sChemNET: a deep learning framework for predicting small molecules targeting microRNA function.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
23 Oct 2024
Historique:
received: 18 08 2023
accepted: 14 06 2024
medline: 24 10 2024
pubmed: 24 10 2024
entrez: 23 10 2024
Statut: epublish

Résumé

MicroRNAs (miRNAs) have been implicated in human disorders, from cancers to infectious diseases. Targeting miRNAs or their target genes with small molecules offers opportunities to modulate dysregulated cellular processes linked to diseases. Yet, predicting small molecules associated with miRNAs remains challenging due to the small size of small molecule-miRNA datasets. Herein, we develop a generalized deep learning framework, sChemNET, for predicting small molecules affecting miRNA bioactivity based on chemical structure and sequence information. sChemNET overcomes the limitation of sparse chemical information by an objective function that allows the neural network to learn chemical space from a large body of chemical structures yet unknown to affect miRNAs. We experimentally validated small molecules predicted to act on miR-451 or its targets and tested their role in erythrocyte maturation during zebrafish embryogenesis. We also tested small molecules targeting the miR-181 network and other miRNAs using in-vitro and in-vivo experiments. We demonstrate that our machine-learning framework can predict bioactive small molecules targeting miRNAs or their targets in humans and other mammalian organisms.

Identifiants

pubmed: 39443444
doi: 10.1038/s41467-024-49813-w
pii: 10.1038/s41467-024-49813-w
doi:

Substances chimiques

MicroRNAs 0
MIRN451 microRNA, human 0
Small Molecule Libraries 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9149

Informations de copyright

© 2024. The Author(s).

Références

Cooper, T. A., Wan, L. & Dreyfuss, G. RNA and disease. Cell 136, 777–793 (2009).
pubmed: 19239895 pmcid: 2866189 doi: 10.1016/j.cell.2009.02.011
Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).
pubmed: 14744438 doi: 10.1016/S0092-8674(04)00045-5
Esteller, Manel “Non-coding RNAs in human disease.”. Nat. Rev. Genet. 12, 861–874 (2011).
pubmed: 22094949 doi: 10.1038/nrg3074
Friedman, R. C., Farh, K. K.-H., Burge, C. B. & Bartel, D. P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).
pubmed: 18955434 pmcid: 2612969 doi: 10.1101/gr.082701.108
Iorio, MarilenaV. & Croce, CarloM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med. 4, 143–159 (2012).
pubmed: 22351564 pmcid: 3376845 doi: 10.1002/emmm.201100209
Gurha, P. MicroRNAs in cardiovascular disease. Curr. Opin. Cardiol. 31, 249–254 (2016).
pubmed: 26885771 doi: 10.1097/HCO.0000000000000280
Rupaimoole, R., Calin, G. A., Lopez-Berestein, G. & Sood, A. K. miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov. 6, 235–246 (2016).
pubmed: 26865249 pmcid: 4783232 doi: 10.1158/2159-8290.CD-15-0893
McDonald, J. T. et al. Role of miR-2392 in driving SARS-CoV-2 infection. Cell Rep. 37, 109839 (2021).
pubmed: 34624208 pmcid: 8481092 doi: 10.1016/j.celrep.2021.109839
Beheshti, A. et al. Identification of circulating serum multi-microRNA signatures in human DLBCL models. Sci. Rep. 9, 17161 (2019).
pubmed: 31748664 pmcid: 6868195 doi: 10.1038/s41598-019-52985-x
Silva, S. S., Lopes, C., Teixeira, A. L., Carneiro de Sousa, M. J. & Medeiros, R. Forensic miRNA: potential biomarker for body fluids? Forensic Sci. Int. Genet. 14, 1–10 (2015).
pubmed: 25280377 doi: 10.1016/j.fsigen.2014.09.002
Rupaimoole, R. & Slack, F. J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 16, 203–222 (2017).
pubmed: 28209991 doi: 10.1038/nrd.2016.246
Winkle, M., El-Daly, S. M., Fabbri, M. & Calin, G. A. Noncoding RNA therapeutics — challenges and potential solutions. Nat. Rev. Drug Discov. 20, 629–651 (2021).
pubmed: 34145432 pmcid: 8212082 doi: 10.1038/s41573-021-00219-z
Matsui, M. & Corey, D. R. Non-coding RNAs as drug targets. Nat. Rev. Drug Discov. 16, 167–179 (2017).
pubmed: 27444227 doi: 10.1038/nrd.2016.117
Agostini, M. & Knight, R. A. miR-34: from bench to bedside. Oncotarget 5, 872 (2014).
pubmed: 24657911 pmcid: 4011589 doi: 10.18632/oncotarget.1825
Thakral, S. & Ghoshal, K. miR-122 is a unique molecule with great potential in diagnosis, prognosis of liver disease, and therapy both as miRNA mimic and antimir. Curr. Gene Ther. 15, 142–150 (2015).
pubmed: 25537773 pmcid: 4439190 doi: 10.2174/1566523214666141224095610
Alhamadani, F. et al. Adverse drug reactions and toxicity of the food and drug administration-approved antisense oligonucleotide drugs. Drug Metab. Dispos. 50, 879–887 (2022).
pubmed: 35221289 pmcid: 11022857 doi: 10.1124/dmd.121.000418
Sheridan, C. First small-molecule drug targeting RNA gains momentum. Nat. Biotechnol. 39, 6–8 (2021).
pubmed: 33432225 doi: 10.1038/s41587-020-00788-1
Fan, R. et al. Small molecules with big roles in microRNA chemical biology and microRNA-targeted therapeutics. RNA Biol. 16, 707 (2019).
pubmed: 30900502 pmcid: 6546413 doi: 10.1080/15476286.2019.1593094
Chen, X., Guan, N.-N., Sun, Y.-Z., Li, J.-Q. & Qu, J. MicroRNA-small molecule association identification: from experimental results to computational models. Brief Bioinform. https://doi.org/10.1093/bib/bby098 (2018).
doi: 10.1093/bib/bby098 pubmed: 28575155 pmcid: 6954452
Liu, X. et al. SM2miR: a database of the experimentally validated small molecules’ effects on microRNA expression. Bioinformatics 29, 409–411 (2013).
pubmed: 23220571 doi: 10.1093/bioinformatics/bts698
Warner, K. D., Hajdin, C. E. & Weeks, K. M. Principles for targeting RNA with drug-like small molecules. Nat. Rev. Drug Discov. 17, 547–558 (2018).
pubmed: 29977051 pmcid: 6420209 doi: 10.1038/nrd.2018.93
Costales, M. G., Childs-Disney, J. L., Haniff, H. S. & Disney, M. D. How we think about targeting RNA with small molecules. J. Med. Chem. 63, 8880–8900 (2020).
pubmed: 32212706 pmcid: 7486258 doi: 10.1021/acs.jmedchem.9b01927
Velagapudi, S. P., Gallo, S. M. & Disney, M. D. Sequence-based design of bioactive small molecules that target precursor microRNAs. Nat. Chem. Biol. 10, 291–297 (2014).
pubmed: 24509821 pmcid: 3962094 doi: 10.1038/nchembio.1452
Guan, N.-N., Sun, Y.-Z., Ming, Z., Li, J.-Q. & Chen, X. Prediction of potential small molecule-associated microRNAs using graphlet interaction. Front. Pharmacol. 9, 1152 (2018).
pubmed: 30374302 pmcid: 6196296 doi: 10.3389/fphar.2018.01152
Chen, Xing et al. Predicting potential small molecule–miRNA associations based on bounded nuclear norm regularization. Brief Bioinform. 22, bbab328 (2021).
pubmed: 34404088 doi: 10.1093/bib/bbab328
Qu, J., Chen, X., Sun, Y.-Z., Li, J.-Q. & Ming, Z. Inferring potential small molecule–miRNA association based on triple layer heterogeneous network. J. Cheminf. 10, 30 (2018).
doi: 10.1186/s13321-018-0284-9
Galeano, Diego et al. Predicting the frequencies of drug side effects. Nat. Commun. 11, 4575 (2020).
pubmed: 32917868 pmcid: 7486409 doi: 10.1038/s41467-020-18305-y
Santos, S. de S. et al. Machine learning and network medicine approaches for drug repositioning for COVID-19. Patterns https://doi.org/10.1016/j.patter.2021.100396 (2021).
Corsello, S. M. et al. The Drug Repurposing Hub: a next-generation drug library and information resource. Nat. Med. 23, 405–408 (2017).
pubmed: 28388612 pmcid: 5568558 doi: 10.1038/nm.4306
Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155–D162 (2019).
pubmed: 30423142 doi: 10.1093/nar/gky1141
Stokes, J. M. et al. A deep learning approach to antibiotic discovery. Cell 180, 688–702.e13 (2020).
pubmed: 32084340 pmcid: 8349178 doi: 10.1016/j.cell.2020.01.021
Kang, Juanjuan et al. “RNAInter v4. 0: RNA interactome repository with redefined confidence scoring system and improved accessibility. Nucleic Acids Res. 50, D326–D332 (2022).
pubmed: 34718726 doi: 10.1093/nar/gkab997
Ludwig, Nicole et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 44, 3865–3877 (2016).
pubmed: 26921406 pmcid: 4856985 doi: 10.1093/nar/gkw116
Kretov, D. A., Shafik, A. M. & Cifuentes, D. Assessing miR-451 activity and its role in erythropoiesis. Methods Mol. Biol. 1680, 179–190 (2018).
pubmed: 29030849 doi: 10.1007/978-1-4939-7339-2_12
Cifuentes, D. et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328, 1694–1698 (2010).
pubmed: 20448148 pmcid: 3093307 doi: 10.1126/science.1190809
Kretov, D. A. et al. Ago2-dependent processing allows miR-451 to evade the global microRNA turnover elicited during erythropoiesis. Mol. Cell 78, 317–328.e6 (2020).
pubmed: 32191872 pmcid: 7201373 doi: 10.1016/j.molcel.2020.02.020
Scrimgeour, N. R., Wrobel, A., Pinho, M. J. & Høydal, M. A. microRNA-451a prevents activation of matrix metalloproteinases 2 and 9 in human cardiomyocytes during pathological stress stimulation. Am. J. Physiol. Cell Physiol. 318, C94–C102 (2020).
pubmed: 31618079 doi: 10.1152/ajpcell.00204.2019
Liang, Y. & Li, S. β-elemene suppresses migration of esophageal squamous cell carcinoma by modulating expression of MMP9 through the PI3K/Akt/NF-κB pathway. Comb. Chem. High. Throughput Screen. 26, 2304–2320 (2023).
pubmed: 36872359 doi: 10.2174/1386207326666230303120514
Dore, L. C. et al. A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc. Natl Acad. Sci. USA 105, 3333–3338 (2008).
pubmed: 18303114 pmcid: 2265118 doi: 10.1073/pnas.0712312105
Yu, P. et al. Vitamin D (1,25-(OH)2D3) regulates the gene expression through competing endogenous RNAs networks in high glucose-treated endothelial progenitor cells. J. Steroid Biochem. Mol. Biol. 193, 105425 (2019).
pubmed: 31302220 doi: 10.1016/j.jsbmb.2019.105425
Ricca, C. et al. Vitamin D receptor is necessary for mitochondrial function and cell health. Int. J. Mol. Sci. 19, 1672 (2018).
pubmed: 29874855 pmcid: 6032156 doi: 10.3390/ijms19061672
Guarnieri, J. W. et al. Targeted down regulation of core mitochondrial genes during SARS-CoV-2 infection. bioRxiv https://doi.org/10.1101/2022.02.19.481089 (2022).
Ebert, M. S. & Sharp, P. A. Roles for microRNAs in conferring robustness to biological processes. Cell 149, 515–524 (2012).
pubmed: 22541426 pmcid: 3351105 doi: 10.1016/j.cell.2012.04.005
Henao-Mejia, J. et al. The microRNA miR-181 is a critical cellular metabolic rheostat essential for NKT cell ontogenesis and lymphocyte development and homeostasis. Immunity 38, 984–997 (2013).
pubmed: 23623381 pmcid: 3738211 doi: 10.1016/j.immuni.2013.02.021
Indrieri, A., Carrella, S., Carotenuto, P., Banfi, S. & Franco, B. The pervasive role of the miR-181 family in development, neurodegeneration, and cancer. Int. J. Mol. Sci. 21, 2092 (2020).
pubmed: 32197476 pmcid: 7139714 doi: 10.3390/ijms21062092
Ouyang, Y.-B., Lu, Y., Yue, S. & Giffard, R. G. miR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes. Mitochondrion 12, 213–219 (2012).
pubmed: 21958558 doi: 10.1016/j.mito.2011.09.001
Indrieri, A. et al. miR‐181a/b downregulation exerts a protective action on mitochondrial disease models. EMBO Mol. Med. 11, e8734 (2019).
pubmed: 30979712 pmcid: 6505685 doi: 10.15252/emmm.201708734
Das, Samarjit et al. Divergent effects of miR‐181 family members on myocardial function through protective cytosolic and detrimental mitochondrial microRNA targets. J. Am. Heart Assoc. 6, e004694 (2017).
pubmed: 28242633 pmcid: 5524005 doi: 10.1161/JAHA.116.004694
Ji, D. et al. MicroRNA-181a promotes tumor growth and liver metastasis in colorectal cancer by targeting the tumor suppressor WIF-1. Mol. Cancer 13, 86 (2014).
pubmed: 24755295 pmcid: 4021214 doi: 10.1186/1476-4598-13-86
Yang, C., Passos Gibson, V. & Hardy, P. The role of MiR-181 family members in endothelial cell dysfunction and tumor angiogenesis. Cells 11, 2022 (1670).
Neel, J.-C. & Lebrun, J.-J. Activin and TGFβ regulate expression of the microRNA-181 family to promote cell migration and invasion in breast cancer cells. Cell Signal. 25, 1556–1566 (2013).
pubmed: 23524334 doi: 10.1016/j.cellsig.2013.03.013
Zhai, Z. et al. MiR-181a-5p facilitates proliferation, invasion, and glycolysis of breast cancer through NDRG2-mediated activation of PTEN/AKT pathway. Bioengineered 13, 83–95 (2022).
pubmed: 34951340 doi: 10.1080/21655979.2021.2006974
Croce, C. M. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 10, 704–714 (2009).
pubmed: 19763153 pmcid: 3467096 doi: 10.1038/nrg2634
Marisetty, A. et al. MiR-181 family modulates osteopontin in glioblastoma multiforme. Cancers 12, 3813 (2020).
pubmed: 33348707 pmcid: 7765845 doi: 10.3390/cancers12123813
Singh, T. & Adams, B. D. The regulatory role of miRNAs on VDR in breast cancer. Transcription 8, 232–241 (2017).
pubmed: 28598255 pmcid: 5574530 doi: 10.1080/21541264.2017.1317695
Campbell, M. J. & Trump, D. L. Vitamin D receptor signaling and cancer. Endocrinol. Metab. Clin. North Am. 46, 1009–1038 (2017).
pubmed: 29080633 pmcid: 7092369 doi: 10.1016/j.ecl.2017.07.007
Hanna, J., Hossain, G. S. & Kocerha, J. The potential for microRNA therapeutics and clinical research. Front. Genet. 10, 478 (2019).
Zhang, P. et al. Reprogramming of protein-targeted small-molecule medicines to RNA by ribonuclease recruitment. J. Am. Chem. Soc. 143, 13044–13055 (2021).
pubmed: 34387474 pmcid: 9264281 doi: 10.1021/jacs.1c02248
Daina, Antoine, Michielin, Olivier & Zoete, Vincent SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 7, 42717 (2017).
pubmed: 28256516 pmcid: 5335600 doi: 10.1038/srep42717
Giangreco, A. A. & Nonn, L. The sum of many small changes: microRNAs are specifically and potentially globally altered by vitamin D3 metabolites. J. Steroid Biochem. Mol. Biol. 136, 86–93 (2013).
pubmed: 23333596 pmcid: 3686905 doi: 10.1016/j.jsbmb.2013.01.001
Fernandez, G. J., Ramírez-Mejía, J. M. & Urcuqui-Inchima, S. Vitamin D boosts immune response of macrophages through a regulatory network of microRNAs and mRNAs. J. Nutr. Biochem. 109, 109105 (2022).
pubmed: 35858666 doi: 10.1016/j.jnutbio.2022.109105
Zhang, Z., Moon, R., Thorne, J. L. & Moore, J. B. NAFLD and vitamin D: evidence for intersection of microRNA-regulated pathways. Nutr. Res. Rev. 36, 120–139 (2023).
pubmed: 35109946 doi: 10.1017/S095442242100038X
Ryan, Z. C. et al. 1α,25-Dihydroxyvitamin D3 regulates mitochondrial oxygen consumption and dynamics in human skeletal muscle cells. J. Biol. Chem. 291, 1514–1528 (2016).
pubmed: 26601949 doi: 10.1074/jbc.M115.684399
Ma, X. et al. microRNA-501-5p promotes cell proliferation and migration in gastric cancer by downregulating LPAR1. J. Cell. Biochem. 121, 1911–1922 (2020).
pubmed: 31746031 doi: 10.1002/jcb.29426
Zhang, Z., Shao, L., Wang, Y. & Luo, X. MicroRNA-501-3p restricts prostate cancer growth through regulating cell cycle-related and expression-elevated protein in tumor/cyclin D1 signaling. Biochem. Biophys. Res. Commun. 509, 746–752 (2019).
pubmed: 30621914 doi: 10.1016/j.bbrc.2018.12.176
Zhao, Yueguang et al. MicroRNA-501-5p targets PINX1 gene to regulate the proliferation, migration, and invasion of prostatic carcinoma cells. J. Biomater. Tissue Eng. 11, 471–477 (2021).
doi: 10.1166/jbt.2021.2652
Cereto-Massagué, A. et al. Molecular fingerprint similarity search in virtual screening. Methods 71, 58–63 (2015).
pubmed: 25132639 doi: 10.1016/j.ymeth.2014.08.005
Landrum, G. RDKit: A Software Suite for Cheminformatics, Computational Chemistry, and Predictive Modeling (Academic Press, 2013).
Jiang, L., Ding, Y., Tang, J. & Guo, F. MDA-SKF: similarity kernel fusion for accurately discovering miRNA-disease association. Front. Genet. 9, 618 (2018).
pubmed: 30619454 pmcid: 6295467 doi: 10.3389/fgene.2018.00618
Li, L. et al. SCMFMDA: predicting microRNA-disease associations based on similarity constrained matrix factorization. PLoS Comput. Biol. 17, e1009165 (2021).
pubmed: 34252084 pmcid: 8345837 doi: 10.1371/journal.pcbi.1009165
Sheeley, M. P. et al. 1α,25-dihydroxyvitamin D reduction of MCF10A-ras cell viability in extracellular matrix detached conditions is dependent on regulation of pyruvate carboxylase. J. Nutr. Biochem. 109, 109116 (2022).
pubmed: 35934270 pmcid: 9719603 doi: 10.1016/j.jnutbio.2022.109116
Zembroski, AlyssaS. et al. Proteomic characterization of cytoplasmic lipid droplets in human metastatic breast cancer cells. Front. Oncol. 11, 576326 (2021).
pubmed: 34141606 pmcid: 8204105 doi: 10.3389/fonc.2021.576326
Singh, U., Li, J., Seetharam, A. & Wurtele, E. S. pyrpipe: a Python package for RNA-Seq workflows. NAR Genom. Bioinform. 3, lqab049 (2021).
pubmed: 34085037 pmcid: 8168212 doi: 10.1093/nargab/lqab049
Friedländer, MarcR. et al. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 40, 37–52 (2012).
pubmed: 21911355 doi: 10.1093/nar/gkr688
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8

Auteurs

Diego Galeano (D)

Department of Electronics and Mechatronics Engineering, Facultad de Ingeniería, Universidad Nacional de Asunción - FIUNA, Luque, Paraguay. dgaleano@ing.una.py.
COVID-19 International Research Team, Medford, MA, USA. dgaleano@ing.una.py.
Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.

Jeffrey Haltom (J)

COVID-19 International Research Team, Medford, MA, USA.
Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Chaylen Andolino (C)

Department of Nutrition Science, Purdue University, Indiana, USA.
Purdue Institute for Cancer Research, Purdue University, Indiana, USA.

Aliza Yousey (A)

COVID-19 International Research Team, Medford, MA, USA.
Neuroscience Institute, Department of Neurobiology/ Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA.

Victoria Zaksas (V)

COVID-19 International Research Team, Medford, MA, USA.
Center for Translational Data Science, University of Chicago, Chicago, IL, USA.
Clever Research Lab, Springfield, IL, USA.

Saswati Das (S)

COVID-19 International Research Team, Medford, MA, USA.
Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, India.

Stephen B Baylin (SB)

COVID-19 International Research Team, Medford, MA, USA.
Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
The Van Andel Institute, Grand Rapids, MI, USA.

Douglas C Wallace (DC)

COVID-19 International Research Team, Medford, MA, USA.
Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Frank J Slack (FJ)

Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Francisco J Enguita (FJ)

COVID-19 International Research Team, Medford, MA, USA.
Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.

Eve Syrkin Wurtele (ES)

Bioinformatics and Computational Biology Program, Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA.

Dorothy Teegarden (D)

Department of Nutrition Science, Purdue University, Indiana, USA.
Purdue Institute for Cancer Research, Purdue University, Indiana, USA.

Robert Meller (R)

COVID-19 International Research Team, Medford, MA, USA.
Neuroscience Institute, Department of Neurobiology/ Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA.

Daniel Cifuentes (D)

Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.

Afshin Beheshti (A)

COVID-19 International Research Team, Medford, MA, USA.
Blue Marble Space Institute of Science, NASA Ames Research Center, Moffett Field, CA, USA.
Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
McGowan Institute for Regenerative Medicine - Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH