Novel quinazolin-4-one based derivatives bearing 1,2,3-triazole and glycoside moieties as potential cytotoxic agents through dual EGFR and VEGFR-2 inhibitory activity.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
23 10 2024
Historique:
received: 08 06 2024
accepted: 16 09 2024
medline: 24 10 2024
pubmed: 24 10 2024
entrez: 23 10 2024
Statut: epublish

Résumé

The toxicity that was caused by the developed medications for anticancer treatment is, unfortunately, an earnest problem stemming from the various involved targets, and accordingly, intense research for overcoming such a phenomenon remains indispensable. In the current inquiry, an innovative category of substituted quinazoline-based glycosides incorporating a core of 1,2,3-triazole and attached to distinct acetylated likewise deprotected sugar segments are created and produced synthetically. The resulted 1,2,3-triazolyl-glycosides products were investigated for their ability to cause cytotoxicity to several human cancer cell lines. The quinazoline based glycosyl-1,2,3-triazoles 10-13 with free hydroxy sugar moiety revealed excellent potency against (IC

Identifiants

pubmed: 39443462
doi: 10.1038/s41598-024-73171-8
pii: 10.1038/s41598-024-73171-8
doi:

Substances chimiques

ErbB Receptors EC 2.7.10.1
Glycosides 0
Vascular Endothelial Growth Factor Receptor-2 EC 2.7.10.1
EGFR protein, human EC 2.7.10.1
Triazoles 0
Antineoplastic Agents 0
Quinazolinones 0
KDR protein, human EC 2.7.10.1
Protein Kinase Inhibitors 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

24980

Informations de copyright

© 2024. The Author(s).

Références

Wong, R. S. Apoptosis in cancer: From pathogenesis to treatment. J. Experimental Clin. Cancer Res. 30, 1–14. https://doi.org/10.1186/1756-9966-30-87 (2011).
doi: 10.1186/1756-9966-30-87
Chabner, B. A. & Roberts, T. G. Jr Chemotherapy and the war on cancer. Nat. Rev. Cancer 5(1), 65–72 (2005). https://www.nature.com/articles/nrc1529
doi: 10.1038/nrc1529 pubmed: 15630416
Pottier, C. et al. Tyrosine kinase inhibitors in cancer: breakthrough and challenges of targeted therapy. Cancers 12(3), 731. https://doi.org/10.3390/cancers12030731 (2020).
doi: 10.3390/cancers12030731 pubmed: 32244867 pmcid: 7140093
Chilin, A. et al. Exploring epidermal growth factor receptor (EGFR) inhibitor features: The role of fused dioxygenated rings on the quinazoline scaffold. J. Med. Chem. 53, 1862–1866 (2010).
doi: 10.1021/jm901338g pubmed: 20095624
Antonello, A. et al. Multitarget-directed drug design strategy: A novel molecule designed to block epidermal growth factor receptor (EGFR) and to exert proapoptotic effects. J. Med. Chem. 49, 6642–6645 (2006).
doi: 10.1021/jm0608762 pubmed: 17154492
Yun, C. H. et al. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: Mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell. 11, 217–227 (2007).
doi: 10.1016/j.ccr.2006.12.017 pubmed: 17349580 pmcid: 1939942
Tabernero, J. The role of VEGF and EGFR inhibition: Implications for combining anti-VEGF and anti-EGFR agents, Mol. Cancer Res. 5, 203–220 (2007).
Arora, A. & Scholar, E. M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther. 315, 971–979 (2005).
doi: 10.1124/jpet.105.084145 pubmed: 16002463
Garofalo, A. et al. Synthesis and structureeactivity relationships of (Aryloxy)quinazoline ureas as novel, potent, and selective vascular endothelial growth factor Receptor-2 inhibitors. J. Med. Chem. 55, 1189–1204 (2012).
doi: 10.1021/jm2013453 pubmed: 22229669
Garofalo, A. et al. [4-(6,7-Disubstituted quinazolin-4-ylamino)phenyl] carbamic acid esters: a novel series of dual EGFR/VEGFR-2 tyrosine kinase inhibitors. MedChemComm 2, 65–72 (2011).
doi: 10.1039/C0MD00183J
de Castro Barbosa, M. L. et al. Novel 2-chloro-4-anilino-quinazoline derivatives as EGFR and VEGFR-2 dual inhibitors. Eur. J. Med. Chem. 71, 1–14 (2014).
doi: 10.1016/j.ejmech.2013.10.058
Ishikawa, T. et al. Design and synthesis of novel human epidermal growth factor receptor 2 (HER2)/Epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo[3,2-d]pyrimidine scaffold. J. Med. Chem. 54, 8030–8050 (2011).
doi: 10.1021/jm2008634 pubmed: 22003817
McTigue, M. et al. Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors, Proc. Nat. Acad. Sci. U. S. A. 109, 18281–18289. (2012).
Ravez, S., Castillo-Aguilera, O., Depreux, P. & Goossens, L. Quinazoline derivatives as anticancer drugs: a patent review (2011–present). Expert Opin. Ther. Pat. 25(7), 789–804. https://doi.org/10.1517/13543776.2015.1039512 (2015).
doi: 10.1517/13543776.2015.1039512 pubmed: 25910402
Marzaro, G., Guiotto, A. & Chilin, A. Quinazoline derivatives as potential anticancer agents: A patent review (2007–2010). Expert Opin. Ther. Pat. 22(3), 223–252. https://doi.org/10.1517/13543776.2012.665876 (2012).
doi: 10.1517/13543776.2012.665876 pubmed: 22404097
Yu-Jing, Y. J., Zhang, C. M. & Liu, Z. P. Recent developments of small molecule EGFR inhibitors based on the quinazoline core scaffolds. Anti-Cancer Agents Med. Chem. (Formerly Curr. Med. Chemistry-Anti-Cancer Agents) 12(4), 391–406. https://doi.org/10.2174/187152012800228652 (2012).
doi: 10.2174/187152012800228652
Barker, A. J. et al. Studies leading to the identification of ZD1839 (Iressa™): An orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorg. Med. Chem. Lett. 11(14), 1911–1914. https://doi.org/10.1016/S0960-894X(01)00344-4 (2001).
doi: 10.1016/S0960-894X(01)00344-4 pubmed: 11459659
Ganjoo, K. N. & Wakelee, H. Review of erlotinib in the treatment of advanced non-small cell lung cancer. Biol. Targets Ther. 1(4), 335–346. https://doi.org/10.2147/btt.s12160296 (2007).
doi: 10.2147/btt.s12160296
Dungo, R. T. & Keating, G. M. Afatinib: First global approval. Drugs 73, 1503–1515. https://doi.org/10.1007/s40265-013-0111-6 (2013).
doi: 10.1007/s40265-013-0111-6 pubmed: 23982599
Higa, G. M. & Abraham, J. Lapatinib in the treatment of breast cancer. Expert Rev. Anticancer Ther. 7(9), 1183–1192. https://doi.org/10.1586/14737140.7.9.1183 (2007).
doi: 10.1586/14737140.7.9.1183 pubmed: 17892419
Rosell, R. et al. Spanish Lung Cancer Group in collaboration with Groupe Français De Pneumo-Cancérologie and Associazione Italiana Oncologia Toracica. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13(3), 239–246. https://doi.org/10.1016/S1470-2045(11)70393-X (2012).
doi: 10.1016/S1470-2045(11)70393-X pubmed: 22285168
Venkatesh, R. et al. Luotonin-A based quinazolinones cause apoptosis and senescence via HDAC inhibition and activation of tumor suppressor proteins in HeLa cells. Eur. J. Med. Chem. 94, 87–101. https://doi.org/10.1016/j.ejmech.2015.02.057 (2015).
doi: 10.1016/j.ejmech.2015.02.057 pubmed: 25757092
Vasu, K. K. et al. 2-((1H-1, 2, 3-triazol-1-yl) methyl)-3-phenylquinazolin-4 (3H)-ones: Design, synthesis and evaluation as anti-cancer agents. Curr. Bioact. Compd. 14(3), 254–263. https://doi.org/10.2174/1573407213666170329131557 (2018).
doi: 10.2174/1573407213666170329131557
Zhang, H. Q. et al. Design and discovery of 4-anilinoquinazoline-urea derivatives as dual TK inhibitors of EGFR and VEGFR-2. Eur. J. Med. Chem. 125, 245–254 (2017).
doi: 10.1016/j.ejmech.2016.09.039 pubmed: 27688180
Ghorab, M. M., Soliman, A. M., El-Adl, K. & Hanafy, N. S. New quinazoline sulfonamide derivatives as potential anticancer agents: Identifying a promising hit with dual EGFR/VEGFR-2 inhibitory and radiosensitizing activity. Bioorganic Chemistry, 140, p.106791. (2023).
Qiao, F. et al. Synthesis, molecular modeling, and biological evaluation of quinazoline derivatives containing the 1, 3, 4-oxadiazole scaffold as novel inhibitors of VEGFR2. RSC Adv.5(26), 19914–19923 (2015).
doi: 10.1039/C4RA11780H
Moradi, M. et al. Quinazoline-based VEGFR-2 Inhibitors as Potential anti-angiogenic Agents: A Contemporary Perspective of SAR and Molecular Docking Studies p.115626 (European Journal of Medicinal Chemistry, 2023).
El-Sayed, W. A. et al. Novel 1, 2, 3-triazole-coumarin hybrid glycosides and their tetrazolyl analogues: Design, anticancer evaluation and molecular docking targeting EGFR, VEGFR-2 and CDK-2. Molecules. 27 (7), 2047. https://doi.org/10.3390/molecules27072047 (2022).
doi: 10.3390/molecules27072047 pubmed: 35408446 pmcid: 9000887
Song, P., Cui, F., Li, N., Xin, J., Ma, Q., Meng, X., Liu, H. Synthesis,cytotoxic activity evaluation of novel 1, 2, 3-triazole linked quinazoline derivatives.Chinese Journal of Chemistry, 35(10), 1633–1639, doi: https://doi.org/10.1002/cjoc.201700005 (2017).
Abdel Rahman, A. A. H. et al. Synthesis and anticancer activity evaluation of New 1, 2, 4-Triazolyl-quinazoline hybrid compounds and their pyrazolopyridine analogs. Egypt. J. Chem. 67(13), 393–402. https://doi.org/10.21608/ejchem.2024.257696.9043 (2024).
doi: 10.21608/ejchem.2024.257696.9043
Mohamed, A. M. et al. Novel [1, 2, 3] triazoles,[1, 2, 3]triazolo [4, 5-d] pyrimidines, and some of their glycoside derivatives: synthesis and molecular modeling as potential apoptotic Antitumor agents. Polycycl. Aromat. Compd. 1-25 https://doi.org/10.1080/10406638.2023.2197603 (2023).
Elganzory, H. H. et al. Design, synthesis, anticancer activity and molecular docking of new 1, 2, 3-triazole-based glycosides bearing 1, 3, 4-thiadiazolyl, indolyl and arylacetamide scaffolds. Molecules 27(20), 6960. https://doi.org/10.3390/molecules27206960 (2022).
doi: 10.3390/molecules27206960 pubmed: 36296551 pmcid: 9611297
Mohamed, A. M., Abdelwahab, M., Abde lHafez, N. A., Mahmoud, S. F., El-Bayaa, M.,El-kady, D. S., El-Sayed, W. A. (2022). Synthesis, Cytotoxic Activity and Molecular Modelling of Novel [1, 2, 3] triazolo [4, 5-d] pyrimidine Compounds, their Glycoside Derivatives and Acyclic Analogs. Egyptian Journal of Chemistry 65(1), 645–656, doi: 10.21608/ejchem.2021.84371.4127.
Srour, A. M., El-Bayaa, M. N., Omran, M. M., Sharaky, M. M. & El-Sayed, W. A. Synthesis and cytotoxic properties of new substituted glycosides-indole conjugates as apoptosis inducers in cancer cells. Anti-Cancer Agents Med. Chem. (Formerly Curr. Med. Chemistry-Anti-Cancer Agents) 21(10), 1323–1333. https://doi.org/10.2174/1871520620666200929155246 (2021).
doi: 10.2174/1871520620666200929155246
Tolan, H. E. M. et al. Synthesis and cytotoxic activity of New 1, 4-Dithiazolyl-5-oxopyrrole Derivatives, their 1, 2, 4-Triazoles and Nucleoside analogs. Russ. J. Gen. Chem. 90, 1544–1552. https://doi.org/10.1134/S1070363220080241 (2020).
doi: 10.1134/S1070363220080241
Abdel-Rahman, A. A. H., El-Ganzoury, E. M., Zeid, I. F., Zayed, E. M. & El-Sayed, W. A. Quinazolines Linked to Sugar Derivatives as Nucleoside Analogs, Synthesis and Biological aspects. Egypt. J. Chem. https://doi.org/10.21608/EJCHEM.2024.259301.9116 (2024).
doi: 10.21608/EJCHEM.2024.259301.9116
Abbas, H. A. S., Nossier, E. S., El-Manawaty, M. A. & El-Bayaa, M. N. New sulfonamide-based glycosides incorporated 1, 2, 3-triazole as cytotoxic agents through VEGFR-2 and carbonic anhydrase inhibitory activity. Sci. Rep. 14(1), 13028. https://doi.org/10.1038/s41598-024-62864-9 (2024).
doi: 10.1038/s41598-024-62864-9 pubmed: 38844493 pmcid: 11156913
Lauria, A. et al. 1, 2, 3-Triazole in heterocyclic compounds, endowed with biological activity, through 1, 3‐dipolar cycloadditions. Eur. J. Org. Chem. 2014(16), 3289–3306. https://doi.org/10.1002/ejoc.201301695 (2014).
doi: 10.1002/ejoc.201301695
Halay, E., Ay, E., Şalva, E., Ay, K. & Karayıldırım, T. Syntheses of 1, 2, 3-triazole-bridged pyranose sugars with purine and pyrimidine nucleobases and evaluation of their anticancer potential. Nucleosides Nucleotides Nucleic Acids 36(9), 598–619. https://doi.org/10.1080/15257770.2017.1346258 (2017).
doi: 10.1080/15257770.2017.1346258 pubmed: 29087802
Wolle, D. et al. Inhibition of epidermal growth factor signaling by the cardiac glycoside ouabain in medulloblastoma. Cancer Med. 3(5), 1146–1158. https://doi.org/10.1002/cam4.314 (2014).
doi: 10.1002/cam4.314 pubmed: 25052069 pmcid: 4302666
Seo, Y. H. et al. New Sesquiterpene glycosides from the flowers of Aster Koraiensis and their inhibition activities on EGF-and TPA-Induced Cell Transformation. Plants 12(8), 1726. https://doi.org/10.3390/plants12081726 (2023).
doi: 10.3390/plants12081726 pubmed: 37111949 pmcid: 10146194
Tuan Anh, H. L., Tran, P. T., Thao, D. T., Trang, D. T., Dang, N. H., Van Cuong, P., Lee, J. H. (2018). Degalactotigonin, a steroidal glycoside from Solanum nigrum,induces apoptosis and cell cycle arrest via inhibiting the EGFR signaling pathways in pancreatic cancer cells. BioMed research international2018, 1–9, doi: 10.1155/2018/3120972.
Nagarsenkar, A. et al. Investigation of triazole-linked indole and oxindole glycoconjugates as potential anticancer agents: novel Akt/PKB signaling pathway inhibitors. MedChemComm 7(4), 646–653. https://doi.org/10.1039/C5MD00513B (2016).
doi: 10.1039/C5MD00513B
Kassem, A. F., Omar, M. A., Nossier, E. S., Awad, H. M. & El-Sayed, W. A. Novel pyridine-thiazolidinone-triazole hybrid glycosides targeting EGFR and CDK-2: Design, synthesis, anticancer evaluation, and molecular docking simulation. J. Mol. Struct. 1294, 136358. https://doi.org/10.1016/j.molstruc.2023.136358 (2023).
doi: 10.1016/j.molstruc.2023.136358
Khattab, R. R. et al. Click chemistry based synthesis, cytotoxic activity and molecular docking of novel triazole-thienopyrimidine hybrid glycosides targeting EGFR. J. Enzyme Inhib. Med. Chem. 36(1), 504–516. https://doi.org/10.1080/14756366.2020.1871335 (2021).
doi: 10.1080/14756366.2020.1871335 pubmed: 33504239 pmcid: 8759726
El-Sayed, W. A. et al. New 1, 2, 3-Triazole-coumarin-glycoside hybrids and their 1, 2, 4-triazolyl thioglycoside analogs targeting mitochondria apoptotic pathway: synthesis, anticancer activity and docking simulation. Molecules 27(17), 5688. https://doi.org/10.3390/molecules27175688 (2022).
doi: 10.3390/molecules27175688 pubmed: 36080455 pmcid: 9458111
Agrahari, A. K., Bose, P., Jaiswal, M. K., Rajkhowa, S., Singh, A. S., Hotha, S., Tiwari, V. K. (2021). Cu (I)-catalyzed click chemistry in glycoscience and their diverse applications. Chemical Reviews, 121(13), 7638–7956. https://doi.org/10.1021/acs.chemrev.0c00920.
Amr, A. E. G. E. et al. Design, synthesis, anticancer evaluation and molecular modeling of novel estrogen derivatives. Molecules 24(3), 416. https://doi.org/10.3390/molecules24030416 (2019).
doi: 10.3390/molecules24030416 pubmed: 30678347 pmcid: 6385123
Nossier, E. S., El-hallouty, S. M. & Zaki, E. R. Synthesis, anticancer evaluation and molecular modeling of some substituted thiazolidinonyl and thiazolyl pyrazole derivatives. Int. J. Pharm. Pharm. Sci. 353–359. (2015).
Moustafa, G. O. et al. Synthesis, characterization, in vitro anticancer potentiality, and antimicrobial activities of novel peptide–glycyrrhetinic-acid-based derivatives. Molecules 26(15), 4573. https://doi.org/10.3390/molecules26154573 (2021).
doi: 10.3390/molecules26154573 pubmed: 34361728 pmcid: 8346995
Othman, I. M. et al. Synthesis and biological evaluation of new derivatives of thieno-thiazole and dihydrothiazolo-thiazole scaffolds integrated with a pyrazoline nucleus as anticancer and multi-targeting kinase inhibitors. RSC Adv.n 12(1), 561–577. https://doi.org/10.1039/D1RA08055E (2022).
doi: 10.1039/D1RA08055E
Alamshany, Z. M., Tashkandi, N. Y., Othman, I. M., Anwar, M. M. & Nossier, E. S. New Thiophene, thienopyridine and thiazoline-based derivatives: Design, synthesis and biological evaluation as antiproliferative agents and multitargeting kinase inhibitors. Bioorg. Chem. 127, 105964. https://doi.org/10.1016/j.bioorg.2022.105964 (2022).
doi: 10.1016/j.bioorg.2022.105964 pubmed: 35759881
Hassan, A. S., Moustafa, G. O., Awad, H. M., Nossier, E. S. & Mady, M. F. Design, synthesis, anticancer evaluation, enzymatic assays, and a molecular modeling study of novel pyrazole–indole hybrids. ACS Omega 6(18), 12361–12374. https://doi.org/10.1021/acsomega.1c01604 (2021).
doi: 10.1021/acsomega.1c01604 pubmed: 34056388 pmcid: 8154124
Pfeffer, C. M. & Singh, A. T. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci. 19(2), 448. https://doi.org/10.3390/ijms19020448 (2018).
doi: 10.3390/ijms19020448 pubmed: 29393886 pmcid: 5855670
Alamshany, Z. M., Algamdi, E. M., Othman, I. M., Anwar, M. M. & Nossier, E. S. New pyrazolopyridine and pyrazolothiazole-based compounds as anti-proliferative agents targeting c-Met kinase inhibition: Design, synthesis, biological evaluation, and computational studies. RSC Adv. 13(19), 12889–12905. https://doi.org/10.1039/D3RA01931D (2023).
doi: 10.1039/D3RA01931D pubmed: 37114032 pmcid: 10128108
Batran, R. Z., Ahmed, E. Y., Nossier, E. S., Awad, H. M. & Latif, N. A. A. Anticancer activity of new triazolopyrimidine linked coumarin and quinolone hybrids: synthesis, molecular modeling, TrkA, PI3K/AKT and EGFR inhibition. J. Mol. Struct. 137790. https://doi.org/10.1016/j.molstruc.2024.137790 (2024).
Hashem, H. E. et al. Nanoparticles of a pyrazolo-pyridazine derivative as potential EGFR and CDK-2 inhibitors: Design, structure determination, anticancer evaluation and in silico studies. Molecules 28(21), 7252. https://doi.org/10.3390/molecules28217252 (2023).
doi: 10.3390/molecules28217252 pubmed: 37959672 pmcid: 10648062
Dawood, D. H., Sayed, M. M., Tohamy, S. T. & Nossier, E. S. New Thiophenyl-pyrazolyl-thiazole hybrids as DHFR inhibitors: Design, synthesis, antimicrobial evaluation, molecular modeling, and Biodistribution studies. ACS Omega 8(42), 39250–39268. https://doi.org/10.1021/acsomega.3c04736 (2023).
doi: 10.1021/acsomega.3c04736 pubmed: 37901585 pmcid: 10600881
Cheng, F. et al. Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers. J. Chem. Inf. Model. 51(5), 996–1011. https://doi.org/10.1021/ci200028n (2011).
doi: 10.1021/ci200028n pubmed: 21491913
Abd El-Meguid, E. A., El-Deen, E. M. M., Moustafa, G. O., Awad, H. M. & Nossier, E. S. Synthesis, anticancer evaluation and molecular docking of new benzothiazole scaffolds targeting FGFR-1. Bioorg. Chem. 119, 105504. https://doi.org/10.1016/j.bioorg.2021.105504 (2022).
doi: 10.1016/j.bioorg.2021.105504 pubmed: 34836644
El-Sayed, A. A., Nossier, E. S., Almehizia, A. A. & Amr, A. E. G. E. Design, synthesis, anticancer evaluation and molecular docking study of novel 2, 4-dichlorophenoxymethyl-based derivatives linked to nitrogenous heterocyclic ring systems as potential CDK-2 inhibitors. J. Mol. Struct. 1247. https://doi.org/10.1016/j.molstruc.2021.131285 (2022).
Othman, I. M. et al. Chemical synthesis and molecular docking study of new thiazole, thiophene, and thieno [2, 3-d] pyrimidine derivatives as potential antiproliferative and antimicrobial agents. J. Mol. Struct. 1270 https://doi.org/10.1016/j.molstruc.2022.133926 (2022).
Srour, A. M. et al. Design, synthesis and molecular docking simulation of oxindole-based derivatives with dual VEGFR-2 and cholinesterase inhibitory activities. J. Mol. Struct. 1271, 134130. https://doi.org/10.1016/j.molstruc.2022.134130 (2023).
doi: 10.1016/j.molstruc.2022.134130
El-serwy, W. S. et al. Thiopyrimidine‐5‐carbonitrile derivatives as VEGFR‐2 inhibitors: Synthesis, anticancer evaluation, molecular docking, ADME predictions and QSAR studies. ChemistrySelect 5(48), 15243–15253. https://doi.org/10.1002/slct.202002566 (2020).
doi: 10.1002/slct.202002566
Castro, A. et al. CODES, a novel procedure for ligand-based virtual screening: PDE7 inhibitors as an application example. Eur. J. Med. Chem. 43(7), 1349–1359. https://doi.org/10.1016/j.ejmech.2007.10.027 (2008).
doi: 10.1016/j.ejmech.2007.10.027 pubmed: 18082290
Azev, Y. A., Golomolzin, B. V., Dyulcks, T., Klyuev, N. A. & Yatluk, Y. G. Synthesis, properties, and mass-spectrometric fragmentation of 2-thio derivatives of 3-arylquinazolin-4-ones. Chem. Heterocycl. Compd. 43, 356–361. https://doi.org/10.1007/s10593-007-0052-7 (2007).
doi: 10.1007/s10593-007-0052-7

Auteurs

Adel A-H Abdel-Rahman (AA)

Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt. Adel.Nassar@science.menofia.edu.eg.

Mohamed N El-Bayaa (MN)

Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia.

Asmaa Sobhy (A)

Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt.

Eman M El-Ganzoury (EM)

Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt.

Eman S Nossier (ES)

Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt.
The National Committee of Drugs, Academy of Scientific Research and Technology, Cairo, 11516, Egypt.

Hanem M Awad (HM)

Tanning Materials and Leather Technology Department, National Research Centre, Dokki, Giza, 12622, Egypt.

Wael A El-Sayed (WA)

Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH