Reporting of somatic variants in clinical cancer care: recommendations of the Swiss Society of Molecular Pathology.
Cancer
Guidelines
NGS reporting
Swiss Society of Molecular Pathology
Journal
Virchows Archiv : an international journal of pathology
ISSN: 1432-2307
Titre abrégé: Virchows Arch
Pays: Germany
ID NLM: 9423843
Informations de publication
Date de publication:
23 Oct 2024
23 Oct 2024
Historique:
received:
07
08
2024
accepted:
14
10
2024
revised:
23
09
2024
medline:
24
10
2024
pubmed:
24
10
2024
entrez:
23
10
2024
Statut:
aheadofprint
Résumé
Somatic variant testing through next-generation sequencing (NGS) is well integrated into Swiss molecular pathology laboratories and has become a standard diagnostic method for numerous indications in cancer patient care. Currently, there is a wide variation in reporting practices within our country, and as patients move between different hospitals, it is increasingly necessary to standardize NGS reports to ease their reinterpretation. Additionally, as many different stakeholders-oncologists, hematologists, geneticists, pathologists, and patients-have access to the NGS report, it needs to contain comprehensive and detailed information in order to answer the questions of experts and avoid misinterpretation by non-experts. In 2017, the Swiss Institute of Bioinformatics conducted a survey to assess the differences in NGS reporting practices across ten pathology institutes in Switzerland. The survey examined 68 reporting items and identified 48 discrepancies. Based on these findings, the Swiss Society of Molecular Pathology initiated a Delphi method to reach a consensus on a set of recommendations for NGS reporting. Reports should include clinical information about the patient and the diagnosis, technical details about the sample and the test performed, and a list of all clinically relevant variants and variants of uncertain significance. In the absence of a consensus on an actionability scheme, the five-class pathogenicity scheme proposed by the ACMG/AMP guideline must be included in the reports. The Swiss Society of Molecular Pathology recognizes the importance of including clinical actionability in the report and calls on the European community of molecular pathologists and oncologists to reach a consensus on this issue.
Identifiants
pubmed: 39443383
doi: 10.1007/s00428-024-03951-0
pii: 10.1007/s00428-024-03951-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Satam H, Joshi K, Mangrolia U et al (2023) Next-generation sequencing technology: current trends and advancements. Biology (Basel) 12:997. https://doi.org/10.3390/biology12070997
doi: 10.3390/biology12070997
pubmed: 37508427
de Jager VD, Timens W, Bayle A et al (2024) Future perspective for the application of predictive biomarker testing in advanced stage non-small cell lung cancer. Lancet Reg Health Eur 38:100839. https://doi.org/10.1016/j.lanepe.2024.100839
doi: 10.1016/j.lanepe.2024.100839
pubmed: 38476751
pmcid: 10928270
Malapelle U, Angerilli V, Pepe F et al (2023) The ideal reporting of RAS testing in colorectal adenocarcinoma: a pathologists’ perspective. Pathologica 115:137–147. https://doi.org/10.32074/1591-951X-895
doi: 10.32074/1591-951X-895
pubmed: 37314870
pmcid: 10462993
Malapelle U, Donne AD, Pagni F et al (2024) Standardized and simplified reporting of next-generation sequencing results in advanced non-small-cell lung cancer: practical indications from an Italian multidisciplinary group. Crit Rev Oncol Hematol 193. https://doi.org/10.1016/J.CRITREVONC.2023.104217
Riedl JM, Moik F, Esterl T et al (2024) Molecular diagnostics tailoring personalized cancer therapy-an oncologist’s view. Virchows Arch 484:169–179. https://doi.org/10.1007/S00428-023-03702-7
doi: 10.1007/S00428-023-03702-7
pubmed: 37982847
Schmid S, Jochum W, Padberg B et al (2022) How to read a next-generation sequencing report-what oncologists need to know. ESMO Open 7. https://doi.org/10.1016/J.ESMOOP.2022.100570
Remon J, Dienstmann R (2018) Precision oncology: separating the wheat from the chaff. ESMO Open 3. https://doi.org/10.1136/ESMOOPEN-2018-000446
Gray SW, Gagan J, Cerami E et al (2018) Interactive or static reports to guide clinical interpretation of cancer genomics. J Am Med Inform Assoc 25:458–464. https://doi.org/10.1093/JAMIA/OCX150
doi: 10.1093/JAMIA/OCX150
pubmed: 29315417
pmcid: 6018970
Horak P, Griffith M, Danos AM et al (2022) Standards for the classification of pathogenicity of somatic variants in cancer (oncogenicity): joint recommendations of Clinical Genome Resource (ClinGen), Cancer Genomics Consortium (CGC), and Variant Interpretation for Cancer Consortium (VICC). Genet Med 24:986–998. https://doi.org/10.1016/J.GIM.2022.01.001
doi: 10.1016/J.GIM.2022.01.001
pubmed: 35101336
pmcid: 9081216
Kim J, Park WY, Kim NKD et al (2017) Good laboratory standards for clinical next-generation sequencing cancer panel tests. J Pathol Transl Med 51:191–204. https://doi.org/10.4132/JPTM.2017.03.14
doi: 10.4132/JPTM.2017.03.14
pubmed: 28535585
pmcid: 5445206
Li MM, Datto M, Duncavage EJ et al (2017) Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn 19:4–23. https://doi.org/10.1016/J.JMOLDX.2016.10.002
doi: 10.1016/J.JMOLDX.2016.10.002
pubmed: 27993330
pmcid: 5707196
Tack V, Dufraing K, Deans ZC et al (2017) The ins and outs of molecular pathology reporting. Virchows Arch 471:199–207. https://doi.org/10.1007/S00428-017-2108-0
doi: 10.1007/S00428-017-2108-0
pubmed: 28343306
Deans ZC, Costa JL, Cree I et al (2017) Integration of next-generation sequencing in clinical diagnostic molecular pathology laboratories for analysis of solid tumours; an expert opinion on behalf of IQN Path ASBL. Virchows Arch 470:5–20. https://doi.org/10.1007/S00428-016-2025-7
doi: 10.1007/S00428-016-2025-7
pubmed: 27678269
Cree IA, Deans Z, Ligtenberg MJL et al (2014) Guidance for laboratories performing molecular pathology for cancer patients. J Clin Pathol 67:923–931. https://doi.org/10.1136/JCLINPATH-2014-202404
doi: 10.1136/JCLINPATH-2014-202404
pubmed: 25012948
Leichsenring J, Horak P, Kreutzfeldt S et al (2019) Variant classification in precision oncology. Int J Cancer 145:2996–3010. https://doi.org/10.1002/IJC.32358
doi: 10.1002/IJC.32358
pubmed: 31008532
Kage H, Oda K, Muto M et al (2023) Human resources for administrative work to carry out a comprehensive genomic profiling test in Japan. Cancer Sci 114:3041–3049. https://doi.org/10.1111/CAS.15833
doi: 10.1111/CAS.15833
pubmed: 37165760
pmcid: 10323090
Schwarze K, Buchanan J, Fermont JM et al (2020) The complete costs of genome sequencing: a microcosting study in cancer and rare diseases from a single center in the United Kingdom. Genet Med 22:85–94. https://doi.org/10.1038/S41436-019-0618-7
doi: 10.1038/S41436-019-0618-7
pubmed: 31358947
Hsu C-C, Sandford BA (2007) The Delphi technique: making sense of consensus. Pract Assess, Res Evaluation 12. https://doi.org/10.7275/PDZ9-TH90
Kundra R, Zhang H, Sheridan R et al (2021) OncoTree: a cancer classification system for precision oncology. JCO Clin Cancer Inform 5:221–230. https://doi.org/10.1200/CCI.20.00108
doi: 10.1200/CCI.20.00108
pubmed: 33625877
ICD-11. https://icd.who.int/en . Accessed 6 Aug 2024
HL7 FHIR v5.0.0. https://www.hl7.org/fhir/ . Accessed 6 Aug 2024
Confédération suisse (2022) FedLex RO 2022 585 - Ordonnance sur l’analyse génétique humaine. https://www.fedlex.admin.ch/eli/oc/2022/585/fr . Accessed 9 Jul 2024
Mateo J, Chakravarty D, Dienstmann R et al (2018) A framework to rank genomic alterations as targets for cancer precision medicine: the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann Oncol 29:1895–1902. https://doi.org/10.1093/ANNONC/MDY263
doi: 10.1093/ANNONC/MDY263
pubmed: 30137196
pmcid: 6158764
Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424. https://doi.org/10.1038/GIM.2015.30
doi: 10.1038/GIM.2015.30
pubmed: 25741868
pmcid: 4544753
Sondka Z, Dhir NB, Carvalho-Silva D et al (2024) COSMIC: a curated database of somatic variants and clinical data for cancer. Nucleic Acids Res 52:D1210–D1217. https://doi.org/10.1093/NAR/GKAD986
doi: 10.1093/NAR/GKAD986
pubmed: 38183204
Chakravarty D, Gao J, Phillips S et al (2017) OncoKB: a precision oncology knowledge base. JCO Precis Oncol 1–16. https://doi.org/10.1200/PO.17.00011
Bruford EA, Antonescu CR, Carroll AJ et al (2021) HUGO Gene Nomenclature Committee (HGNC) recommendations for the designation of gene fusions. Leukemia 35:3040–3043. https://doi.org/10.1038/s41375-021-01436-6
doi: 10.1038/s41375-021-01436-6
pubmed: 34615987
pmcid: 8550944
El Osta B (2023) KRAS G12C mutation: from undruggable target to potentially agnostic biomarker. Transl Lung Cancer Res 12:1147–1151. https://doi.org/10.21037/TLCR-23-174
Li MM, Cottrell CE, Pullambhatla M et al (2023) Assessments of somatic variant classification using the Association for Molecular Pathology/American Society of Clinical Oncology/College of American Pathologists Guidelines: a report from the Association for Molecular Pathology. J Mol Diagn 25:69–86. https://doi.org/10.1016/j.jmoldx.2022.11.002
doi: 10.1016/j.jmoldx.2022.11.002
pubmed: 36503149
Koeppel F, Muller E, Harlé A et al (2021) Standardisation of pathogenicity classification for somatic alterations in solid tumours and haematologic malignancies. Eur J Cancer 159:1–15. https://doi.org/10.1016/J.EJCA.2021.08.047
doi: 10.1016/J.EJCA.2021.08.047
pubmed: 34700215
Li Q, Ren Z, Cao K et al (2022) CancerVar: An artificial intelligence-empowered platform for clinical interpretation of somatic mutations in cancer. Sci Adv 8. https://doi.org/10.1126/SCIADV.ABJ1624