Combined Administration of Metformin and Propionate Reduces the Degree of Oxidative/Nitrosative Damage of Hypothalamic Neurons in Rat Model of Type 2 Diabetes Mellitus.
Diabetes mellitus
Metformin
Oxidative/Nitrosative stress
Propionate
Journal
Molecular neurobiology
ISSN: 1559-1182
Titre abrégé: Mol Neurobiol
Pays: United States
ID NLM: 8900963
Informations de publication
Date de publication:
24 Oct 2024
24 Oct 2024
Historique:
received:
12
12
2023
accepted:
26
09
2024
medline:
24
10
2024
pubmed:
24
10
2024
entrez:
23
10
2024
Statut:
aheadofprint
Résumé
Many complications associated with type 2 diabetes mellitus (T2DM) are closely linked with the generation of reactive species or free radicals leading to oxidative/nitrosative stress. The aim of this study was to investigate the effect of combined administration of metformin with propionate on the degree of oxidative/nitrosative damage in the brain of rats with an experimental model of T2DM. Male Wistar rats were divided into control (healthy rats); rats with T2DM and no further therapy; rats with T2DM that received: metformin, propionate, propionate + metformin. Ventromedial hypothalamus samples were analyzed by transmission electron microscopy, gas-liquid chromatography, Western blotting, RT-PCR and electron paramagnetic resonance. Combined treatment resulted in normalization of the neuronal NOS levels and reduction of mRNA level of induced nitric oxide synthase (NOS) and superoxide radicals compared to untreated T2DM rats. A decrease was also observed in the level of 8-oxyguanine with normalization of fatty acids distribution. The combined treatment partially mitigated ultrastructural alterations resulting from oxidative/nitrosative damage in neurons' mitochondria in T2DM. Thus, we demonstrated a positive effect of the combined use of metformin and propionate on all indicators of oxidative/nitrosative stress in T2DM.
Identifiants
pubmed: 39443349
doi: 10.1007/s12035-024-04529-2
pii: 10.1007/s12035-024-04529-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : European Union's Horizon 2020 Research and Innovation programme
ID : 871072
Organisme : European Union's Horizon 2020 Research and Innovation programme
ID : 871072
Organisme : European Union's Horizon 2020 Research and Innovation programme
ID : 871072
Organisme : grant BMBF
ID : FKZ 01DK20008
Organisme : grant BMBF
ID : FKZ 01DK20008
Informations de copyright
© 2024. The Author(s).
Références
Mozos I, Luca CT (2017) Crosstalk between Oxidative and Nitrosative Stress and Arterial Stiffness. Curr Vasc Pharmacol 15(5):446–456. https://doi.org/10.2174/1570161115666170201115428
doi: 10.2174/1570161115666170201115428
pubmed: 28155616
Spahis S, Borys JM, Levy E (2017) Metabolic Syndrome as a Multifaceted Risk Factor for Oxidative Stress. Antioxid Redox Signal 26(9):445–461. https://doi.org/10.1089/ars.2016.6756
doi: 10.1089/ars.2016.6756
pubmed: 27302002
Wang F, Yuan Q, Chen F, Pang J, Pan C, Xu F, Chen Y (2021) Fundamental Mechanisms of the Cell Death Caused by Nitrosative Stress. Front Cell Dev Biol 20(9):742483. https://doi.org/10.3389/fcell.2021.742483
doi: 10.3389/fcell.2021.742483
Muriach M, Flores-Bellver M, Romero FJ, Barcia JM (2014) Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxid Med Cell Longev 2014:102158. https://doi.org/10.1155/2014/102158
doi: 10.1155/2014/102158
pubmed: 25215171
pmcid: 4158559
Ruud J, Steculorum SM, Brüning JC (2017) Neuronal control of peripheral insulin sensitivity and glucose metabolism. Nat Commun 8:15259. https://doi.org/10.1038/ncomms15259
doi: 10.1038/ncomms15259
pubmed: 28469281
pmcid: 5418592
Izquierdo AG, Crujeiras AB, Casanueva FF et al (2019) Leptin, obesity, and leptin resistance: where are we 25 years later? Nutrients 11(11):2704
doi: 10.3390/nu11112704
pubmed: 31717265
pmcid: 6893721
Park HK, Ahima RS (2015) Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism 64(1):24–34. https://doi.org/10.1016/j.metabol.2014.08.004
doi: 10.1016/j.metabol.2014.08.004
pubmed: 25199978
Carmo-Silva S, Cavadas C (2017) Hypothalamic dysfunction in obesity and metabolic disorders. Adv Neurobiol 19:73–116. https://doi.org/10.1007/978-3-319-63260-5_4
doi: 10.1007/978-3-319-63260-5_4
pubmed: 28933062
Jung CH, Kim MS (2013) Molecular mechanisms of central leptin resistance in obesity. Arch Pharm Res 36(2):201–207. https://doi.org/10.1007/s12272-013-0020-y
doi: 10.1007/s12272-013-0020-y
pubmed: 23359004
Moreira PI (2014) Metformin in the diabetic brain: friend or foe? Ann Transl Med 2(6):54. https://doi.org/10.3978/j.issn.2305-5839.2014.06.10
doi: 10.3978/j.issn.2305-5839.2014.06.10
pubmed: 25333029
pmcid: 4200667
Oliveira WH, Braga CF, Lós DB, Araújo SMR, França MR, Duarte-Silva E, Rodrigues GB, Rocha SWS et al (2021) Metformin prevents p-tau and amyloid plaque deposition and memory impairment in diabetic mice. Exp Brain Res 239(9):2821–2839. https://doi.org/10.1007/s00221-021-06176-8
doi: 10.1007/s00221-021-06176-8
pubmed: 34283253
Wilcock C, Bailey CJ (1994) Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica 24:49–57. https://doi.org/10.3109/00498259409043220
doi: 10.3109/00498259409043220
pubmed: 8165821
Bailey CJ, Wilcock C, Scarpello JHB (2008) Metformin and the intestine. Diabetologia 51:1552–1553. https://doi.org/10.1007/s00125-008-1053-5
doi: 10.1007/s00125-008-1053-5
pubmed: 18528677
Forslund K, Hildebrand F, Nielsen T et al (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528(7581):262–266. https://doi.org/10.1038/nature15766
doi: 10.1038/nature15766
pubmed: 26633628
pmcid: 4681099
Duscha A, Gisevius B, Hirschberg S et al (2020) Propionic Acid Shapes the Multiple Sclerosis Disease Course by an Immunomodulatory Mechanism. Cell 180:1067-1080.e16. https://doi.org/10.1016/j.cell.2020.02.035
doi: 10.1016/j.cell.2020.02.035
pubmed: 32160527
Haghikia A, Jörg S, Duscha A et al (2015) Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. Immunity 43:817–829. https://doi.org/10.1016/j.immuni.2015.09.007
doi: 10.1016/j.immuni.2015.09.007
pubmed: 26488817
Hoyles L, Snelling T, Umlai UK, Nicholson JK, Carding SR, Glen RC, McArthur S (2018) Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome 6(1):55. https://doi.org/10.1186/s40168-018-0439-y
doi: 10.1186/s40168-018-0439-y
pubmed: 29562936
pmcid: 5863458
Natrus LV, Osadchuk YS, Lisakovska OO et al (2022) Effect of propionic acid on diabetes-induced impairment of unfolded protein response signaling and astrocyte/microglia crosstalk in rat ventromedial nucleus of the hypothalamus. Neural Plast 2022:6404964
doi: 10.1155/2022/6404964
pubmed: 35103058
pmcid: 8800605
Natrus L, Osadchuk Y, Lisakovska O, Roch T, Babel N, Klys Y, Labudzynskyi D, Chaikovsky Y (2022) Regulation of the apoptosis/autophagy switch by propionic acid in ventromedial hypothalamus of rats with type 2 diabetes mellitus. Heliyon 8(11):e11529. https://doi.org/10.1016/j.heliyon.2022.e11529
doi: 10.1016/j.heliyon.2022.e11529
pubmed: 36439719
pmcid: 9681650
Kim TA, Chen L, Ge S (2021) The Interplay of Neurovasculature and Adult Hippocampal Neurogenesis. Neurosci Lett 760:136071. https://doi.org/10.1016/j.neulet.2021.136071
doi: 10.1016/j.neulet.2021.136071
pubmed: 34147540
pmcid: 8683249
Jiménez-Jiménez FJ, Alonso-Navarro H, Herrero MT, García-Martín E, Agúndez J (2016) An Update on the Role of Nitric Oxide in the Neurodegenerative Processes of Parkinson’s Disease. Curr Med Chem 23:2666–2679. https://doi.org/10.2174/0929867323666160812151356
doi: 10.2174/0929867323666160812151356
pubmed: 27776473
Kim JE, Choi S, Yoo JA, Chung MH (2004) 8-Oxoguanine induces intramolecular DNA damage but free 8-oxoguanine protects intermolecular DNA from oxidative stress. FEBS Lett 556(1–3):104–10. https://doi.org/10.1016/s0014-5793(03)01385-1
doi: 10.1016/s0014-5793(03)01385-1
pubmed: 14706835
Aguiar PH, Furtado C, Repolês BM et al (2013) Oxidative stress and DNA lesions: the role of 8-oxoguanine lesions in Trypanosoma cruzi cell viability. PLoS Negl Trop Dis 7(6):e2279. https://doi.org/10.1371/journal.pntd.0002279
doi: 10.1371/journal.pntd.0002279
pubmed: 23785540
pmcid: 3681716
Sytnyk I, Burlaka A, Vovk A, Khaitovych M (2017) Study of superoxide- and NO-dependent protective mechanisms of N-acetylcysteine and losartan in ratʼs aorta and liver under streptozoticin-induced type 1 diabetes mellitus. ScienceRise: Pharm Sci 6(10):25–31. https://doi.org/10.15587/2519-4852.2017.119490
doi: 10.15587/2519-4852.2017.119490
Fujii J, Homma T, Osaki T (2022) Superoxide Radicals in the Execution of Cell Death. Antioxidants (Basel) 11(3):501. https://doi.org/10.3390/antiox11030501
doi: 10.3390/antiox11030501
pubmed: 35326151
Domek-Łopacińska KU, Strosznajder JB (2010) Cyclic GMP and Nitric Oxide Synthase in Aging and Alzheimer’s Disease. Mol NeuroBiol 41:129–137. https://doi.org/10.1007/s12035-010-8104-x
doi: 10.1007/s12035-010-8104-x
pubmed: 20213343
Iova OM, Marin GE, Lazar I, Stanescu I, Dogaru G, Nicula CA, Bulboacă AE (2023) Nitric Oxide/Nitric Oxide Synthase System in the Pathogenesis of Neurodegenerative Disorders-An Overview. Antioxidants (Basel) 12(3):753. https://doi.org/10.3390/antiox12030753
doi: 10.3390/antiox12030753
pubmed: 36979000
El-Mir MY, Detaille D, Villanueva GR et al (2008) Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons. J Mol Neurosci 34(1):77–87. https://doi.org/10.1007/s12031-007-9002-1
doi: 10.1007/s12031-007-9002-1
pubmed: 18040888
Lu M, Su C, Qiao C, Bian Y, Ding J, Hu G (2016) Metformin Prevents Dopaminergic Neuron Death In MPTP/P-Induced Mouse Model Of Parkinson’s Disease Via Autophagy And Mitochondrial ROS Clearance. Int J Neuropsychopharmacol 19:pyw047. https://doi.org/10.1093/ijnp/pyw047
doi: 10.1093/ijnp/pyw047
pubmed: 27207919
pmcid: 5043649
Kang H, Khang R, Ham S et al (2017) Activation of the ATF2/CREB-PGC-1α pathway by metformin leads to dopaminergic neuroprotection. Oncotarget. 8:48603–18. https://doi.org/10.18632/oncotarget.18122
doi: 10.18632/oncotarget.18122
pubmed: 28611284
pmcid: 5564711
Markowicz-Piasecka M, Sikora J, Szydłowska A, Skupień A, Mikiciuk-Olasik E, Huttunen KM (2017) Metformin - a Future Therapy for Neurodegenerative Diseases : Theme: Drug Discovery, Development and Delivery in Alzheimer’s Disease Guest Editor: Davide Brambilla. Pharm Res 34(12):2614–2627. https://doi.org/10.1007/s11095-017-2199-y
doi: 10.1007/s11095-017-2199-y
pubmed: 28589443
pmcid: 5736777
Imfeld P, Bodmer M, Jick SS, Meier CR (2012) Metformin, other antidiabetic drugs, and risk of Alzheimer’sdisease: a population-based case-control study. J am Geriatr Soc 60:916–921
doi: 10.1111/j.1532-5415.2012.03916.x
pubmed: 22458300
Khaleghi-Mehr M, Delshad AA, Shafie-Damavandi S, Roghani M (2023) Metformin mitigates amyloid β1-40-induced cognitive decline via attenuation of oxidative/nitrosative stress and neuroinflammation. Metab Brain Dis 38(4):1127–1142. https://doi.org/10.1007/s11011-023-01170-1
doi: 10.1007/s11011-023-01170-1
pubmed: 36723832
Zhang Y, Zhang Y, Shi X, Han J, Lin B, Peng W, Mei Z, Lin Y (2022) Metformin and the risk of neurodegenerative diseases in patients with diabetes: A meta-analysis of population-based cohort studies. Diabet Med 39(6):e14821. https://doi.org/10.1111/dme.14821
doi: 10.1111/dme.14821
pubmed: 35213749
Liao W, Xu J, Li B, Ruan Y, Li T, Liu J (2022) Deciphering the Roles of Metformin in Alzheimer’s Disease: A Snapshot. Front Pharmacol 27(12):728315. https://doi.org/10.3389/fphar.2021.728315
doi: 10.3389/fphar.2021.728315
Karami F, Jamaati H, Coleman-Fuller N, Zeini MS, Hayes AW, Gholami M, Salehirad M, Darabi M et al (2023) Is metformin neuroprotective against diabetes mellitus-induced neurodegeneration? An updated graphical review of molecular basis. Pharmacol Rep 75(3):511–543. https://doi.org/10.1007/s43440-023-00469-1
doi: 10.1007/s43440-023-00469-1
pubmed: 37093496
Zhu T, Wang L, Wang LP, Wan Q (2022) Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: Applications for natural compounds from medicinal herbs. Biomed Pharmacother 148:112719. https://doi.org/10.1016/j.biopha.2022.112719
doi: 10.1016/j.biopha.2022.112719
pubmed: 35168073
Chen H, He Y, Chen S, Qi S, Shen J (2020) Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol Res 158:104877. https://doi.org/10.1016/j.phrs.2020.104877
doi: 10.1016/j.phrs.2020.104877
pubmed: 32407958
Rutsch A, Kantsjö JB, Ronchi F (2020) The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology. Front Immunol 10(11):604179. https://doi.org/10.3389/fimmu.2020.604179
doi: 10.3389/fimmu.2020.604179
Whang A, Nagpal R, Yadav H (2019) Bi-directional drug-microbiome interactions of anti-diabetics. EBioMedicine 39:591–602
doi: 10.1016/j.ebiom.2018.11.046
pubmed: 30553752
Elbere I, Silamikelis I, Dindune II et al (2020) Baseline gut microbiome composition predicts metformin therapy short-term efficacy in newly diagnosed type 2 diabetes patients. PLoS One 15(10):e0241338. https://doi.org/10.1371/journal.pone.0241338
doi: 10.1371/journal.pone.0241338
pubmed: 33125401
pmcid: 7598494
Silamikele L, Silamikelis I, Ustinova M et al (2021) Metformin strongly affects gut microbiome composition in high-fat diet-induced type 2 diabetes mouse model of both sexes. Front Endocrinol (Lausanne) 12:626359. https://doi.org/10.3389/fendo.2021.626359
doi: 10.3389/fendo.2021.626359
pubmed: 33815284
Brīvība M, Silamiķele L, Kalniņa I (2023) Metformin targets intestinal immune system signaling pathways in a high-fat diet-induced mouse model of obesity and insulin resistance. Front Endocrinol (Lausanne) 19(14):1232143. https://doi.org/10.3389/fendo.2023.1232143
doi: 10.3389/fendo.2023.1232143
Skovsø S (2014) Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J Diabetes Investig 5(4):349–358. https://doi.org/10.1111/jdi.12235
doi: 10.1111/jdi.12235
pubmed: 25411593
pmcid: 4210077
Natrus L, Osadchuk Y, Labudzinskyi D, Chaikovsky Y, Smirnov A (2019) The pathogenetic rationale the ways of experimental type 2 diabetes mellitus modeling. Med Sci Ukraine (MSU) 15(3–4):10–18. https://doi.org/10.32345/2664-4738.3-4.2019.02
doi: 10.32345/2664-4738.3-4.2019.02
Rybolovlev YuR (1979) Dosing of substances for mammals according to biological activity constants. Dokl Acad Sci USSR 247(6):1513–1516
Hayat MA (2000) Principles and Techniques of Electron Microscopy: Biological Applications, 4th edn. Cambridge University Press, New York, p 543
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.) 25(4):402–408. https://doi.org/10.1006/meth.2001.1262
doi: 10.1006/meth.2001.1262
pubmed: 11846609
Stoscheck CM (1990) Quantitation of protein. Methods Enzymol 182:50–68. https://doi.org/10.1016/0076-6879(90)82008-p
doi: 10.1016/0076-6879(90)82008-p
pubmed: 2314256
Natrus LV, Ryzhko IM, Chernovol PA, Bryuzgina TS (2018) Patent 125810 UA, G01N 33/49 (2006.01) B01D15/08 (2006.01) A method of evaluating the mechanisms of tissue damage in experimental type 1 diabetes in rats; Bogomolets National Medical University of the Ministry of Health of Ukraine. - u 201709175; statement on 18.09.2017; published 12.03.2018, Bull. No. 15, 2018
Burlaka AP, Ganusevich II, Vovk AV, Burlaka AA, Gafurov MR, Lukin SN (2020) Redox state of adipose tissue for patients with gastric cancer and its connection with the body mass index and distance from the tumor. Obes Res Clin Pract 14(1):34–38. https://doi.org/10.1016/j.orcp.2019.10.003
doi: 10.1016/j.orcp.2019.10.003
pubmed: 31711773
Burlaka AP, Ganusevich II, Gafurov MR, Lukin SM, Sidorik EP (2016) Stomach Cancer: Interconnection between the Redox State, Activity of MMP-2, MMP-9 and Stage of Tumor Growth. Cancer Microenviron 9(1):27–32. https://doi.org/10.1007/s12307-016-0182-5
doi: 10.1007/s12307-016-0182-5
pubmed: 26905073
pmcid: 4842187