electric organ discharges is controlled by the frequency of the synchronized oscillations of the medullary pacemaker nucleus. Previous studies have suggested that sex-specific differences in the morphology and gene expression pattern of the astrocytic syncytium that envelopes the pacemaking neural network cause differences in its capacity to buffer the extracellular concentration of K

Identifiants

pubmed: 39441389
doi: 10.1007/s00359-024-01719-0
pii: 10.1007/s00359-024-01719-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National Science Foundation
ID : 1946645
Organisme : National Science Foundation
ID : 1946910

Informations de copyright

© 2024. The Author(s).

Références

Alger BE, Teyler TJ (1978) Potassium and short-term response plasticity in the hippocampal slice. Brain Res 159:239–242. https://doi.org/10.1016/0006-8993(78)90127-0
doi: 10.1016/0006-8993(78)90127-0 pubmed: 215265
Andrew RD (1991) Seizure and acute osmotic change: clinical and neurophysiological aspects. J Neurol Sci 101:7–18. https://doi.org/10.1016/0022-510X(91)90013-W
doi: 10.1016/0022-510X(91)90013-W pubmed: 2027029
Andrew RD, Fagan M, Ballyk BA, Rosen AS (1989) Seizure susceptibility and the osmotic state. Brain Res 498:175–180. https://doi.org/10.1016/0006-8993(89)90417-4
doi: 10.1016/0006-8993(89)90417-4 pubmed: 2790471
Baylor DA, Nicholls JG (1969) Changes in extracellular potassium concentration produced by neuronal activity in the central nervous system of the leech. J Physiol 203:555–569. https://doi.org/10.1113/jphysiol.1969.sp008879
doi: 10.1113/jphysiol.1969.sp008879 pubmed: 5387026 pmcid: 1351530
Bennett MVL (1971) Electric organs. In: Hoar WS, Randall DJ (eds) Fish physiology, sensory systems and electric organs, vol 5. Academic Press, New York, pp 347–491
doi: 10.1016/S1546-5098(08)60051-5
Brumberg JC, Nowak LG, McCormick DA (2000) Ionic mechanisms underlying repetitive high-frequency burst firing in supragranular cortical neurons. J Neurosci 20:4829–4843. https://doi.org/10.1523/JNEUROSCI.20-13-04829.2000
doi: 10.1523/JNEUROSCI.20-13-04829.2000 pubmed: 10864940 pmcid: 6772270
Contreras SA, Schleimer J-H, Gulledge AT, Schreiber S (2021) Activity-mediated accumulation of potassium induces a switch in firing pattern and neuronal excitability type. PLoS Comput Biol 17:e1008510. https://doi.org/10.1371/journal.pcbi.1008510
doi: 10.1371/journal.pcbi.1008510 pubmed: 34043638 pmcid: 8205125
de Oliveira-Castro G (1955) Differentiated nervous fibers that constitute the electric organ of Sternarchus albifrons. Linn An Acad Bras Cienc 27:557–564
Ding F, Sun Q, Long C, Rasmussen RN, Peng S, Xu Q, Kang N, Song W, Weikop P, Goldman SA, Nedergaard M (2024) Dysregulation of extracellular potassium distinguishes healthy ageing from neurodegeneration. Brain. https://doi.org/10.1093/brain/awae075
doi: 10.1093/brain/awae075 pubmed: 38884572 pmcid: 11224619
Dye J (1988) An in vitro physiological preparation of a vertebrate communicatory behavior: chirping in the weakly electric fish, Apteronotus. J Comp Physiol 163:445–458. https://doi.org/10.1007/BF00604899
doi: 10.1007/BF00604899
Dye J (1991) Ionic and synaptic mechanisms underlying a brainstem oscillator: an in vitro study of the pacemaker nucleus of Apteronotus. J Comp Physiol A 168:521–532. https://doi.org/10.1007/BF00215074
doi: 10.1007/BF00215074 pubmed: 1681093
Dye JC, Meyer JH (1986) Central control of the electric organ discharge in weakly electric fish. In: Bullock TH, Heiligenberg W (eds) Electroreception. John Wiley, New York, pp 71–102
Enger PS, Szabo T (1968) Effect of temperature on the discharge rates of the electric organ of some gymnotids. Comp Biochem Physiol 27:625–627. https://doi.org/10.1016/0010-406x(68)90263-6
doi: 10.1016/0010-406x(68)90263-6 pubmed: 5758391
Hartman D, Lehotzky D, Ilieş I, Levi M, Zupanc GKH (2021) Modeling of sustained spontaneous network oscillations of a sexually dimorphic brainstem nucleus: the role of potassium equilibrium potential. J Comput Neurosci 49:419–439. https://doi.org/10.1007/s10827-021-00789-2
doi: 10.1007/s10827-021-00789-2 pubmed: 34032982
Ilieş I, Zupanc GKH (2023) Computational modeling predicts regulation of central pattern generator oscillations by size and density of the underlying heterogenous network. J Comput Neurosci 51:87–105. https://doi.org/10.1007/s10827-022-00835-7
doi: 10.1007/s10827-022-00835-7 pubmed: 36201129
Lux HD, Neher E (1973) The equilibration time course of [K
doi: 10.1007/BF00235028 pubmed: 4714525
Lux HD, Heinemann U, Dietzel I (1986) Ionic changes and alterations in the size of the extracellular space during epileptic activity. Adv Neurol 44:619–639
pubmed: 3518349
Meyer JH (1984) Steroid influences upon discharge frequencies of intact and isolated pacemakers of weakly electric fish. J Comp Physiol 154:659–668. https://doi.org/10.1007/BF01350219
doi: 10.1007/BF01350219
Meyer JH, Leong M, Keller CH (1987) Hormone-induced and maturational changes in electric organ discharges and electroreceptor tuning in the weakly electric fish Apteronotus. J Comp Physiol A 160:385–394. https://doi.org/10.1007/BF00613028
doi: 10.1007/BF00613028 pubmed: 3572854
Moody WJ, Futamachi KJ, Prince DA (1974) Extracellular potassium activity during epileptogenesis. Exp Neurol 42:248–263. https://doi.org/10.1016/0014-4886(74)90023-5
doi: 10.1016/0014-4886(74)90023-5 pubmed: 4824976
Nilsson GE, Pérez-Pinzón M, Dimberg K, Winberg S (1993) Brain sensitivity to anoxia in fish as reflected by changes in extracellular K
doi: 10.1152/ajpregu.1993.264.2.R250 pubmed: 8447481
Poolos NP, Kocsis JD (1990) Elevated extracellular potassium concentration enhances synaptic activation of N-methyl-D-aspartate receptors in hippocampus. Brain Res 508:7–12. https://doi.org/10.1016/0006-8993(90)91110-3
doi: 10.1016/0006-8993(90)91110-3 pubmed: 2159824
Prince DA, Lux HD, Neher E (1973) Measurement of extracellular potassium activity in cat cortex. Brain Res 50:489–495. https://doi.org/10.1016/0006-8993(73)90758-0
doi: 10.1016/0006-8993(73)90758-0 pubmed: 4705519
Rice ME, Nicholson C (1988) Behavior of extracellular K
doi: 10.1016/0006-8993(88)90263-6 pubmed: 3179721
Roper SN, Obenaus A, Dudek FE (1992) Osmolality and nonsynaptic epileptiform bursts in rat CA1 and dentate gyrus. Ann Neurol 31:81–85. https://doi.org/10.1002/ana.410310115
doi: 10.1002/ana.410310115 pubmed: 1543352
Salisbury JP, Sîrbulescu RF, Moran BM, Auclair JR, Zupanc GKH, Agar JN (2015) The central nervous system transcriptome of the weakly electric brown ghost knifefish (Apteronotus leptorhynchus): de novo assembly, annotation, and proteomics validation. BMC Genom 16:166. https://doi.org/10.1186/s12864-015-1354-2
doi: 10.1186/s12864-015-1354-2
Schaefer JE, Zakon HH (1996) Opposing actions of androgen and estrogen on in vitro firing frequency of neuronal oscillators in the electromotor system. J Neurosci 16:2860–2868. https://doi.org/10.1523/JNEUROSCI.16-08-02860.1996
doi: 10.1523/JNEUROSCI.16-08-02860.1996 pubmed: 8786459 pmcid: 6578774
Schwartzkroin PA, Baraban SC, Hochman DW (1998) Osmolarity, ionic flux, and changes in brain excitability. Epilepsy Res 32:275–285. https://doi.org/10.1016/s0920-1211(98)00058-8
doi: 10.1016/s0920-1211(98)00058-8 pubmed: 9761327
Sîrbulescu RF, Ilieş I, Zupanc GKH (2014) Quantitative analysis reveals dominance of gliogenesis over neurogenesis in an adult brainstem oscillator. Dev Neurobiol 74:934–952. https://doi.org/10.1002/dneu.22176
doi: 10.1002/dneu.22176 pubmed: 24639054
Smith GT, Zakon HH (2000) Pharmacological characterization of ionic currents that regulate the pacemaker rhythm in a weakly electric fish. J Neurobiol 42:270–286. https://doi.org/10.1002/(sici)1097-4695(20000205)42:2%3c270::aid-neu10%3e3.0.co;2-v
doi: 10.1002/(sici)1097-4695(20000205)42:2<270::aid-neu10>3.0.co;2-v pubmed: 10640333
Somjen GG (2004) Ions in the brain: normal function, seizures, and stroke. Oxford University Press, New York
doi: 10.1093/oso/9780195151718.001.0001
Waxman SG, Pappas GD, Bennett MVL (1972) Morphological correlates of functional differentiation of nodes of Ranvier along single fibers in the neurogenic electric organ of the knife fish Sternarchus. J Cell Biol 53:210–224. https://doi.org/10.1083/jcb.53.1.210
doi: 10.1083/jcb.53.1.210 pubmed: 5013596 pmcid: 2108696
Zupanc GKH (2017) Dynamic neuron-glia interactions in an oscillatory network controlling behavioral plasticity in the weakly electric fish, Apteronotus leptorhynchus. Front Physiol 8:1087. https://doi.org/10.3389/fphys.2017.01087
doi: 10.3389/fphys.2017.01087 pubmed: 29311998 pmcid: 5744004
Zupanc GKH (2020) Development of a sexual dimorphism in a central pattern generator driving a rhythmic behavior: the role of glia-mediated potassium buffering in the pacemaker nucleus of the weakly electric fish Apteronotus leptorhynchus. Dev Neurobiol 80:6–15. https://doi.org/10.1002/dneu.22736
doi: 10.1002/dneu.22736 pubmed: 32090501
Zupanc GKH, Bullock TH (2005) From electrogenesis to electroreception: an overview. In: Bullock TH, Hopkins CD, Popper AN, Fay RR (eds) Electroreception. Springer Science + Business Media, New York, pp 5–46
doi: 10.1007/0-387-28275-0_2
Zupanc GKH, Banks JR, Engler G, Beason RC (2003) Temperature dependence of the electric organ discharge in weakly electric fish. In: Ploger BJ, Yasukawa K (eds) Exploring animal behavior in laboratory and field: an hypothesis-testing approach to the development, causation, function, and evolution of animal behavior. Academic Press, Amsterdam, pp 85–94
doi: 10.1016/B978-012558330-5/50009-1
Zupanc GKH, Ilieş I, Sîrbulescu RF, Zupanc MM (2014) Large-scale identification of proteins involved in the development of a sexually dimorphic behavior. J Neurophysiol 111:1646–1654. https://doi.org/10.1152/jn.00750.2013
doi: 10.1152/jn.00750.2013 pubmed: 24478160
Zupanc GKH, Amaro SM, Lehotzky D, Zupanc FB, Leung NY (2019) Glia-mediated modulation of extracellular potassium concentration determines the sexually dimorphic output frequency of a model brainstem oscillator. J Theor Biol 471:117–124. https://doi.org/10.1016/j.jtbi.2019.03.013
doi: 10.1016/j.jtbi.2019.03.013 pubmed: 30902592

Auteurs

Masashi Kawasaki (M)

Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA.

Günther K H Zupanc (GKH)

Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA. g.zupanc@northeastern.edu.

Classifications MeSH